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We study the role of the quench temperature Tf in the phase-ordering kinetics of the Ising model with single
spin flip in d=2,3. Equilibrium interfaces are flat at Tf =0, whereas at Tf �0 they are curved and rough �above
the roughening temperature in d=3�. We show, by means of scaling arguments and numerical simulations, that
this geometrical difference is important for the phase-ordering kinetics as well. In particular, while the growth
exponent z=2 of the size of domains L�t�� t1/z is unaffected by Tf, other exponents related to the interface
geometry take different values at Tf =0 or Tf �0. For Tf �0 a crossover phenomenon is observed from an early
stage where interfaces are still flat and the system behaves as at Tf =0, to the asymptotic regime with curved
interfaces characteristic of Tf �0. Furthermore, it is shown that the roughening length, although subdominant
with respect to L�t�, produces appreciable correction to scaling up to very long times in d=2.
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I. INTRODUCTION

When a binary system in suddenly quenched from above
the critical temperature Tc to a temperature Tf �Tc, phase
ordering occurs with formation and growth of domains. After
a certain time tsc dynamical scaling �1� sets in, characterized
by the typical size of ordered regions growing algebraically
in time, L�t�� t1/z. When domains are large, their bulk is in
quasiequilibrium in one of the two broken symmetry phases
which are characterized by finite correlation length ��Tf� and
relaxation time teq�Tf���z�Tf�, while the motion of the
boundaries keeps the system globally out of equilibrium. At
a given time s, therefore, nonequilibrium effects can be de-
tected by looking over distances larger than L�s�, because in
this case one or more interfaces will be observed. On the
other hand a local observation performed from time t=s on-
wards can reveal nonequilibrium features only for time sepa-
rations t−s�s, because on these timescales at least one in-
terface has typically passed across the observation region. In
the other regime, instead, for space separations r�L�s� or
time separations t−s�s, the equilibrium properties of the
interior of domains are probed. This character of the dynam-
ics induces an additive structure for pair correlation func-
tions between local observables. Using the terminology of
spin systems, and considering, for simplicity, the spin-spin
correlation function G�r , t ,s�= ��i�t�� j�s��− ��i�t���� j�s��,
where �i�t� is the value of the spin on site i at time t and r is
the distance between sites i , j, one has

G�r,t,s� = Gst�r,t − s� + Gag�r,t,s� . �1�

The stationary term Gst describes equilibrium fluctuations in-
side domains, and decays to zero for distances r���Tf�
and/or time separations t−s� teq�Tf�. Gag, which contains the
out of equilibrium information, is the correlation function of

interest in the theory of phase ordering, and obeys the scaling
form �2�

Gag�r,t,s� = Ĝ�r/L�s�,t/s� . �2�

Furthermore, the scaling function for large time separation
�1� is of the form

Ĝ�r/L�s�,t/s� � �t/s�−�/zh�r/L�s�� , �3�

where � is the Fisher-Huse exponent �3,16�, and, in system
with sharp interfaces, such as the Ising model, the function
h�x� obeys the Porod law

1 − h�x� � x �4�

for x	1. In general, both the terms of the splitting �1� dis-
play a universal character. For the stationary part, this is well
known from equilibrium statistical mechanics, where the
renormalization group allows the classification of different
systems into universality classes on the basis of few relevant
parameters �4�. A similar property is believed to hold also for
the aging term. Universal indices, such as the exponents �, z,
or other appearing in different quantities, should depend only
on a small set of parameters among which the space dimen-
sion d, the number of order parameter components and the
presence of conservation laws in the dynamics. The theoret-
ical foundations of this idea, however, are not as robust as for
its equilibrium counterpart This is due to the nonperturbative
character of the dynamical problem. Actually, while in equi-
librium an upper critical dimension dU exists above which
the renormalization group �RG� fixed point is Gaussian, al-
lowing the 
 expansion for d�dU, there is not an upper
critical dimension for the dynamical process following a
quench below Tc �5�. Although an approach based fully on
the RG is not available, complementing RG techniques with
a physically motivated ansatz, it has been shown �6� that, for
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a system of continuous spins described by a time-dependent
Ginzburg-Landau �TDGL� equation there exists an attractive
strong coupling fixed point at T=0 governing the large scale
properties of quenches to every Tf �Tc. This result supports
the idea of a universal character of the aging term in Eq. �1�,
allows for a definition of nonequilibrium universality classes,
and shows that universal quantities such as exponents, are
the same in the whole low temperature phase. Restricting
ourselves from now on to scalar systems with short-range
interactions and without dynamical conservation of the order
parameter �1�, these quantities should depend only on space
dimension �7�. This would agree with the physical idea that
Tf only determines the size ��Tf� of the thermal island of
reversed spins inside the domains, described by the station-
ary term in Eq. �1�, leaving unchanged large-scale long-time
properties of the interface motion, contained in the aging
part. Basically, this indicates a unique mechanism governing
the nonequilibrium behavior of interfaces. Restricting our at-
tention to the exponent z, the Lifschitz-Cahn-Allen theory �8�
confirms this idea, since it gives z=2 for every Tf �Tc. At
the basis of this result is the so-called curvature driven
mechanism: the existence of a surface tension implies a force
per unit of domains boundary area proportional to the mean
curvature which, in turn, is proportional to the inverse of
L�t�. For purely relaxational dynamics, this readily gives z
=2, independent on Tf and on dimensionality.

These results are all based on continuous models where
the usual tools of differential analysis can be used and the
curvature is a well defined object. This approach is justified
also for lattice models, such as the nearest neighbor Ising
model, at relatively high Tf, where temperature fluctuations
produce soft interfaces, which at a coarse-grained level have
a continuous character, and can be well described in terms of
partial differential equations. When the temperature is low-
ered, however, these interfaces become faceted. This means
that, although the growing structure has still a bicontinuous
interconnected morphology, interfaces are flat up to scales of
order L�t�. This implies that their description in the con-
tinuum may be inappropriate. Then, while continuum theo-
ries predict temperature to be an irrelevant parameter, with
Tf-independent exponents and a common kinetic mechanism
for all quenches to Tf �Tc, lattice models could in principle
behave differently, in particular at Tf =0. This would imply
that temperature fluctuation do play a significant role in the
way interfaces evolve, determining, in addition to the prop-
erties of the stationary term in Eq. �1�, also those of the aging
contribution. This issue is not yet clarified; let us mention,
for example, that while for quenches to Tf =0 in d=3 the
exponent z=2 has been observed �9� in numerical simula-
tions of the TDGL equation, for the Ising model one mea-
sures �10� an higher value whose origin is not yet clear.

In this paper we consider the role of Tf in the phase-
ordering kinetics of the nearest-neighbor Ising model. For
quenches to Tf =0 we will argue in Sec. II that the basic
mechanism for the growth of L�t� can be properly seen as a
progressive elimination of small domains with a faceted ge-
ometry, and that the zero-temperature constraint, namely, the
unrealizability of activated moves, plays a crucial role.
Elaborating on this we develop a scaling argument which
allows us to determine analytically the behavior of several

quantities. The results of this approach are compared in Sec.
III with the outcome of numerical simulations, providing a
general agreement. In particular, for the total interface den-
sity ��t�, which is related to the domains size by ��t�−1

�L�t�, we find a power law behavior with z=2 in every
dimension, as at finite temperature. The different character of
the dynamics at Tf =0 is enlightened in Sec. II C by consid-
ering the densities �n�t��L�t�−n of spins �i with a given
degree of alignment n, this quantity being the difference be-
tween the number of aligned and that of antialigned neigh-
bors of �i. These quantities provide information on the ge-
ometry of the interface and are shown to behave differently
for quenches to finite Tf or to Tf =0. While for shallow
quenches, when the curvature driven mechanism is at work,
one has n=1 for every n, for quenches to Tf =0 one finds
n-dependent �and d-dependent� values of n. For deep
quenches with Tf �0, a crossover is numerically observed
�Sec. III B� between an early stage �that can be rather long
for small Tf� where the same behavior of quenches to Tf =0
is observed, to the late regime dominated by the usual cur-
vature mechanism.

Finally, we discuss the effects of temperature fluctuations
on the characteristic time tsc of the onset of scaling. Our
numerical simulations �Sec. III� show that the behavior of tsc
is very different in d=2 and in d=3. In d=2, tsc is relatively
small in quenches to Tf =0 and grows monotonously raising
Tf. For Tf �0 and t� tsc one observes an approximate power
law behavior with L�t�� t1/zeff�t�, with an effective exponent
zeff�t��2, slowly converging to the asymptotic value. This
explains why values of 1 /z�0.47–0.48 are often reported in
the literature �17�. We interpret the increase of tsc as due to
the presence of the roughening length U�t ,Tf�� t1/4 compet-
ing with L�t� in the early regime. This interpretation is shown
to agree with the results of numerical simulations. Moreover,
we show how the effect of roughness can also be detected
numerically in the behavior of h�x� �Eqs. �3� and �4��. Actu-
ally, over distances r�U�t ,Tf� interfaces are not sharp, so
that the Porod law �4� is not obeyed for x�xR�t�
�U�t ,Tf� /L�t�� t−1/4. For d=3, instead, we find the opposite
situation, tsc is very large at Tf =0, while it is small for shal-
low quenches. In d=3, U�t ,Tf� grows at most logarithmi-
cally and hence is dominated by L�t� very soon causing no
delays to scaling. Therefore, the mechanism leading to the
increase of tsc when raising Tf in d=2 is not present here and,
in shallow quenches, tsc is relatively small. Instead, when
Tf =0 numerical simulations show a very long lasting tran-
sient. This is probably due to the constrained character of the
kinetics where activated moves are forbidden. The very large
value of tsc explains the anomalous values of 1 /z
�0.33–0.37 sometimes reported in the literature �10� for
quenches to Tf =0. However, our simulations show unam-
biguously that 1 /zeff�t� is a growing function of t and, al-
though at the longest simulated times it is still 1 /zeff�t�
�0.43, its behavior is consistent with an asymptotic value
z=2.

This paper is organized as follows. In Sec. II we define
the Ising model and develop scaling arguments to determine
the behavior of ��t� and �n�t� in quenches to Tf =0. In Sec.
III we discuss the data from simulations of quenches to Tf
=0 �Sec. III A� and to Tf �0 �Sec. III B�, showing the agree-
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ment with the results obtained in Sec. II. Section IV contains
the conclusions.

II. SCALING ARGUMENTS FOR QUENCHES TO Tf=0

In the following we will consider the nearest neighbor
Ising model described by the Hamiltonian

H����� = − J	
�i,j�

�i� j , �5�

where �i= �1 are the spin variables, �i , j� are two nearest
sites on a d-dimensional lattice, and ��� is the configuration
of all the spins. A purely relaxational dynamics without con-
servation of the order parameter can be defined by introduc-
ing single spin flip transition rates w��i→−�i� obeying de-
tailed balance. These quantities depend on Tf and on the
local energy Ei=−Jni, ni being the degree of alignment,
namely, the difference between the number of the neighbor-
ing spins aligned with �i and that of the antialigned ones.
Letting J=1, transition rates are functions of ni and Tf,
namely, w��i→−�i�=W�ni��� ,Tf�. For Tf =0 one has
W�ni��� ,Tf�=0 whenever ni�0.

In the remaining of this section we will develop a scaling
argument to determine the behavior of several quantities,
among which L�t�, in quenches to Tf =0. We assume that the
growing structure can be thought of as made of features, with
a faceted geometry. Features are distortions of flat interfaces
or bubbles of spins. For the square lattice considered in the
following, these are schematically drawn in Fig. 1 �upper
part� in d=2.

A. Relation between the relaxation of a feature
and the exponent z

In order to have coarsening, features must be progres-
sively removed �11,21�, by flipping all their spins. Let us
define �l as the typical time to complete this process for a
feature of size l. Our strategy is to relate �l to the growth
exponent z. In order to do that, let us notice that when, after
a time �l, features of size l are removed, the typical scale of
the system is increased by a quantity �l� l, as shown in Fig.
1 �lower part�. Assuming scaling, namely, the presence of a
single relevant lengthscale, the typical size l of a feature at
time t must be of order L�t�. Therefore dL�t� /dt��l /�l. Let
us anticipate what will be shown in the next section, namely,
that �l� l�, with �=2. Therefore we have dL�t� /dt�L�t�1−�,
and so L�t�� t1/z with

z = � = 2. �6�

In the following we consider the behavior of �l.

B. Relaxation time of a feature

We use the terminology of the case d=2, for simplicity,
but the argument is general. Let us consider the relaxation of
an initially �at time t=0� squared bubble, represented in Fig.
2. At zero temperature only spins with n�0 can be flipped.
Therefore, referring to the situation of the upper part of Fig.
2, the first move is necessarily the flip of one of the four
spins in the corners of the square. These moves trigger a

sequence of successive flips, producing the shrinking of the
bubble. Let us suppose, in order to simplify the argument,
that spins are flipped starting from the bottom of the box
�actually the flipping of the spins proceeds on the average
from each side, but this does not change our conclusions�.
Let us denote with hi �i=1,2 , . . . , l� the height of the ith
column of the box at time t, as shown in Fig. 2. Due to the
zero temperature constraints, while the first and last column,
with i=1 and i= l, are always allowed to grow, due to the
presence of the wall, all the other columns can do it only if at
least one the nearest columns is higher. Moreover, a column
cannot decrease its height if it is not higher than at least one
of the neighbors. With these rules, columns evolve until, at
t=�l, all the spins in the box are flipped, the bubble disap-
pears, and the process ends.

Since with this dynamics an exact evaluation of �l is not
possible, in the following we consider a slightly modified
kinetics for which a determination of �l is allowed; we will
then argue, checking this hypothesis numerically, that the
modification of the dynamics does not change significantly
the behavior of �l and, in particular, the exponent �. More
precisely, we modify the original dynamics by introducing an
additional constraint, namely, 
hi+1−hi
�1. With this modi-
fication the problem can be mapped onto a diffusion equation
for the variables hi. This result, which applies to the case d
=3 as well, is shown in Appendix A. For an interface de-
scribed by a diffusion equation one has �l� l�, with �=2. We
argue that the same result applies to the original dynamics as
well. The reason is the following: due to all the constraints

time
time

(b)

(a)

FIG. 1. �Color online� Upper part: A flat surface in d=2 with a
distortion �left� and a bubble of reversed spins �right�. Lower part:
The increase of L�t� in d=2 when features such as distortions �left�
or bubbles �right� are removed.
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discussed above, the heights hi are not independent, the typi-
cal differences 
hi+1−hi
 do not grow very large and, for large
l, they are independent of l. This is confirmed by looking at
a simulation of the bubble shrinking. For large l, since the
differences 
hi+1−hi
 are small as compared to the relevant
scale l, we expect that the effect of the additional constraint
does not change the exponent �. This last statement is con-
vincingly confirmed by the results of numerical simulations,
shown in Fig. 3. This figure refers to the simulation of a
squared �cubic in d=3� bubble, namely, an Ising model on an
l2 �l3 in d=3� squared lattice with �say� up spins on the
boundary and an initial condition of down spins in the inte-

rior. Averaging over several �103–105, depending on l� real-
izations of the thermal history, for each value of l we have
computed �l as the time needed to revert the last spin. Figure
3 shows that �l� l�, with �=2 is found with very good ac-
curacy, regardless of dimensionality. This result confirms the
validity of the hypothesis according to which the exponent �
is the same ��=2� in the original Ising dynamics and in the
modified kinetics considered in Appendix A.

With this result Eq. �6� follows, namely, z=2 in every
dimension. The exponent z is therefore the same as in
quenches to finite temperatures. Assuming scaling, the size
of domains L�t� is related by L�t����t�−1 to the total density
of interfaces present in the system. The exponent z therefore
gives information on the number of interfaces, not on their
geometry. In order to appreciate geometrical properties we
will consider in the following other observables.

C. Densities of spins with a given degree of alignment

Restricting again to the d=2 case for simplicity �the ex-
tension to the case d=3 is straightforward and will be dis-
cussed in Appendix B�. we introduce the density �n�l� of
spins with a certain degree of alignment ni=n in a feature. In
the following, we will only refer to interfacial spins: bulk
spins with n=4, whose behavior is trivial, will never be con-
sidered. Initially, in the squared bubble interfacial spins are
those on the flat boundaries or in the corners, with n=2 and
n=0 respectively. During the evolution, as shown in the
lower part of Fig. 2, all the possible values of n can be
generated. The set of �n�l� provides a geometric character-
ization of the interface. A representation of the typical geom-
etry where a spin with a degree of alignment n occurs when
the bubble shrinks is drawn in Fig. 4.

While columns are growing, a generic profile of hi is
made of steps, namely, spins with n=0, and flat parts with
n=2, as shown in Fig. 2. A step on site i can be randomly
replaced by a flat part and the reverse is possible as well. As
a consequence for sufficiently large values of l a finite frac-
tion, independent of l, of spins with n=0 and n=2 will be

1 2 3 i

hi

FIG. 2. �Color online� Relaxation of a bubble in d=2. Upper:
only the spins in the corner can be flipped initially. Lower: a typical
configuration at a generic time.

10 100
l

10

100

1000

10000

τ
l

d=2
d=3

t
1/2

FIG. 3. �Color online� The typical time �l needed to flip all the
spins of a squared bubble of size l.

n=−4 n=−2

n=0 n=2

FIG. 4. �Color online� Classification of interfacial spins in d
=2. The central spin is classified according to the degree of align-
ment. The dashed line is the typical shape of the interface associ-
ated to each type of spin during the bubble shrinkage.
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typically present. Simulations clearly show that these num-
bers, on average, do not depend on time �excluding, possibly,
the initial and final stages of the process�. According to this,
the number of spins with n=0 or n=2 is constant and pro-
portional to the length of the interface, namely, to l. Normal-
izing with the total number of spins l2, we obtain �2�l�� l−1

and �0�l�� l−1. The situation is very different for spins with
n=−2 and n=−4. The former can only be produced when a
last spin must be reversed in order to complete a row, an
event happening, on average, every l moves. When this oc-
curs, a single spin �out of l2� with n=−2 is generated. Look-
ing at a generic time, therefore, the typical density of such
spins is �−2�l�� l−3. Finally, spins with n=−4 are only ob-
tained when the last spin of the box must be reversed. In a
bubble of l2 spins only one can be the last, and this happens
once every l2 moves. Hence �−4�l�� l−4. Again, scaling im-
plies that we can identify l and L�t�, leading to

�n�L�t�� � L�t�−n, �7�

with

2 = 0 = 1, �8�

−2 = 3, �9�

−4 = 4. �10�

This argument can be extended to the case d=3 �see Appen-
dix B�. The results are

4 = 2 = 0 = 1, �11�

−2 = 3, �12�

−4 = −6 = 4. �13�

In the next section we will compare these predictions with
the outcome of numerical simulations, both in d=2 and d
=3.

III. NUMERICAL SIMULATIONS

A. Quenches to Tf=0

We have simulated systems of 20002 and 5763 spins in
d=2 and d=3, respectively, on square �cubic� lattices. With
these sizes, we have checked that finite size effects are not
present in the range of times presented in the figures. The
critical temperature of the model is Tc�2.269 and Tc
�4.512 in d=2 and d=3, respectively �we set J=1�. Time is
measured in Monte Carlo steps �MCS�. In Fig. 5 we show
the results for d=2. Here we observe that a scaling regime,
attested by the power law behavior of all the plotted quanti-
ties, sets in after a very short time tsc�4 MCS. Best power
law fits to the data �for t�10� give 2=0.99�0.02, 0
=1.03�0.03, −2=2.99�0.04, −4=4.05�0.05, and z
=1.99�0.02. All the exponents n and z are in excellent
agreement with the determination made in the previous sec-
tion.

When scaling holds, according to Eqs. �2� and �3� the
equal time correlation function, behaves as

Gag�r,t,t� = h„r/L�t�… , �14�

with h obeying Porod law �4� in the case of sharp interfaces.
In the case considered here, Gag�r , t , t�=G�r , t , t�, since
Gst�r , t , t��0 at Tf =0. According to Eq. �14�, when scaling
holds curves of Gag�r� , t , t� for different times should collapse
when plotted against r /L�t�. This is observed in Fig. 14 �left
part�. In addition, the Porod law �4� is very neatly obeyed.

In Fig. 6 a plot analogous to that of Fig. 5 is made for
d=3. After a time around 10 MCS a power-law behavior sets
in for all the �n�L�t��. Fitting the curves with power laws we
find a residual time dependence of the exponents n, since
their value changes measuring them in different time win-
dows. This is particularly evident for −2. This indicates that
preasymptotic corrections to scaling are not completely neg-
ligible in the time domain of our simulations. Best power-
law fits for t�10 yield 4=0.97�0.04, 2=1.11�0.06,
0=1.03�0.04, −2=3.3�0.1, −4=3.8�0.1, and −6
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t

10

100

L
(t

)

L(t)
-1

L(t)
-3

L(t)
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FIG. 5. �Color online� Quench to Tf =0 in d=2. The densities
�n�L�t�� are plotted against L�t�=��t�−1. In the inset L�t� is plotted
against time.
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FIG. 6. �Color online� Quench to Tf =0 in d=3. The densities
�n�L�t�� are plotted against L�t�=��t�−1. In the insets L�t� and
1 /zeff�t� are plotted against time.
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=3.9�0.1. Taking into account the presence of preasymp-
totic corrections we regard these values as being consistent
with the results of the previous section. Regarding L�t�, in-
stead, the data �in the inset� do not show a satisfactory power
law. The curve is bending upwards on the double logarithmic
plot and the exponent is not consistent with the expected
value z=2. In order to clarify this point we have computed
the effective exponent

1

zeff�t�
=

d ln L�t�
d ln t

, �15�

which is shown in the inset of Fig. 6. In an early stage, when
scaling does not hold, this quantity grows exponentially as
described by linear theories �12�. Then, after reaching a
minimum of order 0.3, 1 /zeff�t� it keeps slowly, but steadily,
increasing. Its value measured at the longest times is around
1 /zeff�0.43. Actually, to the best of our knowledge, the ex-
pected exponent z=2 has never been reported. Previous
simulations on much shorter time scales observed �10� an
exponent of order 1/3 and sometimes the very existence of
dynamical scaling has been questioned. Notice that the value
1/3 is comparable to the value 1 /zeff�0.3 of the effective
exponent around its minimum, a fact which may explain
what reported in Ref. �10�. Our data are consistent with a
possible asymptotic value z=2 although much larger simula-
tion efforts would be needed for a definitive evidence. In any
case, the data show that preasymptotic effects are quite rel-
evant, and exclude that a well defined exponent can be mea-
sured, up to t�2�104 MCS �for longer times, not reported
in the figure, finite size effects are observed�. A rough ex-
trapolation suggests that times at least 10 times larger �t
�2�105 MCS� are needed to observe 1 /zeff�t��1 /z�1 /2
�meaning a lattice size of order �2�103�3 in order to be finite
size effects free�.

B. Quenches to Tf�0

When the quench is made to a finite final temperature all
the constraints imposed by Tf =0 are removed. In the quench
to Tf =0, as seen in Sec. III A, spins with n�0 are present in
the system, but they cannot be updated because this would
increase the energy. When Tf �0 also these can be updated,
although with a small probability for small Tf. For shallow
quenches �T	Tc� the typical times �n�Tf�=W�ni��� ,Tf�−1 as-
sociated to microscopic moves are small, and, in particular,
much smaller then the timescales over which the nonequilib-
rium behavior of interfaces takes place. Therefore we expect
that during phase ordering an interface be in quasiequilib-
rium, namely, it will have the same values of �n�L�t�� of an
equilibrium interface �13� of length l=L�t� at the same tem-
perature of the quench. In order to check this conjecture we
have performed the following simulations: In d=2 we have
prepared an Ising system with a spanning vertical interface in
the middle and antiperiodic boundary conditions in the hori-
zontal direction; subsequently, we let it evolve at a constant
temperature T and, during the evolution, we have measured
the densities �n�l�. These quantities are compared to the
quantities �n�L�t�� measured in a quench to the final tempera-
ture Tf =T. In both the situations we have implemented a fast

dynamics where spins with n=4 are not allowed to flip. This
no bulk flip �NBF� dynamics has been frequently used in the
literature �14,15�. Apart from its numerical efficiency, it has
the advantage of isolating the aging behavior of the system.
The reason is that since, as already pointed out in Sec. I, the
stationary terms in Eq. �1� are produced by the flipping of the
spins inside the domains, by preventing bulk moves one is
left only with the dynamics of the interfaces which is respon-
sible for the aging term of Eq. �1�. On the other hand, it has
been shown �15� also that the NBF rule does not change the
properties of the aging terms in the large time domain. In the
simulation of the single interface we use this no bulk flip
�NBF� dynamics also as a tool to maintain a single interface
in the system at all times. With the standard dynamics spins
can be reversed in the bulk, creating additional interfaces that
may interact with the original spanning interface. On the
other hand, with NBF dynamics, the spanning interface re-
mains unique and well defined at all times. In order to avoid
the complications arising when comparing �n�l� with �n�L�t��
in the two kind of simulations, which would require the com-
parison of the size l of the interface in the equilibrium simu-
lation with the length L�t� in the corresponding quenched
system, in Fig. 7 we have plotted the ratios between different
�n. Since these quantities do not depend on l or on L�t�,
respectively, in the two cases, they can be directly compared.
After a brief transient, the single interface �main figure�
reaches the stationary state and the ratios between different
�n take time-independent values. The same is true for the
quenched system, shown in the inset. We find that the
asymptotic value of the ratios is the same with good accu-
racy in the two systems. This confirms our claim that in a
shallow quench the values of the densities �n�L�t�� are equal
to the corresponding quantities �n�l� in an equilibrium inter-
face of size l. Since the latter are finite and time independent
this implies that in a shallow quench �n�L�t�����t�. There-
fore, instead of Eqs. �8�–�10�, and Eqs. �11�–�13� one must
have

n = 1, �16�

for every value of n. This is shown to be true in Fig. 8 for
systems in d=2,3 quenched to Tf =2. Best power-law fits
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FIG. 7. �Color online� The ratios between �−2�l�, �0�l�, and �2�l�
are plotted against t for an equilibrium interface in d=2 at T=2
�main� and in a quench to Tf =2 �inset�. NBF dynamics is used in
both cases.
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�for t�10� yield 2=1.00�0.01, 0=1.00�0.01, −2
=1.00�0.01, −4=1.01�0.1, in d=2 and 4=1.00�0.01,
2=1.00�0.01, 0=1.00�0.01, −2=1.00�0.01, −4
=1.01�0.01, 2=1.01�0.02, in d=3. Notice that the values
of n with n�0 are very different from the case with Tf =0
and can be used to distinguish the two kinds of dynamics.
Regarding the value of the exponent z, the curvature driven
mechanism implies z=2. Actually, this is found with very
good accuracy in d=3 �we find 1 /z=0.502�0.04 in the
range t� �102–104��. Instead, for d=2 one observes a
slightly larger exponent, since 1 /z is of order 0.48 in the
region of the largest simulated times. We will comment later
on this point.

Since the dynamics is different in shallow quenches or in
quenches to Tf =0 we expect to see a crossover phenomenon
at intermediate temperatures. Namely, for every Tf �0 a
crossover time should exist separating an early stage where
the dynamics is of the Tf =0 type, with n given in Eqs.
�8�–�10� for d=2 or in Eqs. �11�–�13� for d=3, from a late
stage where the finite temperature scalings �16� set in. For a
class of spins with a given degree of alignment n the cross-
over between the early and the late kind of dynamics occurs
when spins with the considered n start to be created by

means of activated moves. The crossover time, therefore,
should be of order �n�Tf��W�n ,Tf�−1, and is therefore dif-
ferent for spins with different n. At the crossover time �n�Tf�
a typical crossover length

Ln�Tf� � �n�Tf�1/z = W�n,Tf�−1/z �17�

is associated. In Figs. 9 and 10, the pattern of crossover
described above can be observed. Here we see that, practi-
cally for all the Tf considered, the behavior of the densities
�n�t� is initially analogous to that of the Tf =0 case �Eqs.
�8�–�10� or Eqs. �11�–�13� in d=2 or d=3, respectively�. This
regime lasts until L�t��Ln�Tf�, where �n�t� start to behave as
in shallow quenches �Eq. �16��. For very small Tf, Ln�Tf� is
outside the range of simulated times �this explains why, for
instance, the curves with Tf =0 and Tf =0.25 can be hardly
distinguished in d=2�. Increasing Tf gradually, Ln�Tf�, whose
values obtained from Eq. �17� are marked with vertical seg-
ments across the curves �when within the simulated times�,
become progressively smaller. One observes that the cross-
over phenomenon occurs at different times for spins with
different n, and that the estimate �17� agrees reasonably well
with what observed.

Let us now come back to the value of the exponent 1 /z in
d=2, which, as already observed regarding Fig. 8, has a
value slightly smaller than the expected one 1 /z=0.5. In or-
der to make more precise statements we have measured the
effective exponent, which is shown in Fig. 11 for various
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temperatures. For T=0 the effective exponent initially rise to
a maximum for the reasons already discussed for the case
with d=3. Then it goes down to a minimum and, later,
reaches the asymptotic value 0.5 already at times of order t
�300 MCS. As Tf is increased the pattern is similar but the
initial minimum is depressed and delayed so that for the
largest temperatures considered 1 /zeff�t� has not yet reached
the asymptotic value at the longest simulated times. Al-
though the expected final value 1 /zeff=1 /z=1 /2 is not in
doubt, a rough determination of this exponent in a simulation
may lead to a smaller value, as sometimes reported �17�. This
behavior can be interpreted as due to the presence, in addi-
tion to L�t�, of another length, the roughness of the inter-

faces. Equilibrium interfaces are rough for T�TR. The
roughening temperature TR vanishes for d=2 while 0�TR
�Tc for d=3. An interface spanning a box of linear size l in
equilibrium at the temperature T has a typical width ul�T�
given by �18�

ul�T� = �a2�T�l for d = 2,

a3�T� for d = 3,T � TR,

a3�T�ln l for d = 3,T � TR.
� �18�

In the phase-ordering kinetics it has been conjectured by Vil-
lain �19� that the role of l in Eq. �18� is played by L�t�. The
nonequilibrium width U�t ,Tf� should than behave as

U�t,Tf� � �a2�Tf�L�t� for d = 2,

a3�Tf� for d = 3,Tf � TR,

a3�Tf�ln L�t� for d = 3,Tf � TR.
� �19�

According to these expressions, in the large time limit
U�t ,Tf� can always be neglected with respect to L�t�. How-
ever, there can be an initial regime, for t� tsc, where U�t ,Tf�
produces a correction to scaling. In this range of times we
expect a �time dependent� effective exponent zeff�t��2 to be
observed. Given the behaviors �19�, tsc may be sufficiently
large to produce observable effects for d=2 while we expect
it to be too small to significantly affect the scaling behavior
for d=3. Actually, we have already observed �see Fig. 8�
that, differently from d=2, in d=3 the effective exponent
quickly converges to the value z=2 for quenches to 0�Tf
�Tc. According to our hypothesis, since a�Tf� is an increas-
ing function of Tf, while L�t� is roughly temperature inde-
pendent, the convergence toward the asymptotic z=2 should
be delayed increasing Tf: This is actually observed in Fig. 11.
In order to check further the consistency of this hypothesis
we have computed the temperature dependence of a�l ,Tf�.
From a set of simulations of a single interface as those de-
scribed above in this section we have extracted the equilib-
rium width of the interface as ul�T�
= �	 j=1

l �1 / l��xj�t�− l /2�2�, where j is the vertical coordinate
in the simulation box, xj�t� is horizontal coordinate of the
interface position at a generic time t, and �¯� is an average
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over thermal realizations. Since in equilibrium ul�T� does not
depend on time we have also averaged ul�T� over time in
order to reduce the noise. Figure 12 shows that the behavior
�18� is obeyed for l sufficiently large �the larger the lower is
Tf�. Extracting a2�Tf� we find a linear relation

a2�Tf� = ATf , �20�

where A is a constant �A�0.32�. We can evaluate tsc from
the condition L�tsc�=U�tsc ,Tf�. In a quench from high tem-
perature L�t� start growing from an initial value L�0��1. For
low temperatures, since a2�Tf� is very small, L�0� is larger
than U�0,Tf� and hence U�t ,Tf� is negligible from the be-
ginning. In this case scaling can set in very early, after the
microscopic time t��1 necessary for the formation of do-
mains of the equilibrium phases which is practically inde-
pendent of Tf. For larger temperatures there is a transient
during which U�t ,Tf� cannot be neglected. Using Eqs. �19�
and �20� one obtains L�tsc�=A2Tf

2. Since L�t�� t1/2 is roughly
obeyed also for t� tsc �the effective exponent is always in the
range �0.45–0.5�� one can estimate tsc�T4. In Fig. 13 we
have plotted L�tsc� for different values of Tf. This quantity
have been obtained as follows: From the data of Fig. 11 we

have estimated tsc as the time when 1 /zeff�t� reaches the
value 0.48 �clearly, we refer to the asymptotic increase of
1 /zeff�t�, for t�100, not to the early maximum�. Succes-
sively, from the numerical data for L�t� we have extracted
L�tsc�. The picture shows agreement with the prediction of
our hypothesis, namely a constant value of L�tsc� at low tem-
peratures and a behavior L�tsc��Tf

2 for larger temperatures.
The interplay between U�t ,Tf� and L�t� can also be ob-

served in the behavior of the equal time correlation function,
which, when scaling holds, should behave as in Eq. �14�,
with h obeying Porod law �4� in the case of sharp interfaces.
However, as already discussed, the presence of U�t ,Tf� in-
troduces a correction to scaling in an early regime when L�t�
has not yet grown sufficiently larger than U�t ,Tf�. Moreover,
due to roughness, interfaces are not sharp. Then, both scaling
and the Porod law are expected to be violated for r
	U�t ,Tf�, that is for x=r /L�t�	xR�t�=U�t ,Tf� /L�t�
=a2�Tf�L−1/2�t�, namely, in a range of x that shrinks in time
but that may be appreciable for large Tf. Actually this is
observed in Fig. 14. While curves of Gag�r , t , t� for different
times collapse when plotted against r /L�t� for the quench to
Tf =0, as discussed in Sec. III A, and the Porod law is also
verified, when the quench to Tf �0 is considered one ob-
serves significant scaling violations in the region of small x.
In this regime, the curve definitely deviates from the linear
Porod law. As time goes on, these violations become weaker
and the curves seem to approach the same behavior as for
Tf =0. For intermediate temperatures similar, but less pro-
nounced, violations are also observed.

IV. SUMMARY AND CONCLUSIONS

In this paper we have investigated the role of Tf in the
phase-ordering kinetics of the Ising model with single spin
flip dynamics. At Tf =0 the dynamics is characterized by fac-
eted interfaces and by the kinetic constraint of the impossi-
bility of activated moves. At Tf �0 interfaces are curved and
rough �for T�TR in d=3�. We have shown that, while the
exponent z regulating the decay of the total density of inter-
facial spins is not changed by the different geometry of in-
terfaces in quenches to Tf =0 or Tf �0, other quantities, such
as the exponents n describing the behavior of the densities
of particular classes of spins do change. The existence of two
different dynamical mechanisms induces a crossover pattern
for finite Tf. In addition, in d=2 for Tf �0 the roughening
length competes with L�t� in an early stage, delaying the
realization of dynamical scaling, as it is evidenced by the
time dependence of the effective exponent zef f and by the
breakdown of the Porod law at small r /L�t�. This whole
pattern of behaviors is due to equilibrium properties of the
interfaces. Therefore we expect to observe similar behaviors
for the Ising model with conserved dynamics.

APPENDIX A

We consider a generic profile of the hi and denote with �h�
this configuration. Let us introduce the probability P��h� , t�
of having such a configuration at time t, and the conditional
probability P��h�� , 
t�
�h� , t� of having �h�� at time t� pro-
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vided that the configuration �h� was found at t� t�. One has

�hi�t + �t� − hi�t�� = 	
�h�,�h��

�hi� − hi�P��h��,

t + 
�t
�h�,t�P��h�,t� . �A1�

From the master equation, the conditional probability can be
written as �20�

P��h��,t + 
�t
�h�,t� = �1 − �t	
j

	
hj��hj

w�hj → hj�����h��,�h�

+ �t	
j

	
hj��hj�

w�hj� → hj����h��,�h�

+ O��t2� , �A2�

where we have introduced the transition rate w�hj→hj�� for
moving the height hj of the jth column to hj� and ��h��,�h� is

the Kronecker function between configurations �h�� and �h�.
We have assumed that the w are single spin flip transition
rates and hence transitions between configurations can be
obtained by summing over j. Apart from this, the w are still
generic �not necessary those of the zero temperature Ising
model� at this stage. Inserting Eq. �A2� into Eq. �A1�, due to
the term �hi�−hi� only contributions with �h��� �h� and j= i
survive, and one has

�hi�t + �t� − hi�t�� = �t 	
�h�,�h����h�

�hi� − hi�P��h�,t�w�hi → hi�� .

�A3�

Since in an elementary move hi→hi�1 is only allowed,
introducing m= �1 the last equation reads

�hi�t + �t� − hi�t�� = �t	
�h�

	
m

mw�hi → hi + m�P��h�,t� .

�A4�

Taking the continuum limit �t→0 yields

d�hi�t��
dt

= 	
�h�

	
m

mw�hi → hi + m�P��h�,t� . �A5�

This equation has been obtained without any approximation.
We now have to specify the form of the w�hi→hi+m� in
order to reproduces the original rules of the zero temperature
Ising model. However, in order to have a tractable model, we
consider transition rates which correspond to the Ising model
with the additional constraint


hi+1�t� − hi�t�
 � 1 ∀ i , �A6�

as discussed in Sec. II B. Starting with the case d=2, we
define them as

w�hi → hi + m� =
m

2
�2hi + Fi

�m���h�� , �A7�

where �2hi=hi−1+hi+1−2hi is the discrete Laplacian in one
dimension and

Fi
�m���h�� =

1

2

�2hi
�msgn��2hi�,−1. �A8�

In order to see this let us notice first that if the configuration
�h� satisfies the condition �A6�, with the transition rates �A7�
that constraint will never be violated by the later evolution.
In fact, let us focus on site i and suppose that the transition
hi→hi+1 is going to be attempted. This transition would
violate Eq. �A6� if hi+1=hi−1. In this case, however, it easy
to check that for every hi−1 consistent with the condition
�A6� it is w�hi→hi+1�=0. The same argument can be re-
peated for every configuration. Having proved that Eq. �A6�
is fulfilled by the transition rates �A7� we can restrict our-
selves to consider the only cases allowed, namely those with
�2hi=0, �1, �2. When �2hi=0 the only configuration
where the move hi→hi�1 could be attempted without vio-
lating the constraint �A6� is that with hi−1=hi=hi+1. In this
case, in the original Ising model the move is forbidden,
which agrees with Eq. �A7� giving w�hi→hi+m�=0 in this
case. Coming to the cases with �2hi= �1 �which are real-
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FIG. 14. �Color online� G�r� , t , t� is plotted against x=r /L�t� for
a quench to T=0 �top� or T=2 �bottom�. Different curves corre-
spond to several times �the same in the two figures� between t
=10 and t=104 �from bottom to top, for T=2�. The dot-dashed line
is the Porod law y=1−ax, where a �the same in the two pictures� is
obtained as the best fit of G�r� , t , t� at T=0. Points are joined by a
piecewise continuous line as a guide for the eye �for clarity the first
two points, the one in the origin and the following, are not joined�.
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ized, for instance, when hi+1=hi=hi−1�1�, in the original
Ising model moves with m sgn��2hi��0 are energetically
forbidden, while those with m sgn��2hi��0 occur with a
probability 1/2, using Glauber transition rates. This agrees
with Eq. �A7�. Analogously, when �2hi= �2 �when, for in-
stance, hi+1=hi−1 and hi=hi+1�1�, in the original Ising
model moves with m sgn��2hi��0 are forbidden, while
those with m sgn��2hi��0 lower the energy and occur with
a probability 1, providing again agreement with Eq. �A7�.

Let us now insert the transition rates �A7� into the evolu-
tion Eq. �A5�, obtaining

d�hi�t��
dt

= 	
�h�

	
m

m2

2
�2hiP��h�,t� + 	

�h�
	
m

mFi
�m���h��P��h�,t� .

�A9�

Performing the sum over m one has

d�hi�t��
dt

= ��2hi� + �Fi
�� , �A10�

where Fi
���h��=Fi

�1���h��−Fi
�−1���h��. Let us now consider

the last term on the right-hand side of Eq. �A10�. We want to
show that it can be neglected. We will show it separately, for
all the possible values of �2hi, namely, �2hi=0, �1, �2.
For �2hi=0, from Eq. �A8�, it is Fi

���h���0. Let us consider
now the contributions with �2hi= �1. This situation corre-
sponds to spins with n=0, or steps in the terminology of Sec.
II C. These that can be flipped from �=1 to �=−1 and back
without energy costs. Therefore the two values of the spin in
this case occur with equal probability �i.e., 1/2� and, as �2hi
changes its sign when the spin is reversed the contributions
�2hi= �1 cancel in �Fi

��. The case �2hi=−2 can never be
realized in the kinetics because it would require a move with
energy increase. Therefore, the terms with �2hi=0, �1,−2
do not contribute to the right-hand side of Eq. �A10�. This is
no longer true for �2hi=2. This term corresponds, in the
language of Sec. II C, to a spin with n=−2 which, as ex-
plained in Sec. II C, are created only when the last spin has
to be reversed to complete a row. On average this happens
once every l moves. Therefore, although the contributions
with �2hi=2 do not strictly vanish, they provide a contribu-
tion �Fi

���1 / l, which can be neglected in the large-l limit.
Then we arrive at the diffusion equation

d�hi�t��
dt

= ��2hi� . �A11�

Let us turn now to the case d=3. Similarly to the case d=2,
it is easy to check that the transition rates

w�hi → hi + m� =
m

4
�2hi + Fi

�m���h�� , �A12�

with the following form of Fi
�m���h��:

Fi
�m���h�� =

1

4

�2hi
�m sgn��2hi�,−1 + f i��h���m sgn��2hi�,1

,

�A13�

where �2hi is the discretized Laplacian in d=3 and with the
values of f i��h�� given in Table I, satisfy the constraint �A6�
and reproduce the Glauber transition rates of the original
Ising model at T=0. Proceeding as for d=2 one arrives at

d�hi�t��
dt

=
1

2
��2hi� + �Fi

�� . �A14�

By reasoning as in d=2, one concludes that only sites with

�2hi
=1,2 ,3 ,4, corresponding to spins with Ei�0 contrib-
ute to �Fi

��, but these can be neglected for large l. Hence one
ends up also in this case with a diffusion equation

d�hi�t��
dt

=
1

2
��2hi� . �A15�

APPENDIX B

Let us consider the shrinkage of a cubic bubble of linear
size l, and extend the argument developed in Sec. II C to the
case d=3. The interfacial spins can be classified according to
n, as shown in Fig. 15.

Suppose again that the interface grows from the bottom of
the bubble. Let us define hi as the height of the ith column,
with i=1, . . . , l2 running on the two-dimensional lattice.
While columns are growing, the profile of hi is made of flat
parts �spins with n=4�, edges �spins with n=2�, and corners

TABLE I. The values of the function f i��h��. �x
2 ��y

2� is the
discrete second derivative along x �y�.


�2hi
 f i��h��

0 0

1 −1 /4

2 −1 /2 for �x
2=0 or �y

2=0,

0 else
3 1/4

4 0

n=4 n=2 n=0

n=−4 n=−2 n=−6

FIG. 15. �Color online� Classification of interfacial spins.
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�spins with n=0�. We again make the hypothesis that the
probability of their occurrence is finite and constant. By rea-
soning analogously to the d=2 case, since these spins belong
to the growing surface, their number is proportional to l2.
Hence �4�l���2�l���0�l�� l−1. Let us imagine to reverse the
spins from the bottom, level by level. A spin with n=−4 is
only produced when the last spin of a certain level has to be
reversed. All the l levels are completed in a time �l� l2, so
that there is a number proportional to l−1 of spins with n
=−4 in a unit time. This implies �−4�l�� l−4. Spins with n
=−2 are generated analogously to the spins with n=−2 in
d=2, namely, when the last spin must be reversed in order to
complete a row. l2 rows must be completed in a time �� l2 in
order to reverse all the spins of the bubble. Therefore there

are l0 spins with n=−2 in a unit time. In conclusion, �−2�l�
� l−3. Finally, spins with n=−6 are only formed when a
growing column reaches the top of the bubble, with the con-
dition that all the nearest column have already reached the
top. Due to the kinetic constraints, these neighboring column
must themselves have at least one nearest column of equal or
higher eight. One can iterate this argument until a border is
reached. Since the border is a distance of order l away, one
concludes that every l spins only one can have n=−6. There-
fore a number proportional to l of spins are generated when
the columns reach the top, and this event happens once every
�l� l2 moves. Then �−6�l�� l−4. Assuming scaling, and iden-
tifying l with L�t� in the phase-ordering kinetics one arrives
at Eqs. �11�–�13�.
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