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I. INTRODUCTION

Equilibrium statistical physics provides the microscopic
foundation of thermodynamics, built around the concept of
entropy as the logarithm of the phase volume. The theory has
been extended to the regime of linear irreversible thermody-
namics by identifying the entropy production in the regime
of linear response �1–4�. There exists to date no general
theory covering far-from-equilibrium situations. However,
recent results known as fluctuation �5–9� or work �10–18�
theorems point to the existence of exact equalities valid in-
dependent of the distance from equilibrium. These equalities
involve fluctuations in work or entropy production. For the
average of these quantities, they reduce to inequalities, in
agreement with the second law of thermodynamics. For ex-
ample, the Jarzynski equality states that
�exp�−�W��=exp�−��F�, where W is the work needed to
bring a system, in contact with a heat bath at temperature T
��−1�kBT� from one initial equilibrium state to a final one,
and �F is the difference in free energy of these states �see
�14� for a more precise discussion�. Then by the application
of Jensen’s inequality, one finds �W���F. While the work
and fluctuation theorems are certainly intriguing results of
specific interest for the study of small systems, they provide
no extra information on the average value of work and en-
tropy production.

Parallel to these developments, the direct calculation of
work, entropy, and dissipation has proceeded following vari-
ous channels of research. Explicit results for path-dependent
dissipation or entropy production have been obtained, mostly
in the context of Markovian stochastic models �19–22�. The
average entropy production goes back to earlier work
�23,24�. Recently, the microscopically exact value of the av-
erage dissipated work was obtained in a setup similar to that
of the work theorem �25�. The connection and consistency
between this exact Hamiltonian result and the ones derived
in the context of stochastic models were clarified in �26�.

The main issue of this paper is to discuss how this type of
formula can be applied when only limited information on the
system is available. In other words, how much of the irre-
versible behavior is revealed when only partial measure-
ments are performed. Complimentary to this issue is the
identification of the variables in which the traces of the dis-
sipation reside. One could imagine that such knowledge
would allow us to develop mechanisms to either increase or

decrease the dissipation. The limitations in observation can
be of a different nature. It could be that the monitoring in
time is not exhaustive, but one only performs a finite number
of punctual measurements. The measurement of the variables
could also be crude or incomplete. Or both limitations could
be present. We will show that this limited information pro-
vides a lower bound for the dissipation. Of particular interest
is to know whether this bound is close to the full dissipation
or just reproduces the general bound that is contained in the
second law. As such, the analysis will reveal when and where
the information on the dissipative process is located. For our
illustration, we will focus on systems described by stochastic
dynamics. The latter provide an accurate description of me-
soscopic phenomena in physics, chemistry, and biology, and
have been used extensively especially in the context of
Brownian entities appearing in nano and biotechnology. The
additional advantage is that calculations can be carried out in
full analytic detail.

The layout of the paper is as follows. We start with a
discussion of the basic expression for dissipation in terms of
relative entropy and its relation to the arrow of time. Parallel
to these developments, this result appears in the framework
of both microscopic analysis �25–28� and stochastic thermo-
dynamics �19–24,29� for transient and steady nonequilibrium
states. We explain how this expression can be used to bound
dissipation from below. We next investigate in a number of
experimentally relevant examples how these bounds apply in
the case of coarse-graining applied to the measurement in
time, to the choice of variables, or to both. The illustrations
include overdamped and underdamped Brownian particles in
moving and quenched potentials.

II. RELATIVE ENTROPY, COARSE GRAINING,
AND LOWER BOUNDS

We introduce the quantity �s which measures the irre-
versibility in a path realization z�t� for an arbitrary stochastic
process, in extension of its definition for Markov processes
�19,21�, continuous-time random walks, or dynamical sys-
tems �22,30�,

�s � kB ln
P�z�t��

P̃�z̃�t��
. �1�

Here P is the probability of observing the so-called forward
path z�t�. The tildes refer to the time-reversed analogue.
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z̃�t�=z�tf − t� is the time-reversed trajectory, in which the sign
of the momenta is reversed if such variables appear in the
description. tf is the total duration of the nonequilibrium ex-

periment. P̃ is then the probability for such a trajectory in an
experiment employing the time-reversed schedule of the per-
turbation. The study of the above trajectory-dependent quan-
tity itself is of considerable interest �21,30�.

In this paper, we are only interested in its average �the
notation suggests continuous variables, but the results are
trivially reproduced for discrete dynamics�,

��s� = kB� Dz�t�P�z�t��ln
P�z�t��

P̃�z̃�t��
� kBD�P 	 P̃� . �2�

This average quantity is expressed in terms of the relative

entropy D�P 	 P̃� �also called Kullback-Leibler distance� be-

tween the distributions P and P̃. The relative entropy has a
number of extremely powerful and useful properties. In par-
ticular, it is a positive quantity whose value decreases upon
any type of coarse graining �31�.

More precisely, if the statistical information on the de-
tailed path trajectory z�t� �which could be generically decom-
posed in two subsets as z�
x ,y�� is not available, one con-
siders the reduced trajectory zcg�x, where the subscript
refers to coarse graining. Then

D�P 	 P̃� � D�P�z� 	 P̃�z̃��

=� dxdyP�x,y�ln
P�x,y�

P̃�x̃, ỹ�
= D„P�x� 	 P̃�x̃�…

+� dxP�x� � dyP�y�x�ln
P�y�x�

P̃�ỹ�x̃�

� D„P�x� 	 P̃�x̃�… � D�Pcg 	 P̃cg� , �3�

where Pcg is the corresponding coarse-grained probability.
Finally, in combination with Eq. �2�, we obtain

��s� = kBD�P 	 P̃� � kBD�Pcg 	 P̃cg� � 0. �4�

Notice that so far no assumption has been made on the sto-
chastic dynamics. The above expressions are valid, for ex-
ample, for deterministic systems �with distributed initial con-
ditions� and for non-Markovian processes. The quantity �s is
commonly regarded in many scenarios as the trajectory-
dependent total entropy production. Thus, the average of �s
over the ensemble of trajectories corresponds to the total
thermodynamic entropy production �S. From the relative en-
tropy properties, Eq. �4� conveys more information than the
second law of thermodynamics itself, namely, the total en-
tropy production is always greater than zero and, further-
more, the better our description, the more precisely one can
estimate the actual total dissipation approaching from below.
Equation �4� puts together two interesting concepts: the in-
trinsic nature of irreversibility and the subjective partial in-
formation due to incompleteness of measurements.

In the case in which the system is initially prepared in
equilibrium and then a transient nonequilibrium excursion
takes place, the mean total entropy production comes in the
form of mean work dissipated, �Wdiss�, which combined with
Eq. �4� implies

�Wdiss� � �W� − �F � kBTD�Pcg 	 P̃cg� � 0. �5�

This equation has been proved exactly for Hamiltonian dy-
namics in �25� and formally extended to mesoscopic descrip-
tions in �26�. The main goal of this work is to apply the
above formula to different Brownian systems driven out of
equilibrium in which the effects of coarse graining can be
illustrated. We present three different analytically solvable
examples, all initially prepared in equilibrium. First we con-
sider an overdamped Brownian particle in a moving trap
�30,32� whose trajectory is coarse-grained in time. Second,
we introduce an underdamped Brownian particle in a sud-
denly changing stiffening trap. We measure its relative en-
tropy at one point in time after the quench and then we
integrate out the position and momentum variables. Third, by
means of two linearly coupled underdamped Brownian par-
ticles, we study the flow of information on dissipation among
several degrees of freedom as a function of time. Lower
bounds for the total mean work dissipated are derived in
these three first examples.

III. STUDY CASES

A. Overdamped Brownian particle
in a constant-speed moving trap

In this section, we present a solvable example, which is
moreover of experimental relevance, namely, an overdamped
Brownian particle subject to a moving time-dependent har-
monic potential,

V�x,t� =
k

2
�x − ut�2, �6�

where k is the stiffness of the trap and u is the constant
velocity at which the trap is moved. The time evolution of
the position variable x of the overdamped particle obeys the
following Langevin equation:

ẋ = − �xV�x,t� + ��t� . �7�

��t� is a Gaussian white noise, with ���t���t���=2T��t− t��.
For simplicity of notation, we have absorbed the friction co-
efficient in the time unit and the Boltzmann constant kB in
the definition of temperature.

Before proceeding to the relation between dissipation and
relative entropy, we review the salient features of the energy
balance. Our starting point is conservation of total energy, or
first law, at the level of a single stochastic trajectory �33�,
during an experiment from initial time 0 to final time tf.
Since the particle is instantaneously thermalized at the con-
stant temperature T of the heat bath, its change in energy is
equal to its change in potential energy �V=V(x�tf� , tf)
−V(x�0� ,0). The latter must be equal to the amount of work
W exerted by the external force �sometimes called the in-
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jected work� minus the heat Q delivered to the heat bath
�also referred to as dissipated heat to the environment�,

�V = �
0

tf dV

dt
dt = �

0

tf �V

�t
dt + �

0

tf �V

�x
ẋdt = W − Q . �8�

From such energy balance, the fluctuating heat and work can
be identified �34�: the rate of heat dissipated to the heat bath

is given by Q̇=−�xVẋ, while the work done per unit time in

moving the external potential is Ẇ=�tV. These quantities de-
pend on the actual realization of the stochastic trajectory x�t�.
Thus heat and work are random variables. The fact that in-
jected work and dissipated heat differ by the energy stored in
the particle has important consequences for their large devia-
tion properties for asymptotically large times when the latter
energy is unbounded. The fluctuation theorem has therefore
to be carefully reconsidered �35–41�.

We are concerned here with the average work, in which
case large deviation issues are irrelevant. Using the explicit
expression of the potential �6�, one finds

�W� =�
0

tf �V�x,t�
�t

dt� =�
0

tf

dtk�x − ut��− u��
= u�

0

tf

dt�ẋ�t� − ��t�� = u��x�tf�� − �x�0��� . �9�

On the other hand, the average of Eq. �7� yields the follow-
ing exact closed equation for the average position,

�ẋ� = − ��xV� = − k��x� − ut� , �10�

whose solution for an arbitrary initial condition at t0 will be
useful later on,

�x�t�� = e−k�t−t0��x�t0�� +
u

k
�kt − 1 − e−k�t−t0��kt0 − 1�� .

�11�

If the system is prepared initially in equilibrium, from Eq.
�7� it is clear that �x�0��=0. The translation of the harmonic
potential does not change the free energy of the system,
�F=0. Then the dissipative work equals in average the ex-
ternal work,

�Wdiss� � �W� − �F =
u2

k
�ktf + e−ktf − 1� . �12�

In the sequel, we will illustrate how Eq. �5� approaches to
the exact dissipative work �12� from below as we include in
the calculation of the relative entropy more information on
the paths. We will consider, as would occur in an experimen-
tal or numerical realization of our example, that the position
x�t� is measured only at a finite instants of time. This infor-
mation loss about the path can be viewed as a coarse grain-
ing in time. If the relative entropy is calculated with this
partial information, Eq. �5� will give us only a rigorous lower
bound. The calculation that we are about to perform will tell
us how fast this bound converges to the exact value.

For simplicity, we will consider that the coarse graining is
into n equal divisions �t� tf /n of the total time duration tf.

Therefore, in this n-slicing procedure, the full trajectory of
the particle is not measured but only its position after time
intervals of duration �t. See Fig. 1. The probability for a
discretized path can be easily evaluated since the process is
Markovian and Gaussian. Let us denote by p�xi+1 �xi� the
conditional probability for jumping from a point xi at time ti
to a point xi+1 at time ti+�t, and let p0

eq be the initial equi-
librium distribution. The probability Pcg of the n-sliced dis-
cretized path x� ��x0 ,x1 , . . . ,xi , . . . ,xn−1 ,xf� is given by

Pcg � Pcg��x0,x1, . . . ,xi, . . . ,xn−1,xf�� = p0
eq�x0��

i=0

n−1

p�xi+1�xi� .

�13�

An analogous expression is valid for the backward path and
probability, with superscript “tilde” again referring to time
reversed excursion �trajectory and process�. The central
quantity we wish to evaluate is the following coarse-grained
relative entropy In:

In � TD„Pcg�x�� 	 P̃cg�x�̃�…

= Tln
p0

eq�x0�
pf

eq�xf�
� + T�

i=0

n−1ln
p�xi+1�xi�
p̃�xi�xi+1�� . �14�

Note that we have multiplied by T �having absorbed kB in its
units� since we want to compare the above expression with
the dissipated work. The brackets �¯� refer to the average
performed with the forward distribution, which weights ev-
ery trajectory’s contribution.

The next step is to find the general expression for
p�xi+1 �xi� and p̃�xi �xi+1�. Since the Langevin equation that
describes the dynamics is linear, the conditional probabilities
are Gaussian distributions,

p�xi+1�xi� =
1

�2��2
exp�−

�xi+1 − �xi+1�xi
�2

2�2 � �15�

and

FIG. 1. Sketch of the n-slicing procedure in which the full tra-
jectory of the particle is not measured but only its position after
time intervals �t= tf /n, where tf is the total duration of the
experiment.
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p̃�xi�xi+1� =
1

�2��2
exp�−

�xi − �x̃i�xi+1
�2

2�2 � . �16�

From Eq. �11� �applied for final and initial times ti+1 and ti,
respectively, and with the appropriate initial condition�, the
conditional averages are found to be

�xi+1�xi
= xie

−k�t + 	 + 
ti, �17�

�x̃i�xi+1
= xi+1e−k�t − 	 + 
ti+1, �18�

where

	 �
u

k
�e−k�t + k�t − 1�, 
 � u�1 − e−k�t� . �19�

Similarly, one can multiply the Langevin equation by the
position x and then take averages. This leads to the following
equation for the variance �2��x2�− �x�2:

1

2

d

dt
�2 = − k�2 + T , �20�

which yields �conditional variances starting at zero value�

�2 =
T

k
�1 − e−2k�t� �21�

for both �forward and backward� cases.
In order to obtain In, we insert the above conditional prob-

ability distributions in Eq. �14�. The final result can most
revealingly be written in terms of the duration of the experi-
ment tf and the final position of the minimum of the trap
z0�utf. After some cumbersome calculations, one finally
gets

In =
z0

2

ktf
2�e−ktf − 1 + 2n tanh� ktf

2n
�� . �22�

First note that in the limit n→�, one finds �cf. Eq. �12��

I� =
z0

2

ktf
2 �ktf + e−ktf − 1� = �Wdiss� . �23�

Hence the exact dissipation is, as anticipated, recovered in
the limit of the continuous path description. We now turn to
the following question. How is the convergence of In to
�Wdiss�? First, one can verify that, for any value of the sys-
tem’s parameters, In is always a lower bound for the total
dissipation �cf. Eq. �5��,

�Wdiss� � In � 0. �24�

Next, as is apparent from the explicit result �22� and scaling
kz0

2, the convergence of In to �Wdiss� depends only on the ratio
of the time of the experiment tf over the relaxation time 1 /k
in the harmonic potential. In Fig. 2�a�, we plot I1 up to I4, as
a function of ktf. The convergence is surprisingly good. For
example, for ktf =1, the error in I2 �single intermediate mea-
surement point, plus the initial and the final points, which are
always measured� is only a few percent.

In the limit u→0 �or ktf →��, that is, for a very slow
translation of the potential, one recovers the quasistatic result

of zero dissipated work. Note, however, that the relative rate
of convergence becomes quite bad in this limit �cf. inset in
Fig. 2�a��. On the other hand, the fit is perfect in the limit of
the irreversible quench, in which the potential is instanta-
neously switched to its new position. This corresponds to the
limit u→� �or ktf →0�. One finds

In�tf → 0� =
1

2
kz0

2 = �Wdiss��tf → 0� , �25�

since the dissipated work is exactly equal to the average
work done in instantaneously placing the particle in the
shifted potential.

In Fig. 2�b�, we plot In for different values of ktf, as a
function of the number of measured points. Note that the
biggest jumps in In occur from n=1 to 2, after which the
bound quickly saturates and slowly approaches the total
mean dissipated work. The dominant term in the conver-
gence of In to I� is easily obtained from Eq. �22�,

I� − In �
z0

2k2tf

12n2 . �26�
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FIG. 2. �a� Plot of In �for n=1,2 ,3 ,4 and I�= �Wdiss�� as a
function of the ratio of characteristic times ktf. We have scaled
out the prefactor kz0

2. Note that In is always a lower bound to
�Wdiss� and converges to the irreversible instantaneous quench value
�dashed line� and to the quasistatic limit �zero value� for ktf →0
and ktf →�, respectively. Inset: the relative error En

���Wdiss�− In� / �Wdiss� increases as a function of ktf. �b� Plot of In

�for different values of ktf� as a function of the number of time
divisions n of the trajectory.
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We expect that this type of convergence, 1 /n2, is valid for
a continuous Markov process. There is a plausibility argu-
ment for this asymptotic behavior. The chain rule of the rela-
tive entropy, Eq. �3�, implies

I� − In = �
i=0

n−1ln
P�yi�xi,xi+1�

P̃�yi�xi,xi+1�
� , �27�

where yi�t� stands for the “piece” of the trajectory x�t� with
t� �ti , ti+1�. Under the conditions x�ti�=xi, each of these
pieces looks similar to the trajectories depicted in Fig. 1 and
becomes a pinned diffusion process, which can be written as
�42,43�

yi�t� =
�ti+1 − t��xi + X�t� − X�ti��

�t

+
�t − ti��xi+1 − X�ti+1� + X�t��

�t
, �28�

where X�t� is a process satisfying the same dynamics as x�t�
but with no restrictions. Averaging the above equation and
assuming that �X�t�� is an analytical function of t, one has

�yi�t�� =
�ti+1 − t�xi + �t − ti�xi+1

�t
+ O��t2� . �29�

Therefore, the averages of �yi�t�� in the forward and back-
ward processes can only differ by terms of order �t2.

On the other hand, the relative entropy between two
Gaussian distributions with the same dispersion � and aver-
ages �1 and �2 is given by

D�1 	 2� =
��1 − �2�2

2�2 . �30�

Let us assume that yi�t� can be approximated by a Gaussian
process with dispersion of order �t. If the external parameter
does not affect the dispersion, the dominant term in the rela-
tive entropies in Eq. �27� will be given by the difference
between averages, i.e., by Eq. �30�,

ln
P�yi�xi,xi+1�

P̃�yi�xi,xi+1�� �
��F − �B�2

�2 � �t3. �31�

If this is the case, then the asymptotic approach to the exact
work is the same as in our example,

I� − In � n�t3 �
1

n2 . �32�

B. Underdamped Brownian particle
in a suddenly quenched trap

In the previous example, we discussed the effect of coarse
graining in time for the measurement of the single relevant
variable at hand, namely the position of the overdamped
Brownian particle. Now we address the additional question
about the role of specific variables �or degrees of freedom� in
revealing the dissipation. For the illustration of this point, we
naturally turn to underdamped Brownian particles, where
both position and momentum of the particle are relevant.

Instead of considering a moving harmonic potential with
fixed strength, we study another experimentally significant
scenario: a nonmoving harmonic potential undergoing an in-
stantaneous quench in its stiffness, say at the initial time t
=0 from a frequency 	0 to the frequency 	1. See the scheme
in Fig. 3.

The average work dissipated �Wdiss� in the instantaneous
quench can be evaluated as follows. The potential energy of
the particle, when at a position x, is given by Vi�x�
=m	i

2x2 /2, where 	i is the harmonic frequency, with i=0
and 1 before and after the quench, respectively. The prob-
ability distribution of the position at the moment of the
quench is given by 0

eq�x�=exp�−V0�x� /T� /Z0 �as before,
Boltzmann’s constant is absorbed in the temperature for sim-
plicity of notation�. Here Z0, the normalization constant, is
the familiar partition function. Averaging with respect to this
distribution �notation �¯�0�, we conclude that the average
work associated with the quench is given by �W�= �V1�x��0
− �V0�x��0= �T /2��	1

2 /	0
2−1�. The corresponding change in

free energy is found to be �F=−T ln�Z1 /Z0�=T ln�	1 /	0�.
Therefore, the total dissipation in the irreversible instanta-
neous quench reads

�Wdiss� � �W� − �F =
T

2
�ln

	0
2

	1
2 +

	1
2

	0
2 − 1� . �33�

Note that the total dissipated work is always positive due to
the irreversible nature of the process.

As available statistical information, we consider the prob-
ability distribution Pcg� for position x and momentum p at
any single instant of time t after the quench �see Fig. 3�. As
we have already shown in the first example, statistical infor-
mation at just one particular time must provide a lower
bound for the dissipated work corresponding to such quench,

�Wdiss� � kBTD„�x,p;t� 	 ̃�x,− p;t�… � 0. �34�

Below we will elucidate the effect of such coarse graining
implied in the punctual measurement in time �at time t after
the quench� plus the effect of a reduction in the number of
variables, that is, measuring only x, only p, or both. We
anticipate that this will lead to inequalities such as

Measurement

{

time

ω1

ω0
t

FIG. 3. Schematic representation of the quenching experiment.
The only information collected takes place at time t after the
quench. Notice that at any time t, in the backward process the
system is in equilibrium at 	1, ̃�t�=eq�	1�, whereas in the for-
ward process the system is relaxing precisely toward this equilib-
rium state.
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�Wdiss� � kBTD„�x;t� 	 ̃�x;t�… � 0, �35�

�Wdiss� � kBTD„�p;t� 	 ̃�− p;t�… � 0. �36�

To explicitly obtain the bounds from the coarse-grained
relative entropies appearing in Eqs. �34�–�36�, we need to
evaluate the probability distributions in forward and back-
ward scenarios. The derivation for the backward scenario is
very simple; the system starts at canonical equilibrium with
frequency 	1 and the quench is performed at the end of the
experiment �t=0 in forward time, which is the final time in
the reverse experiment�. The particle is then at canonical
equilibrium with respect to the frequency 	1 throughout the
process,

̃�x,p;t� = 1
eq�x,p� =

exp�− �p2/2m + m	1
2x2/2�/T�

Z�	1�
.

�37�

Note that the above distribution is even in p, namely
̃�x , p ; t�= ̃�x ,−p ; t�, and Gaussian with the following mo-
ments:

�x̃� = �p̃� = �xp̃� = 0,

�x̃2� = T/�m	1
2� ,

�p̃2� = mT . �38�

On the other hand, in the forward scenario, the initial
condition is canonical with respect to the initial frequency
	0, �x , p ;0�=0

eq�x , p�. At t=0, the frequency is suddenly
changed to 	1 and then kept constant along the whole pro-
cess and, therefore, the evolution of the system in the for-
ward process consists of a relaxation to the new equilibrium
state, 1

eq�x , p�. Then we are free to decide what we call the
final time of the experiment and hence the choice of the
measurement time after the quench is also completely free.
We write the familiar equations of motion for such an under-
damped Brownian particle for t�0,

ṗ�t� = − m	1
2x�t� − �p�t�/m + ��t� ,

ẋ�t� = p�t�/m , �39�

where � is the friction coefficient, and � is Gaussian white
noise with strength determined by the fluctuation dissipation
theorem, ���t���t���=2�T��t− t��. The initial condition is
stipulated by the fact that prior to the quench at t=0, the
system is at equilibrium in a harmonic potential with strength
	0, i.e., it is bi-Gaussian with �cf. Eq. �38��

�x��t=0� = �p��t=0� = �xp��t=0� = 0,

�x2��t=0� = T/�m	0
2� ,

�p2��t=0� = mT . �40�

Since the Langevin equation is linear, the resulting time-
dependent probability distribution �x , p ; t� remains a Gauss-
ian. Therefore, it is sufficient to evaluate the ensuing time

evolution of first- and second-order moments. Since there is
no shift in the center position of the harmonic potential, the
average position and momentum stay equal to zero: �x�t��
= �p�t��=0. The second-order moments obey the following
evolution equations, which are easily obtained from the evo-
lution equations �39�:

d

dt
�x2� =

2

m
�xp� ,

d

dt
�xp� =

1

m
�p2� − m	1

2�x2� −
�

m
�xp� ,

d

dt
�p2� = − 2m	1

2�xp� −
2�

m
�p2� + 2�T , �41�

which have to be solved with the above-mentioned initial
conditions. One finds

�x2�t =
T

mw1
2�1 −

	

1 − �2e−t�/mC� ,

�xp�t =
mT

�

	

1 − �2e−t�/m�1 − cosh�t�� −
m

�
� sinh�t��� ,

�p2�t = mT�1 +
�2

1 − �2	e−t�/m sinh2�t�/2�� , �42�

where

C � �2/2 − �1 − �2/2�cosh�t�� −
m

�
� sinh�t�� , �43�

	 � �	1

	0
�2

− 1, � �
�

m
�1 − �2, � �

2m	1

�
. �44�

Note the switch from a monotonous decay �� real� to an
oscillatory one �� imaginary� of the above solutions for the
moments as � crosses the value 1 from below.

We are now in a position to evaluate the relative entropy
between �x , p ; t� and ̃�x ,−p ; t�, which in this case can be
considered as a distance between the relaxing time-
dependent distribution �x , p ; t� and its final equilibrium state
1

eq�x , p�, only reached for t→�. Since both densities are
Gaussian �and the backward distribution is even in p�, the
following result is obtained:

Dx,p�t� � D„	�x,p;t�	̃�x,− p;t�…

= ln�det C̃2

det C2
+

Tr�C̃2
−1C2�
2

− 1, �45�

where C2 and C̃2 are the covariance matrices of the forward
and backward distributions, respectively,

C2 = � �x2�t �xp�t

�xp�t �p2�t
�, C̃2 = � �x̃2� �xp̃�

�xp̃� �p̃2�
� . �46�

The above result can be further simplified to
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Dx,p�t� =
1

2
�ln

�x̃2��p̃2�
�x2�t�p2�t − �xp�t

2 +
�x2�t

�x̃2�
+

�p2�t

�p̃2�
− 2� .

�47�

From now on, subindices in D refer to the variables con-
tained in the probability distributions with which the relative
entropy is evaluated. So when momentum is integrated out
from the probability distribution, the relative entropy at time
t of the position distributions, D(�x ; t� 	 ̃�x ; t�), yields

Dx�t� =
1

2
�ln

�x̃2�
�x2�t

+
�x2�t

�x̃2�
− 1� , �48�

and its momentum analog, D(�p ; t� 	 ̃�−p ; t�), is

Dp�t� =
1

2
�ln

�p̃2�
�p2�t

+
�p2�t

�p̃2�
− 1� . �49�

We insert in Eqs. �47�–�49� the expressions of the second
moments calculated previously. With these explicit results
�depicted in Fig. 4�, we can discuss how well various relative
entropies capture the information on the dissipation. First we
note that at the moment of the quench �t=0�, the statistics of
the position variable can account for the total work dissi-
pated, TDx�0�= �Wdiss�, while no information is available
from the momentum variable, Dp�0�=0. The reason is that
the position at the time of quench is enough to evaluate the
work �26�.

Secondly, it is known that the relative entropy between
the probability distribution of a Markov process and its cor-
responding stationary state is a strictly decreasing function of
time �31�. Hence, Dx,p�t� must be so, as one can check from
our calculations plotted in Fig. 4. On the other hand, when
only one of the variables is taken into account, the relative
entropies can exhibit a richer phenomenology. The behavior
is rather different in the weakly damped regime than in the
strongly damped one. In the strongly damped case ���1�,
the relative entropies Dx,p�t� and Dx�t� just decay monotoni-
cally with time; see Fig. 4�a�. However, we obtain a nonmo-
notonous behavior in the relative entropy of the momentum
distribution, which is explained as follows. The equilibrium
distribution of the momentum does not depend on the fre-
quency of the oscillator. Therefore, at the quench time, the
forward and backward momentum distributions are identical.
However, once the potential is quenched, the momentum dis-
tribution will depart from equilibrium, due to transfers from
potential to kinetic energy, to relax back to the same distri-
bution at a later time. As a consequence, Dp�t� increases
from Dp�0�=0, reaches a maximum, and decays back to zero
for a long time, as can be seen in the inset of Fig. 4�a�. The
maximum is, however, very low, since damping is strong.

We can see a more pronounced and interesting effect in
the underdamped case ���1�. The main results are repre-
sented in Fig. 4�b�. Note the oscillatory exchange of infor-
mation on dissipation between the position and velocity vari-
ables and the decay of the total information contained in
Dx,p�t�. The behavior of Dx�t� and Dp�t� is induced by oscil-
lations in the potential and kinetic energy of the particle. The
relative entropy of the x distributions can be written as �cf.
Eq. �48��:

Dx�t� =
�V�t� − 1 − ln �V�t�

2
, �50�

where �V�t� is the ratio between the potential energy at time
t and the equilibrium potential energy �at frequency 	1�. A
similar expression can be obtained for Dp�t� from Eq. �49�.
Therefore, the relative entropy of x and p can be considered
as a measure of the departure of the potential and kinetic
energy, respectively, from their equilibrium values. These en-
ergies turn to oscillate at frequency �, twice the characteristic
frequency of the damped oscillator.

The behavior of Dx,p�t� observed in Fig. 4�b� can be better
understood by rewriting the relative entropy in Eq. �47� as
follows:
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FIG. 4. �a� Relative entropies Dx,p, Dx, and Dp measured at one
single time t after the quench. Strongly damped regime ���1�:
friction dominates inertia. Dx,p and Dx decay monotonically and
almost coincide, while Dp is very small and goes through a rise-
and-fall. �b� Underdamped regime ���1�: inertia dominates fric-
tion, resulting in an out-of-phase oscillatory decay of the relative
entropies Dx and Dp. Note that in both cases �a� and �b�, the position
variable x captures at t=0 the full information on dissipation,
namely �Wdiss�.
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Dx,p�t� = Dx�t� + Dp�t� +
1

2
ln� 1

1 − rt
� , �51�

where the correlation coefficient rt is given by

rt �
�xp�t

2

�x2�t�p2�t
. �52�

Since 0�rt�1, we first note that the last term on the r.h.s of
Eq. �51� is always positive, hence

Dx,p�t� � Dx�t� + Dp�t� . �53�

Therefore, in the present case, the sum of information on the
dissipation gathered separately from position and momentum
is smaller than that from both variables taken together. The
equality sign in Eq. �53� is realized if rt=0, that is, when
�xp�t=0. From the oscillating analogue of the expression for
�xp�t in Eq. �42�, one easily verifies that this occurs at spe-
cific times t= 2�n

�̃
, where �̃= �

m
��2−1. Since the variables are

Gaussian, the condition of zero correlation is tantamount to
the independence of position and momentum.

Another interesting feature observed in Fig. 4 is that one
of the variables, either x or p, loses all information on dissi-
pation at another set of specific times. From Eqs. �48� and
�49�, one finds that this occurs if �x2�t= �x̃2� or �p2�t= �p̃2�,
respectively. This is in agreement with the more general ob-
servation that the relative entropy of a specific degree of
freedom is zero when, at a given time, the detailed balance
condition holds, namely, when at that time the forward and
backward distributions are equal.

On the whole, an intricate transfer of information on dis-
sipation is taking place between position and momentum of
the underdamped Brownian particle. At the same time, such
information on the total mean dissipated work is irreversibly
lost by the punctual �one-time� relative entropy of x and p
and transfered to the heat bath variables as time goes by.

C. Flow of information between coupled oscillator

To complete the picture, we next consider the case of a
harmonically bound underdamped Brownian particle that is

indirectly in contact �via a second Brownian particle� with a
heat bath. The idea is that, by monitoring this second par-
ticle, we are including some information on the heat bath, of
which it is supposed to be part. The Langevin equations of
motion that describe the system read

mẍ1 = − m	2�t�x1 − K�x1 − x2� , �54�

mẍ2 = − m	0
2x2 − K�x2 − x1� + ��t� − �ẋ2, �55�

where ���t���t���=2�T��t− t��. As in the previous case, we
consider the quench experiment: oscillator 1 is initially pre-
pared in equilibrium with 	0. At t=0, we perform an instan-
taneous quench switching so that 	�t�=	1 for t�0. Oscilla-
tor 2 is kept throughout at the same frequency w0, linearly
coupled to oscillator 1 with a strength K and immersed in the
heat bath, which is modeled by means of a fluctuating force
��t� and a friction term proportional to �. See Fig. 5.

The time-dependent probability distribution that charac-
terizes the evolution of the whole system is a Gaussian,
whose first moments are simply

�x1�t�� = �p1�t�� = �x2�t�� = �p2�t�� = 0. �56�

Thus we need to evaluate the second moments, which, hav-
ing defined K0�K+mw0

2 and K1�K+mw1
2, obey the follow-

ing set of evolution equations:

d

dt�
�x1

2�
�p1

2�
�x1p1�
�x2

2�
�p2

2�
�x2p2�
�x1x2�
�x1p2�
�x2p1�
�p1p2�

� =�
0 0 2/m 0 0 0 0 0 0 0

0 0 − 2K1 0 0 0 0 0 2K 0

− K1 1/m 0 0 0 0 K 0 0 0

0 0 0 0 0 2/m 0 0 0 0

0 0 0 0 − 2�/m − 2K0 0 2K 0 0

0 0 0 − K0 1/m − �/m K 0 0 0

0 0 0 0 0 0 0 1/m 1/m 0

K 0 0 0 0 0 − K0 − �/m 0 1/m
0 0 0 K 0 0 − K1 0 0 1/m
0 0 K 0 0 K 0 − K1 − K0 − �/m

��
�x1

2�
�p1

2�
�x1p1�
�x2

2�
�p2

2�
�x2p2�
�x1x2�
�x1p2�
�x2p1�
�p1p2�

� +�
0

0

0

0

2�T

0

0

0

0

0

� .

�57�

FIG. 5. Scheme of the last study case: the information on dissi-
pation due to a sudden quench in the stiffness of the potential from
	0 to 	1 in one subsystem is transmitted, through a linear coupling
of strength K, to a second subsystem immersed in a heat bath at
temperature T, where such information will get irreversibly lost.
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The system can be solved explicitly using the appropriate
initial conditions corresponding to the equilibrium ensemble.
However, the analytic expressions are extremely lengthy. In
what follows, we will illustrate the obtained behavior via
figures.

Since the joint distribution is Gaussian �and the back-
wards density even in p�, the relative entropy involving all
four variables x1, p1, x2, and p2 can be compactly expressed

in terms of the covariance matrices C4 and C̃4,

Dx1,p1,x2,p2
�t� =

1

2
�ln�det C̃4

det C4
� + Tr�C̃4

−1C4� − 4� . �58�

The latter are the following four-by-four symmetric matrices:

C4 =�
�x1

2�t �x1p1�t �x1x2�t �x1p2�t

�x1p1�t �p1
2�t �p1x2�t �p1p2�t

�x1x2�t �p1x2�t �x2
2�t �x2p2�t

�x1p2�t �p1p2�t �x2p2�t �p2
2�t

� , �59�

and for the covariance matrix corresponding to the back-
wards excursion we explicitly find

C̃4 =�
K0T

Kmw1
2 + K1mw0

2 0
KT

Kmw1
2 + K1mw0

2 0

0 mT 0 0

KT

Kmw1
2 + K1mw0

2 0
K1T

Kmw1
2 + K1mw0

2 0

0 0 0 mT

� .

�60�

From the above results, we can derive the relative entropy
of all available degrees of freedom of the system �both po-
sitions x1 and x2 and momenta p1 and p2� along the whole
time track with a single time measurement. Similarly to the
underdamped oscillator case of the previous section, one can
explore the behavior of the relative entropies of all possible
combinations of the four degrees of freedom. Some of them
are plotted in Fig. 6. All the features of the model in the
previous section are found here too: the relative entropy of
the whole system, Dx1,p1,x2,p2

�t�, decays monotonically in
time and it is an upper bound with respect to any other rela-
tive entropy accounting for fewer degrees of freedom. The
relative entropy of subsystem 1, Dx1,p1

�t�, is oscillating in an
intrincate manner below the former, together with Dx1

�t� and
Dp1

�t�, which transfer information periodically and are
modulated by Dx1,p1

�t�. Again, only when performed at the
moment of the quench does the measurement concerning the
position x1 contain full information.

The novelty in this case is that oscillator 1 is not directly
in contact with the heat bath, but indirectly through oscillator
2. This allows for a more detailed study of how the informa-
tion on dissipation contained in the first subsystem leaks out
irreversibly. First it has to flow to the second subsystem and
then it is dumped into the heat bath variables, where it is
forever lost. Comparing Fig. 6�a� with Fig. 6�b�, we see that
the relative entropies of oscillator 2 are significantly smaller

than those of oscillator 1. The former receives information
on the dissipated work at the quench only through its cou-
pling to 1 and, while it bounces back some of this informa-
tion to 1, its relative entropy Dx2,p2

�t� decays much faster
because it is directly connected to the heat bath.

The plateau for the relative entropy appearing at short
times in Fig. 6 shows that most of the effect of the dissipa-
tive process �the irreversible quench� still resides inside the
system formed by the two particles. In fact, oscillator 1
keeps much of this information while slowly transferring it
to oscillator 2. This depends on the coupling constant K that
connects both oscillators. This dependence is illustrated in
Fig. 7. For K=20, the general decay is fast since both sub-
systems are well coupled and information on the quench can
quickly flow to the heat bath. However, for K=5 such flow is
reduced and the relative entropy of oscillator 2 is almost zero
but yet there is a considerable difference between
Dx1,p1,x2,p2

�t� and Dx1,p1
�t�. Therefore, while oscillator 2 is

“close to equilibrium,” its correlation with oscillator 1 still
carries relevant information on the irreversible quench. This
conclusion is valid both for positions and momenta, sepa-
rately, as seen in Fig. 8 for K=5. As in the case of a single
oscillator, information flows from positions to momenta, but
is mainly kept by the quenched oscillator or by correlations
with oscillator 2, which rapidly reaches equilibrium.
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FIG. 6. �a� Complex behavior of the relative entropies as a func-
tion of time for oscillator one. See text for discussion. �b� Same
picture for oscillator two.
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IV. CONCLUSIONS

Dissipation is related to our ability to distinguish the ar-
row of time. As was anticipated in earlier work in the litera-
ture, we find that dissipation is proportional to the relative
entropy between the probability distributions of forward and
backward excursions, respectively. We have exploited such
expression in terms of relative entropy to give rise to lower
bounds for the dissipation if only partial information on the
trajectories is available.

Several scenarios have been discussed in order to illus-
trate how dissipation can be bounded from below on the
basis of reduced information. First, when coarse graining the
continuous trajectory of the system into a reduced finite
number of measurements, our analysis has shown that the
resulting relative entropy provides reasonably accurate
bounds for the dissipation, even with only a small number of
intermediate measurement points. As a generalization of our
findings in this specific example, we conjecture that the rela-
tive entropy obtained from n measurements approaches the
exact value of the dissipation as 1 /n2 for n large. These
results could be especially useful in real experiments where
trajectories are recorded at finite sampling rates.

Second, we have analyzed the effect of considering a sub-
set of variables instead of a detailed description of the system

in a quench process. In this case, the time-arrow information,
concentrated in the single position variable immediately after
the quench, is subsequently transferred to the thermal bath
and the other variables. Of special interest is the case of two
oscillators, the first one undergoing a quench of its frequency
and the second one in contact with a thermal bath. We recall
that the relative entropy is constant when all the degrees of
freedom of a Hamiltonian system are taken into account
�25�. One could then expect that the information contained in
the first oscillator would be transferred to the second one
before getting lost in the thermal bath. However, our analysis
calls into question this naive picture, as we have shown that
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FIG. 8. Time evolution of several relative entropies illustrating
the effect on correlations between positions and momenta.
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the oscillator coupled to the thermal bath is the first to ther-
malize. The information on the dissipation is mainly kept by
the first oscillator or by correlations between the two. The
generalization of our analysis to long chains of oscillators
will help to further elucidate how information is spread along
many degrees of freedom.
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