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A stochastic generalization of renormalization-group transformation for continuous-time random walk pro-
cesses is proposed. The renormalization consists in replacing the jump events from a randomly sized cluster by
a single renormalized �i.e., overall� jump. The clustering of the jumps, followed by the corresponding trans-
formation of the interjump time intervals, yields a new class of coupled continuous-time random walks which,
applied to modeling of relaxation, lead to the general power-law properties usually fitted with the empirical
Havriliak-Negami function.
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I. INTRODUCTION

Continuous-time random walk �CTRW�, introduced by
Montroll and Weiss more than 40 years ago �1�, has proven
to be a powerful mathematical tool for description and analy-
sis of relaxation and transport phenomena in complex sys-
tems in which the temporal evolution strongly deviates from
the corresponding standard laws: Relaxation from the classi-
cal �exponential� Debye law, and diffusion from the normal
one given by the Gaussian statistics. Today, the list of phe-
nomena displaying anomalous dynamical behavior is quite
extensive. It contains examples such as charge carrier trans-
port in amorphous semiconductors, rebinding kinetics in pro-
teins, NMR diffusometry in percolative and porous media,
transport on fractal geometries, diffusion of contaminants in
complex geological formations, diffusion of pollutants in
large ecosystems, or transport in micelle systems �for a de-
tailed list see �2� and references therein�. Usually, in physical
applications of the CTRW methodology, analysis of the dif-
fusion front properties is presented within the classical
Montroll-Weiss approach �1–3� that is based on a formal
expression for the Fourier-Laplace transform of the total dis-
tance reached at time t�0 by a randomly moving particle.
Alternatively, the fractional calculus is proposed as a legiti-
mate tool �see, e.g., �2,4–7��. In such approaches, explicit
formulas can be provided only under some restrictive as-
sumptions on the spatiotemporal random walk characteris-
tics. Here, we present the random-variable approach �8–10�
which is based directly on the definition of the CTRW as a
cumulative stochastic process. Our aim is to show that de-
spite the extensive studies on CTRWs, and their long history
in physics, they have not been fully explored yet �11–19�. We
show how the CTRW tool can be generalized to handle com-
plicated diffusive situations. In particular, we are interested
in a diffusion scenario which can lead to a class of power-
law functions able to describe all cases of the empirical “uni-
versal relaxation response” �20�.

The CTRW process is characterized by a sequence
��Ri ,Ti��i�1 of independent and identically distributed �i.i.d.�

random vectors indicating the length and the direction of the
subsequent jumps �by means of Ri�, as well as the waiting
time, Ti, between them �8–10�. The case when we assume
stochastic independence between the space steps, Ri, and the
time steps, Ti, is referred to as a decoupled CTRW; otherwise
we deal with a coupled CTRW. The total distance, R�t�,
reached at time t is equal to the random sum of space steps,
Ri, with the random number of summands given by the
counting process ��t�,

R�t� = �
i=1

��t�

Ri. �1�

The counting process ��t� is determined by the waiting times
Ti in the following way ��t�=max�n :�i=1

n Ti� t�. The
value of ��t� is equal to n if we need exactly n+1 time
steps for exceeding t, and the probability distribution
of ��t� can be easily expressed in terms of the
waiting-time distribution FT�t�=Pr�Ti� t�, since we have
Pr���t�=n�=FT

�n�t�−FT
��n+1��t�, where FT

�n is the convolution
of n identical distribution functions FT. Moreover, in the
decoupled-CTRW case the process ���t��t�0 is independent
of the space-step sequence �Ri�i�1, and as a consequence the
Fourier transform of �1� reads as

�eikR�t�	 = �
n=0

�

��eikR1	�nPr���t� = n� = g��t���R�k�� ,

where g��t��z�=�n=1
� znP���t�=n� is the generating function of

the random index ��t�, and �R�k�= �eikR1	.
Important and well-known examples of the decoupled

CTRW’s are the compound Poisson process �21� and the
Lévy flight �2�. The first corresponds to the exponentially
distributed waiting times Ti and is known to have indepen-
dent and stationary increments. The second refers to the case
when the mean value �Ti	 of the waiting times is finite, and
the space steps Ri are symmetric Lévy-stable random vari-
ables �22–24� with the index of stability � falling in the
range �1,2� so that the mean �Ri	=0 and the variance
D2Ri=�. Among the coupled CTRW’s the most popular is
the Lévy walk �2,25,26�, obtained for Ri=YiTi

a+m, where
a�0 and m are constants; �Yi�i�1 is a sequence of i.i.d. ran-
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dom variables, independent of �Ti�i�1, such that Pr�Yi=1�
=1−Pr�Yi=−1�= p for some 0� p�1; and the waiting times
are such that for some 0���2 the tails satisfy Pr�Ti�x�
	

x→�

x−� �where symbol “f�x� 	
x→�

g�x�” means that limx→�
f�x�
g�x�

=const�0�.
The general properties of different possible types of pro-

cess �1�, as well as, related to them the Debye or Mittag-
Leffler relaxation patterns are by now well explored,
and what has been also well established is their connection
to fractional diffusion or Fokker-Planck equations
�2,4–8,16–19�. The related studies �8–10� on the cumulative
processes concern, in fact, the limiting behavior of the total
distance R�t�. In case of the decoupled CTRW �1�, with
power-law jump or waiting-time distributions, the limiting
distributions of R�t� have been shown �26� all strictly related
to the Lévy-stable laws �i.e., to the Lévy-stable laws them-
selves or to the trans-stable and fractional stable distribu-
tions �22,27��. The intimate relation between the CTRW with
power-law waiting-time distributions and Lévy-stable laws
was clear practically from the very beginning and was
stressed in the approach based on the concept of fractal time
�28,29�. The relation with the Lévy-stable laws is connected
with the theory of limit theorems for sums of i.i.d. random
variables �21–24,30�, which allows us to answer the question
of asymptotic behavior for different kinds of CTRW’s. The
limit theorems help us to handle not only with diffusive situ-
ations based on the most celebrated Lévy flights or Lévy
walks but also with more complicated situations �12,13�.

In this paper, in Sec. II, we present a stochastic analog of
renormalization-group transformation for the CTRW’s. This
concept has been introduced �28� by analogy with the theory
of critical phenomena �31� for fractal stochastic processes,
used in physics for description of the anomalous dynamical
behavior of the complex systems. The renormalizationlike
transformations have been shown to possess common fea-
tures with the dynamical behavior of hierarchical systems
�32�. As a consequence they lead to scale invariance and
hence to the absence of a fundamentally space or time scale
of the studied processes. The hierarchical clustering-jump
transformation �33� appears to be very useful for the analysis
of branched chain processes, describing a broad class of
growth phenomena from physics, chemistry, and biology
�such as nuclear or chemical chain reactions, high-energy
hadron collisions, stimulated emission of photons, polymer
or crack growth, population growth, growth of cellular ag-
gregates, etc., see references in �33��; applied to the CTRW
�32� has led to the class of diffusion fronts related strictly
with the Lévy-stable laws. The renormalization transforma-
tion TN of a sequence �Xi�i�1 of i.i.d. random variables de-
fined as TN��Xi��= �Xj,N� j�1, where the block size N is a posi-
tive integer number and

Xj,N =
1

N
 �
i=�j−1�N+1

jN

Xi, �2�

can be also treated as a way to characterize stable distribu-
tions �34�. Namely, the only fixed point for transformations
TN, N�1, with parameter 
 is a sequence of independent

strictly stable distributed random variables with the index of
stability �=1 /
. Moreover, such stable distributions only
may appear as the limiting distribution resulting from appli-
cations of transformation TN with increasing N �or succes-
sive applications of the transformation with fixed N�. How-
ever, the larger class of geometric-stable �or more general
�-stable� laws corresponds to the limiting behavior for the
summation scheme with random number of summands �in-
stead of the deterministic block size N in Eq. �2��, and it
cannot be obtained as a fixed point �35,36�.

In what follows we are interested in the latter, i.e., in
properties of a process which is constructed by means of
random clustering of the random walker jumps. Our work is
motivated by the problem of evaluating possible steplike
processes from noisy time series data sets. The importance of
this problem has been recently discussed �37� in the context
of assembly dynamics of microtubules �i.e., highly dynamic
protein polymers forming a crucial part of the cytoskeleton
in all eukaryotic cells�. The analysis of the growth and
shrinkage of microtubules is based on clustering of the noisy
displacement time series data, and the results depend on the
level of experimental resolutions. In this paper we show that
the random clustering of the walker’s jumps involves also
the clustering of the corresponding interjump time intervals.
The sequence of the renormalized spatiotemporal steps de-
fines a new class of the coupled CTRW’s, different than the
well-known Lévy walks. Using then the powerful tool of
limit theorems, see the Appendix, we study the diffusion
front of the renormalized process for waiting-time and
symmetric-jump distributions, both from the domains of at-
traction of the appropriate Lévy-stable laws. We show that
the properties of the resulting process depend on the way in
which the jumps are clustered. Our goal is to enlarge the
class of the relaxation responses derived yet in the
continuous-time random walk framework. In Sec. III, we
present a diffusion scenario which can lead not only to the
well-known Mittag-Leffler �or to the corresponding Cole-
Cole� relaxation pattern but also to a more general two-
power-law behavior �20� consistent with the properties of the
empirical Havriliak-Negami function.

II. COUPLED CTRW GIVEN BY RANDOM
RENORMALIZATION-GROUP TRANSFORMATION

To enlarge the class of the total-distance asymptotics
given in the classical CTRW framework, we propose gener-
alization of the compound-counting-process idea �13�. The
construction of such processes involves agglutination of a
random number of walker’s spatiotemporal subsequent steps
or, in other words, introduction of a stochastic analog of the
renormalization-group transformation �34�.

Let us consider an analog of process �1�,

RM�t� = �
i=1

�M�t�

Ri, �3�

which differs from Eq. �1� in the number of summands that
now �instead by the renewal counting process ��t�� is given
by a compound counting process ��M�t� , t�0� defined as
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�M�t� = �
j=1

�M���t��

Mj �4�

for �M�m�=max�n :� j=1
n Mj �m�. We assume that �Mj� j�1 is a

sequence of i.i.d. positive integer-valued random variables
and that this sequence is independent of the family of the
spatiotemporal vectors ��Ri ,Ti��i�1. The construction of pro-
cesses �3� and �4� is strictly connected with assembling the
jumps and waiting times ��Ri ,Ti��i�1 into clusters
��Rj ,Tj�� j�1 of random sizes M1 ,M2 , . . . by means of the
following procedure:

R1 = �
i=1

M1

Ri,

T1 = �
i=1

M1

Ti,

Rj = �
i=1

Mj

Ri+M1+¯+Mj−1
,

Tj = �
i=1

Mj

Ti+M1+¯+Mj−1

for j � 2.

The introduced process RM�t�, given by Eq. �3�, appears to
be a coupled CTRW defined by ��Rj ,Tj�� j�1. Hence, it can be
expressed by the following formula, equivalent to Eq. �3�:

RM�t� = �
j=1

�̄�t�

Rj , �5�

where �̄�t�=max�n :� j=1
n Tj � t�. The dependence between the

jumps Rj and the waiting times Tj of the coupled process
RM�t� is determined by the distribution of cluster sizes Mj
�13�.

In order to study properties of the coupled process RM�t�,
Eq. �5�, we introduce the following transformation of spa-
tiotemporal steps:

R1,N =
1

fR�N� �
i=1

NM1

Ri,

T1,N =
1

fT�N� �
i=1

NM1

Ti,

Rj,N =
1

fR�N� �
i=1

NMj

Ri+N�M1+¯+Mj−1�,

Tj,N =
1

fT�N� �
i=1

NMj

Ti+N�M1+¯+Mj−1�

for j � 2, �6�

where N is a positive integer cluster-size rescaling constant,
and fR�N� and fT�N� are appropriately chosen dimensionless
space- and time-rescaling functions. Formula �6� describes
assembling of the renormalized spatiotemporal steps into
clusters of random sizes NMj. The family ��Rj,N ,Tj,N�� j�1 of
the clustered steps defines a renormalized CTRW, say
�RNM�t��t�0. In analogy to Eq. �5�, the new process reads as

RNM�t� = �
j=1

�N�t�

Rj,N, �7�

where �N�t�=max�n :� j=1
n Tj,N� t�. As far as Mj is essentially

random �i.e., it is not a fixed constant�, the renormalized
CTRW �RNM�t��t�0 is coupled. In such a case, the depen-
dence between the renormalized jumps Rj,N and waiting
times Tj,N is determined by the distribution of cluster sizes
NMj �13�. For Mj =1 we have RM�t�=R�t�, and the proposed
procedure coincides with the classical renormalization-group
transformation �2� discussed in �34� and valid for the CTRW
process �1�. However, for random Mj the proposed transfor-
mation �6� is essentially different from that followed from
Eq. �2�.

To illustrate the introduced clustering transformation �6�
of the CTRW processes, in Figs. 1–3 we present exemplary
trajectories of the obtained CTRW �7� for N=100 and N
=1000 and for different cluster size distributions. The trajec-
tory R�t� of the initial walk �1� is the same for each consid-
ered case, and it results from a completely asymmetric Lévy-
stable waiting time Ti and from a symmetric Lévy-stable
jump Ri. In Fig. 1 the effect of the classical renormalization-
group transformation �i.e., Mj =1� is shown. The transforma-
tion applied to the initial CTRW trajectory in Fig. 2 corre-
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FIG. 1. Exemplary trajectory of the transformed CTRW: The
classical renormalization case �Mj =1�.
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sponds to cluster sizes’ random components Mj’s drawn
according to the discretized exponential distribution, having
finite mean value. Finally, in Fig. 3 we present the trans-
formed CTRW trajectories resulting from the heavy-tailed
discretized Lévy-stable distribution of cluster sizes. As we
see, the transformed CTRW trajectory keeps less and less
information on the initial-walk trajectory as we pass from the
classical renormalization case through random clustering
with finite-mean-value to heavy-tailed distribution of cluster
sizes. On the other hand, the transformation “smoothes” the
trajectory more and more with enlarging the rescaling param-
eter N.

In analogy to Eq. �3�, the renormalized process
�RNM�t��t�0 can be expressed directly in terms of �Ri ,Ti�’s,
the spatiotemporal steps of the initial CTRW �1�. In this case

RNM�t� =
1

fR�N� �
i=1

�NM�t�

Ri, �8�

where the number of summands is equal to

�NM�t� = �
j=1

�M���fT�N�t�/N�

NMj .

Comparing Eqs. �8�, �3�, and �1�, we see that the clustering
transformation essentially changes the number of steps per-
formed until time t and simply rescales the space steps. In-
deed, the compound counting process ��NM�t��t�0 being the
number of jumps in Eq. �8� is different from the compound
counting process ��M�t��t�0 in Eq. �3� and from the renewal

counting process ���t��t�0 in �1�. For example, in the sim-
plest case when Pr�Mj =m0�=1 for some integer constant m0,
we have �NM�t�=Nm0� ��fT�N�t�

Nm0
� instead of �M�t�=m0� ��t�

m0
� and

of ��t�, where �¯� denotes the integer part.
The limiting distribution of the particle position at time t,

i.e., the properties of the diffusion front R̃�t� can be now
evaluated by means of the limit in distribution

R̃�t� = lim
N→�

RNM�t� . �9�

Its explicit form depends obviously on assumptions set on
the distributions of the variables �Ri ,Ti� and Mj, see �8,13�.
Here we focus our attention on the class of the generalized
CTRW’s which result from the decoupled initial walks with
waiting-time and symmetric jump distributions, both taken
from the normal domains of attraction of appropriate Lévy-
stable laws �completely asymmetric for the waiting times
and symmetric, including Gaussian law as a special case, for
the space steps�. For this class we study the spatiotemporal
clustering transformation �6� for cluster sizes that have either
finite-mean-value or heavy-tailed distribution. The resulting
diffusion fronts are presented in Table I �for detailed deriva-
tions, see the Appendix�. Observe that the random clustering
of the subsequent steps of the initial decoupled CTRW does
not influence at all the limiting law if the spatiotemporal
clusters have sizes with a finite mean value. In such a case

the distribution of the diffusion front R̃�t� is given by a sym-
metric fractional stable law F�,�

�0� and is exactly the same as
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FIG. 2. Exemplary trajectory of the transformed CTRW: The
renormalization transformation with finite-mean-value cluster sizes.
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FIG. 3. Exemplary trajectory of the transformed CTRW: The
renormalization transformation with heavy-tailed cluster sizes.
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for Mj =1, i.e., when formulas �6� refer to the classical
renormalization-group approach �34�. As a consequence,
asymptotic properties of RM�t�, Eq. �3�, are the same as for
the initial CTRW R�t�, Eq. �1�. In contrary, the heavy-tail
property of the cluster-size distribution results in appearance

of new properties of the diffusion front R̃�t�, related to pro-
cess RM�t� only. In this case the limiting distribution is given
by a “shrinked” symmetric fractional stable law which is
expressed by a mixture of the symmetric fractional stable
F�,�

�0� and generalized arcsine B
 random variables. The gen-
eralized arcsine law, because of its support falling in the
range �0,1�, plays a role of a constricting term.

III. EFFECTIVE RELAXATION RATE:
POWER-LAW PROPERTIES

Wide-ranging experimental information has led to the
conclusion that the classical phenomenology of relaxation
breaks down in complex systems. It has been found that the
pure Debye �exponential� response is hardly ever found in
nature, and the deviations from it may be relatively large. It
appears to be a general rule that the response function f�t�
=− d��t�

dt �i.e., a negative time derivative of the relaxation
function ��t�� exhibits �20� the following fractional power-
law asymptotics:

f�t� 	 
�t/�p�−n for t � �p,

�t/�p�−m−1 for t � �p,
� �10�

for some power-law exponents 0�n ,m�1 and the charac-
teristic relaxation time �p.

In the CTRW framework, the theoretical attempt to relax-
ation is based on the idea of an excitation undergoing diffu-
sion in the system under consideration �2,8,14–17�. Conse-
quently, the relaxation function is connected with the
temporal decay of a given mode k and defined as the inverse

Fourier transform of the diffusion front R̃�t�,

��t� = �e−ikR̃�t�	 .

On the other hand, following the historically oldest attempt
to nonexponential relaxation �20�, the relaxation function can
be also expressed �12,14,16,17� as a weighted average of the

random effective relaxation rate �̃,

��t� = �e−t�̃	 .

Taking now into account the equivalence between the above
two forms of the relaxation function, we examine the prop-
erties of the effective relaxation rate distribution influenced
by the clustering procedure �6� in the diffusion scenarios
considered in Table I. We study the relaxation behavior de-
pending on the way in which the spatiotemporal steps are
grouped into clusters. In what follows, we show two distinct
cases resulting from finite-mean-value and heavy-tailed dis-
tributions of the cluster sizes NMj.

If the spatiotemporal clusters have sizes with a finite
mean value, then the diffusion front reads as

R̃�t�=
d � t

A

�/�

F�,�
�0� , �11�

where the symbol “=
d

” denotes equal distributions, F�,�
�0� is a

symmetric fractional stable random variable, and A is an ap-
propriately chosen positive constant �for details and deriva-
tions, see the Appendix�. The corresponding relaxation func-
tion takes the Mittag-Leffler form

�ML�t� = 1 − ��� �k��/�

A
t
 , �12�

where

���x� = �1 − �
n=0

�
�− 1�nx�n

��1 + �n�
for x � 0,

0 for x � 0;
�

is the distribution function of the Mittag-Leffler law �8,22�.
This result yields

�̃ML=
d 1

�p

S��

S�

,

where S�� and S� are independent variables distributed with
the same Lévy-stable law, and

�p =
A

�k��/� .

The density function of the above effective relaxation rate

�̃ML equals �12,38�

gML�b� = � sin������b�−1

��pb�� + ��pb�−� + 2 cos����
, b � 0,

0, b � 0,
�

and has the following power-law asymptotics:

TABLE I. Diffusion front R̃�t� resulting from different diffusion
scenarios. Here F�,�

�0� denotes a symmetric fractional stable random
variable, independent of generalized arcsine random variable B
,
and A is a positive constant, see the Appendix for details.

Assumptions Ri Symmetric distribution from normal domain

of attraction of symmetric stable law

�0���2�
Ti Heavy-tailed distribution

�0���1�
Mj Finite mean value Heavy-tailed

distribution

�0�
�1�
Results R̃�t� Symmetric fractional “Shrinked” symmetric

stable law fractional stable law

� t / A ��/�F�,�
�0� � t / A ��/�F�,�

�0� B

1/�
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gML�b� 	
b→0+

b−�1−��

gML�b� 	
b→�

b−�−1,

see Fig. 4. By means of Tauberian theorems �21�, the respec-
tive response function fML�t� exhibits the power-law property
�10� with n=1−� and m=�, corresponding to the frequency-
domain Cole-Cole function �8�.

If the spatiotemporal clusters have heavy-tailed sizes, then
in the framework of the considered diffusion scenario the
diffusion front reads as

R̃�t�=
d � t

A

�/�

F�,�
�0� B


1/�, �13�

where the generalized arcsine random variable B
 is inde-
pendent of the symmetric fractional stable random variable
F�,�

�0� , and A is as in Eq. �11� �for details and derivations, see
the Appendix�. In this case we obtain a generalization of the
Mittag-Leffler relaxation function �12�, expressed as

�GML�t� = �
0

1 �1 − ��� �k��/�

A
tx1/�
�h
�x�dx .

The corresponding effective relaxation rate is of the form

�̃GML=
d 1

�p

S��

S�

B

1/�,

where S��, S�, and B
 are independent, and its density is
given by �12,38�

gGML�b� = � sin�
��b����b�−1

���pb�−2� + 2��pb�−�cos���� + 1�
/2 , b � 0,

0, b � 0,
�

where ��b�= �
2 −arctan�

��pb��+cos����
sin���� �. This density has the

following power-law asymptotics

gGML�b� 	
b→0+

b−�1−�
�,

gGML�b� 	
b→�

b−�−1,

see Fig. 4. By Tauberian theorems, the respective response
function fGML�t� exhibits the power-law property �10� with
n=1−� and m=�
, corresponding to the most general case
of the “universal relaxation response” �20�.

IV. CONCLUSIONS

The paper introduces a diffusion scenario which leads to
the generalized Mittag-Leffler relaxation with the well-
known Mittag-Leffler pattern as a special case. The approach
is based on the idea of stochastic renormalization-group
transformation of a decoupled CTRW. We start with combin-
ing the subsequent jumps of a walker into hierarchical clus-
ters renormalized by a suitable rescaling function. The renor-
malized clustering of jumps is followed by the corresponding
transformation of the interjump time intervals. Unlike most
renormalization methods, our approach does not use a con-
stant decimation measure. Instead, the size of a “block” in
the renormalization transformation is assumed to be a ran-
dom variable. The stochastic generalization of the classical
approach contains the “deterministic” group transformation
as a special case when the cluster sizes with probability 1
take a constant value.

The sequence of the renormalized spatiotemporal steps
defines a new class of the coupled CTRW’s. The dependence
between the jumps and waiting times of the renormalized
process is introduced by the clustering-jump procedure �6�.
As a consequence, the asymptotic distribution of the diffu-
sion front depends on the way in which the jumps are
grouped into clusters. If the cluster sizes have finite mean
value �or with probability 1 take a constant value�, then the
asymptotic properties of the decoupled walk with power-law
jump and waiting-time distributions are not changed by the
clustering procedure. In this case the limiting distribution of
the diffusion front is related to the Lévy-stable laws only.
Such a diffusion scenario does not lead beyond the well-
known Mittag-Lefler �or Cole-Cole� relaxation. If, however,
the heavy-tailed distribution of the cluster sizes is assumed,
the limiting distribution of the diffusion front is related to the
mixture of Lévy-stable and generalized arcsine laws. This
scenario leads to the generalized Mittag-Leffler relaxation
pattern consistent with the more general “universal relax-
ation response” �usually fitted with the Havriliak-Negami
function�. It is worth noticing that in both cases the charac-
teristic time constants do not contain information on the
clustering-jump procedure, and the power laws do not de-
pend on the properties of the jump distribution.
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The further investigations should be directed toward
clarification of the relationship between the renormalized
CTRWs and the fractional-equation attempts to anomalous
diffusion.

APPENDIX: LIMITING DISTRIBUTIONS
OF THE PARTICLE POSITION

In this appendix, using limit theorems of probability
theory, we study limiting distributions of the particle position
resulting from the renormalized CTRW. We derive explicit
formulas for diffusion fronts defined by Eq. �9� in two dis-
tinct cases depending on the way in which the spatiotemporal
steps are grouped in the random clusters.

Let the space steps Ri have a symmetric distribution from
the normal domain of attraction of a symmetric Lévy-stable
law with the index of stability 0���2 �22,23�. For �=2
�Gaussian law� it is equivalent to the existence of finite dis-
persion of the space steps, i.e.,

D2Ri = cR
2 � � .

For 0���2 the distribution of Ri exhibits the following tail
condition:

P��Ri� � x� �
x→�

�x/cR�−�

for some scale parameter cR�0 �where symbol
“f�x� �

x→�

g�x�” reads as limx→�
f�x�
g�x� =1�. For such a jump dis-

tribution we have

1

n1/��
i=1

n

Ri →
n→�

d

cRq�
1/�S�

�0�, �A1�

where S�
�0� is distributed according to the symmetric �-stable

law such that

�eixS�
�0�

	 = e−�x��,

and

q� = �
��1 − ��cos���/2� for 0 � � � 1,

�/2 for � = 1,

��2 − ��cos���/2�/�1 − �� for 1 � � � 2,

1/2 for � = 2.
�

�Here “→
d

” reads as “tends in distribution.”�
Assume now that the waiting times Ti, independent of the

jumps Ri, have a distribution from the normal domain of
attraction of the completely asymmetric Lévy-stable law
with the index of stability 0���1 �22,23�. It means that the
waiting-time distribution satisfies the following tail condi-
tion:

Pr�Ti � s� �
s→�

�s/cT�−�

for some scaling constant cT�0. In such a case the rescaled
renewal counting process ��s� /s� approaches the trans-stable
distribution as s→� �12,21�,

��s�
s� →

s→�

d 1

cT
���1 − ��

1

S�
� , �A2�

where the random variable S� is distributed according to the
completely asymmetric Lévy-stable law such that

�e−xS�	 = e−x�
.

Since for the cluster sizes Mj having a finite mean value �Mj	
we have �30�

1

s
�
j=1

�M�s�

Mj →
s→�

w.p.1

1 �A3�

�where “ →
w.p.1

” reads as “tends with probability 1”�, then from
the independence of sequences �Mj�, �Ri�, and �Ti�, the limits
�A1�–�A3� yield �39� the symmetric fractional stable diffu-
sion front �11�, where the symmetric fractional stable random
variable F�,�

�0� = 1
S�

�/�S�
�0� and the positive constant reads as

A = cT���1 − ��
q�cR

� 
1/�
. �A4�

The fractional stable law is expressed by a mixture of inde-
pendent stable variables S�

�0� and S� and has been derived by
using in Eq. �6� the scaling functions fR�N�=N�1+
�/� and
fT�N�=N�1+
�/� for some 
�0. Let us note that the diffusion
front �11� is the same as the one derived for the classical
decoupled CTRW �1�, see �8,26�.

If, instead of the finite mean value, the distribution of the
cluster sizes has a heavy tail with exponent

0 � 
 � 1,

i.e.,

Pr�Mj � m� �
m→�

�m/c�−
 �A5�

for some scaling constant c�0, then �21�

1

s
�
j=1

�M�s�

Mj →
s→�

d

B
, �A6�

where B
 is distributed according to the generalized arcsine
distribution given by the density function

h
�x� = � x
−1�1 − x�−


��
���1 − 
�
, 0 � x � 1,

0 otherwise,
�

with parameter 
. From Eqs. �A1�, �A2�, and �A6� we obtain
�39� that for fR�N�=N�1+
�/� and fT�N�=N�1+
�/� �for some

�0� the diffusion front approaches the limiting form �13�
given by a mixture of the symmetric fractional stable and
generalized arcsine laws, where the generalized arcsine ran-
dom variable B
 is independent of the symmetric fractional
stable random variable F�,�

�0� , and constant A is given by Eq.
�A4�. Notice that condition �A5� means that cluster-size dis-
tribution is taken from the normal domain of attraction of the
completely asymmetric Lévy-stable law with the index of
stability 
.
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