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Crystalline assemblages of identical subunits packed together and elastically bent in the form of a torus have
been found in the past ten years in a variety of systems of surprisingly different nature, such as viral capsids,
self-assembled monolayers, and carbon nanomaterials. In this Rapid Communication we analyze the structural
properties of toroidal crystals and provide a unified description based on the elastic theory of defects in curved
geometries. We find ground states characterized by the presence of fivefold disclinations on the exterior of the
torus and sevenfold disclinations in the interior. The number of excess disclinations is controlled primarily by
the aspect ratio of the torus, suggesting a mechanism for creating toroidal templates with precisely controlled
valency via functionalization of the defect sites.
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Toroidal micelles can be formed in the self-assembly of
dumbbell-shaped amphiphilic molecules �1�. Molecular
dumbbells dissolved in a selective solvent self-assemble in
aggregate structures determined by their amphiphilic charac-
ter. This process yields coexisting spherical and open-ended
cylindrical micelles which evolve slowly over the course of a
week to more stable toroidal micelles. Toroidal geometries
also occur in microbiology in the viral capsid of the coro-
navirus torovirus �2�. The torovirus is an RNA viral package
of maximal diameter between 120 and 140 nm and is sur-
rounded, like other coronaviridae, by a double wreath or ring
of cladding proteins.

Carbon nanotori form another fascinating and technologi-
cally promising class of toroidal crystals �3� with remarkable
magnetic and electronic properties. The interplay between
the ballistic motion of the � electrons and the geometry of
the embedding torus leads to a rich variety of quantum-
mechanical phenomena, including Pauli paramagnetism �4�
and Aharonov-Bohm oscillations in the magnetization �5�.

A unified theoretical framework to describe the structure
of toroidal crystals is provided by the elastic theory of de-
fects in a curved background �6–8�. This formalism has the
advantage of far fewer degrees of freedom than a direct treat-
ment of the microscopic interactions and allows one to ex-
plore the origin of the emergent symmetry observed and ex-
pected in toroidal crystals as the result of the interplay
between defects and geometry. Since defective regions are
natural places for biological activity and chemical linking, a
thorough understanding of the surface topology of crystalline
assemblages could represent a significant step toward a first-
principle design of entire libraries of nano- and mesoscale
components with precisely determined valency that could
serve as the building blocks for mesomolecules or bulk ma-
terials via self-assembly or controlled fabrication �9�.

The embedding of an equal number of pentagonal and
heptagonal disclination defects in a hexagonal carbon net-
work was first proposed by Dunlap in 1992 as a possible way
to incorporate positive and negative Gaussian curvature into
the cylindrical geometry of nanotubes �10�. In the Dunlap
construction the curvature is achieved by the insertion of
“knees” in conjunction with each pentagon-heptagon pair
arising from the junction of tubular segments of different

chirality. The latter is conventionally specified by two inte-
gers �N ,M� which identify the direction along which a planar
triangular lattice is rolled up in the form of a tube �11�. A
junction between an �N ,0� and an �N ,N� tube is obtained, for
instance, by placing a sevenfold disclination along the inter-
nal equator of the torus and a fivefold disclination along the
external equator �12,13�. By repeating the 5-7 junction peri-
odically, it is possible to construct an infinite number of to-
roidal lattices with an even number of disclination pairs and
the dihedral symmetry group Dnh, where 2n is the total num-
ber of 5-7 pairs �see inset in Fig. 1�.

Another class of crystalline toroids with dihedral antipris-
matic symmetry Dnd was initially proposed by Itoh et al. �14�
shortly after Dunlap. Aimed at producing a structure similar
to C60 fullerene, Itoh et al.’s original construction implied ten
disclination pairs and the symmetry group D5d. In contrast to
Dunlap toroids, the disclinations in the antiprismatic torus
are not perfectly aligned along the equator but rather stag-
gered at some angular distance �� from the equatorial plane.
A general classification scheme for Dnd symmetric tori can
be found in Ref. �15�. In this paper we will refer to the
lattices themselves, with 2n disclination pairs, by the sym-
bols TPn and TAn, with respective symmetry groups Dnh

FIG. 1. �Color online� Isolated defects and scar phases in the
�r ,V� plane. When the number of vertices V increases, the range of
the screening curvature becomes smaller than one lattice spacing
and disclinations appear, delocalized in the form of a 5-7-5 grain
boundary miniscar.
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and Dnd �Pn and An are the standard symbols for the n-fold
symmetric prism and antiprism while T stands for toroidal�.

Within the elastic theory of defects on curved surfaces
�6–8� the original interacting particle problem is mapped to a
system of interacting disclination defects in a continuum
elastic curved background. Disclinations are characterized by
their topological or disclination charge qi, representing the
departure of a vertex from the 6-fold coordination of a per-
fect triangular lattice. Thus qi=6−ci, where ci is the coordi-
nation number of the ith vertex. A classic theorem of Euler
requires the total disclination charge of any triangulation of a
two-dimensional manifold M to be equal to 6�M, where �M
is the Euler characteristic of M. In the case of the torus �M
=0, and thus disclinations must appear in pairs of opposite
disclination charge �i.e., fivefold and sevenfold vertices with
qi=1 and −1, respectively� in order to ensure disclination
charge neutrality. The total free energy of a crystal with N
disclinations on a manifold M can be expressed as �7,8�

F =
1

2Y
�

M

d2x �2�x� + �c�
i=1

N

qi
2 + F0, �1�

where Y is the two-dimensional Young modulus and ��x� is
the solution of the following Poisson problem with periodic
boundary conditions:

���x� = Y��x� , �2�

where � is the Laplace-Beltrami operator on M and ��x� is
the total topological charge density,

��x� =
�

3 �
k=1

N

qk��x,xk� − K�x� , �3�

of N disclinations located at the sites xk plus a screening
contribution due to the Gaussian curvature K�x� of the em-
bedding manifold. The first term in Eq. �1� represents the
long-range elastic distortion due to defects and curvature. Its
form resembles the potential energy of a system of electrical
charges. In this analogy the Gaussian curvature K�x� plays
the role of a nonuniform background charge distribution
while defects appear as positively and negatively charged
pointlike particles. As a result, disclinations arrange them-
selves so to approximately match the Gaussian curvature.
The second term in Eq. �1� is the defect core energy repre-
senting the energy required to create a single disclination
defect. This quantity is related to the short-distance cutoff of
the elastic theory and is proportional to the square of the
topological charge times a constant �c. Finally, F0 is an offset
corresponding to the free energy of a flat defect-free mono-
layer.

Using standard analysis the function ��x� can be written
in the form

��x� =
�

3 �
k=1

N

qk�d�x,xk� − �s�x� , �4�

where �s�x� represents the stress field due to the curvature of
the embedding manifold and �d�x ,xk� is the stress field at the
point x arising from the elastic distortion due to a defect at

xk. By solving Eq. �2� on an axisymmetric torus of aspect
ratio r=R1 /R2 we found

�s�x�
Y

= ln� r + �r2 − 1

2�r + cos ��
	 +

r − �r2 − 1

r
, �5�

where � is the cross-sectional angle in the standard param-
etrization of the torus �see Fig. 2� and
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where 
=	 tan−1�� tan � /2� is a conformal angle arising
from the mapping of the torus to the periodic plane, z=

+ i�, and �, 	, and � are dimensionless constants depending
on the aspect ratio r:

� = �r2 − 1 − r, 	 =
2

�r2 − 1
, � =�r − 1

r + 1
.

Finally 
1 is a Jacobian theta function and reflects the double
periodicity of the torus �16�.

To analyze the elastic energy Eq. �1� we first consider the
simplest case of two opposite-sign disclinations lying on the
same meridian of a torus of area A=4�2R1R2. The elastic
free energy of this system is shown in Fig. 2 as a function of
the angular separation between the two disclinations. The
minimum is obtained for the positive disclination along the
external equator of the torus �where K�x� is maximally posi-
tive� and the negative disclination along the internal equator
�where K�x� is maximally negative�. The picture emerging
from this simple case suggests a procedure to systematically
construct optimal defect patterns for an arbitrary number of
disclination pairs, by placing the same number of equally
spaced +1 and −1 disclinations along the internal and exter-
nal equators, respectively. We name this configuration with
the symbol Tp, where p stands for the total number of discli-
nation dipoles.

FIG. 2. �Color online� Elastic energy of a 5-7 disclination dipole
constrained to lie on the same meridian, as a function of the angular
separation. In the inset, illustration of a circular torus of radii
R1�R2. Regions of positive and negative Gaussian curvature have
been shaded in red and blue, respectively. A standard parametriza-
tion of the torus is obtained by considering the angles � and �.
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A comparison between the free energy of different Tp con-
figurations as a function of aspect ratio and core energy is
summarized in the phase diagram of Fig. 3. We stress here
that only Tp graphs with p even have an embedding on the
torus corresponding to lattices of the TP p

2 class. Nevertheless
a comparison with p-odd configurations can provide addi-
tional information regarding the stability of p-even lattices.
The defect core energy entering Eq. �1� is equal to 2p�c.
Although dependent on the microscopic details of the sys-
tem, the constant �c /AY 
10−5 for a crystal of roughly 103

atoms. In the range r� �3.68,10.12� and �c
0, the structure
is dominated by the T10 phase corresponding to a double ring
of +1 and −1 disclinations distributed along the external and
internal equators of the torus at the vertices of a regular
decagon. The corresponding lattice has D5h symmetry group.

That this structure might represent a stable configuration
for polygonal carbon toroids has been conjectured by the
authors of Ref. �12�, based on the argument that the 36°
angle arising from the insertion of ten pentagonal-heptagonal
pairs into the lattice would optimize the geometry of a nano-
torus, consistently with the structure of the sp2 bonds of the
carbon network �unlike the 30° angle of the sixfold-
symmetric configuration originally proposed by Dunlap�. In
later molecular dynamics simulations, Han �17� found that a
fivefold-symmetric lattice, such as the one obtained from a
�9,0�-�5,5� junction, is in fact stable for toroids with aspect
ratio less then r
10. The stability, in this case, results from
the strain energy per atom being smaller than the binding
energy of carbon atoms. We have shown here, from con-
tinuum elasticity, that a fivefold-symmetric lattice indeed
constitutes a minimum of the elastic energy for a broad range
of aspect ratios and defect core energies.

For small aspect ratios the fivefold-symmetric configura-
tion becomes unstable and is replaced by the T9 phase. This
configuration, however, does not correspond to a possible
triangulation of the torus. In this regime, we expect the mini-
mal energy structure to consist of ten noncoplanar disclina-
tion pairs as in the antiprismatic TA5 lattice. The latter can
be analyzed by introducing a further degree of freedom ��,
representing the angular displacement of defects from the
equatorial plane. A comparison between the TP5 and TA5
configurations is shown in Fig. 4 for different values of ��.

For small �� and r� �3.3,7.5� the prismatic TP5 configura-
tion is energetically favored. For r�3.3, however, the lattice
undergoes a structural transition to the TA5 phase. For
r�7.5 the prismatic symmetry of the TP5 configuration
breaks down again. In this regime, however, the elastic en-
ergy of both configurations rapidly becomes higher because
of the lower curvature and defects disappear.

In the regime of large particle numbers, the amount of
curvature required to screen the stress field of an isolated
disclination in units of lattice spacing becomes too large and
disclinations are unstable to grain boundary “scars” consist-
ing of a linear array of tightly bound 5-7 pairs radiating from
an unpaired disclination �7,8�. In a manifold with variable
Gaussian curvature, this process yields the coexistence of
isolated disclinations �in regions of large curvature� and scars
�8�. In the case of the torus the Gaussian curvature in the
interior is always larger in magnitude than that in the exterior
for any R1�R2 and thus we may expect a regime in which
the negative internal curvature is still large enough to support
the existence of isolated sevenfold disclinations, while on the
exterior of the torus disclinations are delocalized in the form
of positively charged grain boundary scars.

To check this hypothesis we compare the energy of the
TP5 lattice previously described with that of “scarred” con-
figurations obtained by decorating the original toroid in such
a way that each pentagonal disclination on the external equa-
tor is replaced by a 5-7-5 scar. The result of this comparison
is summarized in the phase diagram of Fig. 1 in terms of r
and the number of vertices of the triangular lattice V �the
corresponding hexagonal lattice has twice the number of ver-
tices, i.e., Vhex=2V�. V can be derived from the angular sepa-
ration of neighboring disclinations in the same scar by ap-
proximating V�A /AV, with AV= ��3 /2�a2 the area of a
hexagonal Voronoi cell and a the lattice spacing. When the
aspect ratio is increased from 1 to 6.8, the range of the cur-
vature screening becomes shorter and the number of atoms
required to destroy the stability of the TP5 lattice decreases.
For r�6.8, however, the geodesic distance between the two
equators of the torus becomes too small and the repulsion
between like-sign defects takes over. Thus the trend is in-
verted.

FIG. 3. �Color online� Phase diagram for Tp configurations in
the plane �r ,�c /AY�. For r� �3.68,10.12� and �c
0 the structure is
given by a T10 configuration with symmetry group D5h.

FIG. 4. �Color online� Phase diagram of a fivefold-symmetric
lattice in the plane �r ,���. For small �� and r in the range �3.3,7.5�,
the prismatic TP5 configuration is energetically favored. For
r�3.3, the system undergoes a structural transition to the antipris-
matic phase TA5.
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On the material science side, defects can be functional-
ized to provide binding sites for ligands. The number of ex-
cess disclinations will then determine the valency of
the surface, which itself can serve as a building block for
new molecules and bulk materials �9�. The universality
of the predictions presented here means that one has precise
control of the valency by tuning the aspect ratio of the torus.
This could lead to a very efficient scheme for creating a

variety of basic surfaces with well-defined valency which
subsequently self-assemble into novel molecules and bulk
structures.
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