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Influence of confinement on granular penetration by impact
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We study experimentally the influence of confinement on the penetration depth of impacting spheres into a
granular medium contained in a finite cylindrical vessel. The presence of close lateral walls reduces the
penetration depth, and the characteristic distance for these lateral wall effects is found to be of the order of one
sphere diameter. The influence of the bottom wall is found to have a much shorter range.
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I. INTRODUCTION

The motion of a solid sphere falling under its own weight
into an unbounded viscous fluid has been known for more
than one century to be characterized by the limiting Stokes
velocity, and the influence of a confinement by close walls
on the sphere velocity has been also known for many years
both theoretically [1-3] (see Ref. [4] for a review) and ex-
perimentally [5,6]. This wall influence, due to the long range
of hydrodynamic forces for low Reynolds number flows, re-
sults in a larger fluid friction force on the sphere. The veloc-
ity of a sedimenting sphere is thus known to be reduced near
a wall either parallel or perpendicular to the sphere motion
by a correction factor that is linear with d/[ at low d/1 (d/l
<1), where d is the sphere diameter and [ is the distance
from the wall. In all these cases, the well-known equations of
classical fluid mechanics serve as a reliable support to under-
stand and predict the corresponding motions with a fluid fric-
tion always proportional to velocity at small Reynolds num-
bers.

Considering now the motion of a falling sphere into
granular matter, the existence of a nonzero solid friction
force at vanishing velocity explains that the sphere driven by
its own weight cannot reach a constant limit velocity but
stops suddenly at a given depth. As the precise rheology of
granular matter is far from being well understood and does
not benefit from well-accepted equations despite recent im-
portant progress [7], the predictions for the stopping distance
are far from easy. Many studies have been performed on the
penetration depth & of an impacting sphere into a granular
medium. It emerges from those studies [8—10] that & follows
a power law of the form &/d > (p/p,)P(H/d)®, where p, is
the density of the grains, d and p are, respectively, the diam-
eter and the density of the sphere, and H is the total falling
distance covered from release to rest. The first power expo-
nent is B8=0.5, whereas the second, «, varies between 0.3
and 0.5 depending mainly on the range of impact velocities
and slightly on the packing fraction of the layer [8—10]. In-
deed, as the packing varies from dense to loose random
packing, the packing density does not vary so much, but the
contact network and force network do vary significantly.

The knowledge and the expression of the forces exerted
by the granular medium, and responsible for the sphere de-
celeration and stop, are still the subject of an intense debate
[11,12], with different terms of frictional and collisional ori-
gins. Recently, the effect of a solid wall normal to a slow
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disk motion was shown to account for an exponential in-
crease of the force on the disk in the close vicinity of the
wall [13,14].

To our knowledge, no study deals in detail with the influ-
ence of close walls on the granular penetration, except the
first results of Refs. [15,16]. In the present paper, after
checking the usual “unbounded” case, we investigate experi-
mentally the influence of the walls, either parallel or perpen-
dicular to the sphere motion, for a sphere dropped onto a
granular layer. In some situations, a coupling between the
effects of parallel and normal walls may exist, but to under-
stand their respective roles, each is studied separately in this

paper.

II. EXPERIMENTAL SETUP

The experimental setup is sketched in Fig. 1. The penetra-
tion depth Jis investigated by dropping a spherical projectile
of diameter d and density p onto a fine granular material in a
cylindrical container of diameter D and height b. The granu-
lar medium consists of glass beads (density p,=2.5
% 10% kg m~3) slightly polydisperse in size, with a diameter
range of 300-400 um. Before each drop, the granular me-
dium is prepared by gently stirring the grains with a thin rod.
The container is then overfilled and the surface leveled using
a straight edge. We have checked that this preparation leads
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FIG. 1. (Color online) Sketch of the experimental setup and
notations.
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FIG. 2. Normalized penetration depth 6/d as a function of the
normalized total falling distance H/d. Experimental data for steel
spheres (p=7.8X 10> kgm™) of different diameters: (V) d
=5mm, (¢) d=10 mm, () d=19 mm, (O) d=20 mm, and (A)
d=40 mm. (—) Power law fit (6/d)*(H/d)* with a=0.4. The
shaded region corresponding to H<< ¢ is by definition not allowed.
Inset: (8/d)(H/d)™®* as a function of the density ratio p/p, for
spheres of diameter d=20 mm and of different materials: (V)
polyamide, (@) Teflon, (M) glass, (4 ) steel, and (A) tungsten car-
bide. (- —) Power law fit (5/d)(H/d)‘0'40<(p/pg)5 with 8=0.61.

to reproducible results with only small variations. The grain
size is much smaller than the falling sphere diameter d so
that the granular medium can be considered as a continuum
medium.

Different sphere materials and sizes have been used to
bring out the influence of the sphere density p and of the
sphere diameter d on the penetration depth 6. Steel spheres
are initially maintained by a magnet at a distance / above the
granular surface. Nonmetallic spheres are held by creating
locally a vacuum at the top of the sphere. Both apparatus
allow one to drop the spheres without any initial velocity nor
spinning motion. The sphere is released directly above the
center of the container and falls along the container axis. The
penetration depth & is then measured with a thin probe by
locating the top of the sphere with a precision better than
1 mm. The impact speed is tuned by varying the drop height
h from 0 to 0.5 m; the corresponding velocity v at impact,
given by v=12gh where g is the gravitational acceleration,
thus ranges from O to 3 ms~!. In the following, the results
will be analyzed using the total falling distance H=h+ & (Fig.

1).

III. THE UNBOUNDED CASE

We first present briefly our results obtained in the usual
unconfined case: the container is large enough (D
=190 mm>d) so that the sphere is not affected by the sur-
rounding walls and also high enough (b=300 mm> ) to
avoid any bottom wall effect as we shall see in the next
sections. The influence of the different parameters on the
penetration depth is shown in Fig. 2 for five different sphere
materials with a density ranging from 1.14 X 10* (polyamide)
to 14.97 X 10® kg m™3 (tungsten carbide) and different sphere
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FIG. 3. Normalized penetration depth 6/d for a steel sphere
(d=19 mm) as a function of the normalized total falling distance
H/d for different cylindrical vessel diameters: (¥) D=24 mm, (V)
D=35 mm, (H) D=40 mm, ((0) D=50 mm, (4) D=62 mm, (O)
D=80 mm, (A) D=128 mm, and (A) D=190 mm.

diameters d ranging from 5 to 40 mm. Note that each point
corresponds to an average of about ten experiments, and er-
ror bars corresponding to the standard deviation are dis-
played only when larger than the symbol size. The penetra-
tion depth is larger for larger falling distance and larger
projectile density. The data are well fitted by power laws of

the form
) BlH\*
2GS 0
d Pg d

with A=0.37£0.01, 8=0.61 £0.02, and «=0.40*=0.04. The
values of a and B are in close agreement with the previous
studies already mentioned [9,10].

IV. INFLUENCE OF LATERAL CONFINEMENT

We are now interested in the influence of a lateral con-
finement on the penetration depth, using cylindrical contain-
ers of large height (b=300 mm), but with smaller diameters
D ranging from 128 down to 24 mm. The penetration depth
o is displayed in Fig. 3 as a function of the total falling
distance H, for a steel projectile of diameter d=19 mm fall-
ing in the different vessels. The two data sets corresponding
to the two largest containers (D=128 mm and D=190 mm)
coincide, suggesting that for large enough vessel diameters
the influence of the surrounding walls becomes negligible
and the medium can be considered as unbounded in the ra-
dial direction. For smaller diameters D, data still fall into
straight lines in the log-log plot of Fig. 3 but with smaller
slope values suggesting that Eq. (1) remains valid with
smaller a values. The A and « values extracted from the fit
of the data of Fig. 3 by Eq. (1) are reported in Figs. 4 and 5.

The inset of Fig. 4 displays a as a function of D for the
steel sphere of diameter d=19 mm (@). A constant plateau
value appears at large enough diameters D (D= 100 mm)
with the constant value a¢=0.4. At smaller D, « decreases
significantly with D and seems to tend toward zero when D
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FIG. 4. Power exponent a of Eq. (1) as a function of (D/d
—1) for steel sphere of diameter (V) d=5 mm, (®) d=19 mm, and
(O) d=40 mm, and (<) tungsten carbide sphere of diameter d
=40 mm. (—) Best fit by Eq. (2) with a,,=0.39 and \,=0.8. Inset:
same data as a function of D.

approaches the sphere diameter d=19 mm, as no deep pen-
etration (larger than d/2) would be possible for D <d. Data
for different sphere diameters do not collapse in the a vs D
plot, but they do collapse in the « vs (D/d—-1) plot, as shown
in Fig. 4. In this plot, data are well fitted by the exponential

law
D-d
a=am{1—exp(— N )] (2)

where a,,=0.4 corresponds to the “infinite” (unbounded)
case and A ,==0.8 characterizes the range of wall effects. The
characteristic distance A,d of lateral wall effects is thus
found here a little smaller than one sphere diameter, which is
rather small. Hence, for D/d =<5, the surrounding walls play
a key part and prevent a deep penetration of the projectile.
For D/d=35, the container has a vanishing influence and the

X®

FIG. 5. Prefactor A of Eq. (1) as a function of D/d with the
same notations as in Fig. 4. (—) Best fit by Eq. (3) with A,
=(0.37 and N\, =0.7. Inset: same data as a function of D.
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sphere reaches a limiting penetration depth independent of
D.

The prefactor A follows the same kind of decrease for
decreasing container diameters D (see Fig. 5), but we believe
that the relevant parameter for the lateral confinement is here
D/d rather than (D/d-1), as A must vanish for vanishing
D/d. The A variation is quite well fitted by the exponential

law
D
A=Aw[l—exp<— m)], (3)

where A.,=0.37 corresponds to the unbounded case and A4
=().7 characterizes the range of wall effects. Note that the A,
and \, values are about the same as these two parameters
characterize the same wall effect.

Besides, the power exponent S for the density ratio [Eq.
(1)] does not depend on the lateral confinement but may be
considered as constant, as data points for tungsten carbide
(©) twice denser than steel fall on the same curve in both
Figs. 4 and 5.

The reduction of the penetration depth by a lateral con-
finement is clearly due to an enhanced blocking effect by the
walls (less radial dilatancy). The precise mechanisms respon-
sible for this reduction remain to be understood. For in-
stance, the nonlinear “pressure” evolution inside the granular
packing due to the well-known Janssen effect, and valid both
in static and dynamic situations [17], fails in explaining an
enhanced force on the sphere in the confined case.

V. INFLUENCE OF NORMAL CONFINEMENT

Let us now discuss the influence of a normal confinement
by a close bottom wall. We investigate this effect by varying
the thickness b of the granular layer contained in a vessel of
large enough diameter D to avoid the lateral wall effects
discussed before. As we are interested in the sphere penetra-
tion inside the granular material, we restrict, however, our
study to thick enough layers with b >d. The normalized pen-
etration depth &/d of the steel sphere of diameter d
=19 mm is displayed in Fig. 6 as a function of the normal-
ized total drop distance H/d for three layer heights b ranging
from 23 to 50 mm (1.2=b/d=2.6) together with the un-
bounded case »=300 mm (b/d=15.8). The penetration depth
remains unchanged by the presence of the bottom wall until
the projectile approaches at a very short distance from the
wall: J follows the unbounded curve until the sphere impacts
the bottom wall indicated by the dashed lines in Fig. 6. This
very short range effect is consistent with recent measure-
ments of the force on a flat plate approaching in a quasi-
static way the solid bottom boundary of a granular sample,
indicating that the penetration resistance increases exponen-
tially near the boundary [13,14]. At a high enough falling
height, the sphere impacts the wall (a characteristic shock
sound can be heard) and bounces back leaving a crater be-
low. For thin enough layers as already studied in Ref. [18],
the opened crater does not become filled enough by inward
avalanches so that no grains are at the center and the final
rest position of the sphere corresponds to 6=b as the sphere
comes to rest on the bottom “dry” wall [see (V) in Fig. 6].

010301-3



SEGUIN, BERTHO, AND GONDRET

non physical
domain

d/d

2 4 6 8

H/d

10 20 40

FIG. 6. Normalized penetration depth &/d of a steel sphere (d
=19 mm) as a function of the normalized total drop height H/d, for
different heights b of the granular layer: (V) b/d=1.2, (O0) b/d
=19, (O) b/d=2.6, (A) b/d=15.8. Each horizontal dashed line
corresponds to each initial height b of the granular layer. (—) Power
law fit (8/d) =< (H/d)* with a=0.4, for the unbounded case (b/d
=15.8).

For thicker granular layers, inward avalanches are large
enough to bring back grains down to the crater center so that
the sphere comes back at rest at §<b [see ((J) in Fig. 6]. In
that case, the larger the falling height, the longer the rebound
time and thus the time for avalanche, so that the thicker the
layer of back grains at the crater center: this explains the
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decreasing value of & for an increasing falling height in this
part of the curve. Data for b/d=2.6 (O) would also display
such a behavior for larger falling heights.

VI. CONCLUSION

We have measured the penetration depth 6 of spheres of
diameter d impacting a granular medium contained in a cy-
lindrical vessel of diameter D. This penetration depth may be
strongly affected by the presence of surrounding walls. The
presence of a bottom wall perpendicular to the sphere motion
has a very short range influence on ¢ as the sphere is only
affected when the distance from the wall has reached a few
grain diameters. On the other hand, the presence of lateral
walls parallel to the sphere motion has a larger range influ-
ence with a typical characteristic distance A=d. For D/d
=<5, the walls have a strong influence and reduce signifi-
cantly the penetration depth. For D/d=35, they have a van-
ishing influence. The two (bottom and lateral) wall effects
have been studied independently, but it could be a hard cou-
pling between them for geometrically strongly hindered
grain motions.
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