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Some of the problems with the theory of moving charge radiation in media with frequency dispersion are
analyzed. First, some general properties of the integrals for field components are described. The results are
applied to the cases of passive and active media. In one instance, the field of a charge moving in passive media
with an arbitrary number of resonances is considered. Components of the field have been presented as a sum
of the “quasi-Coulomb” field, the wave field, and the “plasma trace.” In another example, the case of an active
medium with two resonant frequencies is considered. It has been demonstrated that radiation is amplified even
with a purely real refractive index if the following conditions are fulfilled: the “lower” resonance is active, the
“upper” one is passive, and the charge movement velocity lies within a certain range. Efficient algorithms for
the computation of fields in the cases of passive and active media have been developed.
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I. INTRODUCTION

Starting from the second quarter of the 20th century, prob-
lems concerning electromagnetic wave radiation generated
by sources moving in material media have attracted the at-
tention of researchers �1,2�. A considerable number of ex-
perimental and theoretical works dedicated to these problems
have been published, and the most important results have
been presented in a number of monographs, reviews, and
tutorials �3–9�. Currently, interest in this area is considerable.
In particular, a detailed analysis of Vavilov-Cherenkov radia-
tion �VCR� in a single-resonant dispersive medium was car-
ried out recently �8,10,11�. VCR was also considered in more
complex media, including, for example, media with periodic
inhomogeneities such as photonic crystals �12,13�.

The considerable interest in the field of VCR is con-
nected, in particular, with many opportunities for its applica-
tion in the physics of accelerators and detectors of charged
particles as well as in microwave engineering. The prospec-
tive technique for accelerating charged particles is the so-
called wakefield technique, which considers an ultrarelativ-
istic bunch of charged particles accelerated in the
electromagnetic field of another bunch �14–19�. There is,
however, a range of difficulties in implementing this accel-
eration scheme, and its development requires a more detailed
analysis of VCR in a medium with complex dispersion be-
haviors. Let us note that one of the latest ideas being dis-
cussed is the possibility of wakefield amplification in active
media �such media have a frequency dispersion of an un-
usual nature �20–25��. Such subject matters are significant to
a wider field of applied physics and microwave
engineering—in particular, the creation of new sources of
powerful electromagnetic radiation.

In this article, we analyze a series of questions concerning
VCR theory in media with frequency dispersion. Section II
uses methods of the theory of complex variable functions to
investigate the general properties of known integrals for
components of a moving charge field. In Sec. III, the results
obtained are applied to the case of a passive medium with an
arbitrary number of resonance frequencies. Section IV is
dedicated to the analysis of VCR amplification through an
active medium that has two resonant frequencies.

II. SOME GENERAL PROPERTIES OF INTEGRALS
FOR MOVING CHARGE FIELD COMPONENTS

Let us assume that a point charge q moves with a constant

velocity V� =Ve�z �where V�0�. The position of the charge at
a moment in time t is determined by the relations x=y=0 and
z=Vt. The medium is assumed to be isotropic, homogeneous,
linear, and lacking spatial dispersion. The squared refractive
index of the medium is equal to n2���=��������. As is
known �3–9�, in a cylindrical coordinate system, the � ,� ,z
components of an electromagnetic field of a charge can be
written as follows:

�E�,Ez,H�� =
q

2c
�

−�

+�

�e����,ez���,h�����d� , �2.1�

e���� =
is���
	����

H1
�1�
„s����…exp�i�




V
	 ,

ez��� =
�

c

1 − n2	2

����	2 H0
�1�
„s����…exp�i�




V
	 ,

h���� = is���H1
�1�
„s����…exp�i�




V
	 , �2.2�

where 
=z−Vt, 	=V /c, c is the velocity of light in a
vacuum, and H�

�1���� are the Hankel functions,

s2��� =
�2

V2 �n2���	2 − 1� . �2.3�

The contour of integration in formulas �2.1� is the real axis
�we exclude from consideration here the case of an active
medium, which is considered in Sec. IV�. Let us emphasize
that expressions �2.1�–�2.3� satisfy Maxwell’s equations and
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material relations irrespective of the determination of the
root s���=
s2���. This function should be determined in
accordance with so-called “radiation principles” �26�.

If the dissipation of electromagnetic energy is considered
to be negligible, the function s2��� is real for real values of
�. In this case, in the domain of radiated frequencies �i.e., on
those parts of the real axis where s2����0�, Mandelshtam’s
principle of radiation should be fulfilled �26�. Conforming to

this principle, the group velocity’s V� g=d� /dk� direction is
away from the source. Note that, in dispersive media, Som-
merfeld’s principle of radiation—i.e., the requirement that

the phase velocity V� p be directed away from the source—is
not always true. According to Mandelshtam’s principle, the
group velocity must be directed away from the charge mo-
tion line, Vg�=d� /ds�0. Since ds2 /d�=2sds /d�, this re-
quirement can be written in the form 1

s
ds2

d� �0. Along the
parts of the real axis where s2���
0, the requirement that
the “local waves” exponentially decrease should be met, and
such a requirement corresponds to the condition Im s�0. As
a result, we obtain

s = ��s�sgn�ds2/d�� for s2 � 0

i�s� for s2 
 0.

 �2.4�

According to Eq. �2.3�, in the domain of radiated frequen-
cies, where n2	2−1�0, we obtain

sgn�ds2

d�
� = sgn���1 +

	2�

2�n2	2 − 1�
dn2

d�
	
 . �2.5�

In the case of a normal dispersion of n2���=��������, when
�dn2 /d��0, we obtain sgn�ds2 /d��=sgn �—i.e., sgn s
=sgn �. This means that Sommerfeld’s radiation principle is
true. If the dispersion of n2��� is anomalous, sgn�ds2 /d��
can be equal to both sgn � and −sgn � �in the latter case,
Sommerfeld’s principle is untrue�. Let us note that the fre-
quency band of anomalous dispersion n2��� �where
�dn2 /d�
0� may be characterized by a relatively small ab-
sorption �i.e., a negligible imaginary part of n2�. For ex-
ample, such a situation is possible in the case of the so-called
left-handed medium. �Cherenkov radiation in left-handed
media is analyzed in Ref. �27� both for the lossless case and
for the lossy one�. Furthermore, some active media may have
negligible values of Im�n2� in the range of anomalous dis-
persion �see Sec. IV�.

The function s��� must be defined on the complex plane
of � in such a way that the requirements �2.4� are met on the
real axis. It is expedient to draw the cuts in segments where
Im s=0, fixing the “physical” sheet of the Riemann surface
by the requirement Im s�0. Then, on those parts of the real
axis that coincide with the cuts, the contour of integration
should lie along those banks of the cuts where Vg��0—i.e.,
where the condition �2.5� is fulfilled.

For the case where electromagnetic energy absorption in
the medium is taken into account, the refractive index for

real frequencies is complex. In this case, for the definition of
the function s���, it is enough to apply the requirement
Im s�0 on the real axis. To determine the “physical” sheet
of the Riemann surface, it is expedient, as before, to extend
this requirement over the whole complex plane of �.

Let us obtain some properties of the function s��� and
functions �2.2� on the “physical” sheet of the Riemann sur-
face. For this purpose, we will use the following relations:

��− �̄� = �̄���, ��− �̄� = �̄���, n2�− �̄� = n̄2��� ,

�2.6�

where the overbar indicates complex conjugation. These for-
mulas are not related to the selection of a medium model;
they arise only from a requirement for the reality of the field
components in the Maxwell equations. Using Eqs. �2.3� and
�2.6�, we obtain the following:

s2�− �̄� = s̄2��� . �2.7�

Let us assume that both point � and point −�̄ belong to the
“physical” sheet of the Riemann surface—i.e., 0
�arg�s������ and 0�arg�s�−�̄����. Then, from Eq.
�2.7� it follows that

s�− �̄� = ei�s̄��� . �2.8�

This property will play a considerable role in subsequent
transformations.

Based on the requirement of reality of the field compo-
nents in the Maxwell equations, it is easy to show that the
following relations are valid:

e��− �̄� = ē����, ez�− �̄� = ēz���, h��− �̄� = h̄���� .

�2.9�

�Let us note that these proportions can be derived directly
from Eq. �2.2� using Eqs. �2.6� and �2.8� and certain proper-
ties of the cylindrical function.�

Furthermore, the initial contour will be transformed in
such a way that the new contour will be symmetrical with
respect to the imaginary axis. In this connection, we note the
following important property. Let us assume that a contour �
consists of two parts: one of them ��+� lies in the domain
Re ��0, and the other ��−� lies in the domain Re ��0. If
the total contour � is symmetrical with respect to the imagi-
nary axis, then, with the help of Eq. �2.9�, we obtain the
following identity:

�
�

f���d� = 2�
�+

Re�f���d�� , �2.10�

where f��� is any of the functions �2.2�.
Let us write down the asymptotic of function s��� on a

“physical” sheet. Taking into consideration that, at ���→�
for all real media ����→1 and ����→1, we obtain the
following:

s��� →
���→�


1 − 	2

V
i� sgn�Re �� . �2.11�

Let us emphasize that the discontinuity of the asymptotic is
explained by the “physical” sheet fixation according to the
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rule Im s����0. Using asymptotic forms of the Hankel
function �28�, we obtain that the functions �2.2� exponen-
tially diminish as ���→� in the following domains:

Im � � − �Re ���
1 − 	2/
 at 
 � 0,

Im � 
 �Re ���
1 − 	2/�
� at 
 
 0. �2.12�

Furthermore, an essential role will be played by asymptotes
of the steepest descent contour �SDC�. The contour itself
cannot be found without concretization of a medium model.
Its behavior at infinity, however, is determined only by the
asymptotic �2.11�. The SDC asymptotes lie within the fields
of exponential diminution �2.12� and are determined by the
equation Re�s�+�
V−1�=const, which can be written in the
following form:

�
1 − 	2Im � = 
�Re �� + const �2.13�

�the value of the constant included here is not essential for
future studies�.

III. MOVING CHARGE FIELD IN A PASSIVE MEDIUM
WITH SEVERAL RESONANCE FREQUENCIES

In this section, we consider a passive medium with a
resonance-type frequency dispersion. It is assumed that there
are several resonance frequencies �rm �for completeness, let
us suppose that �rm+1��rm�. We express the refractive index
of the medium in the following typical form:

n2��� = �������� = 1 + �
m=1

M
�pm

2

�rm
2 − 2i�dm� − �2 , �3.1�

where the parameters �pm can be called “plasma frequen-
cies” and the parameters �dm determine the dissipation of the
electromagnetic energy in the medium.

Let us first consider the case when dissipation in the me-
dium can be neglected—i.e., �dm=0. In such a situation, the
function s2��� can be presented in the following form:

s2��� = −
�1 − 	2��2

V2

�
m=1

M

��2 − �cm
2 �

�
m=1

M

��2 − �rm
2 �

, �3.2�

where �cm are zeros of the numerator of s2���. For further
consideration, it is important to distinguish two situations. To
start, let us assume that n0	
1, where n0=n�0�
=
1+�m=1

M �pm
2

�rm
2 is the refractive index for waves with fre-

quencies essentially less than the lower resonance frequency.
This condition means that the phase velocity of the low-
frequency waves exceeds the charge movement velocity
�c /n0�V�. Figure 1�a�, part I, shows the dependence n2���,
and the dashed straight line shows level 	−2 corresponding to
the case being considered. The real axis segments, where
n2����	−2, represent the ranges of radiation frequency.

Resonance frequencies �rm are their upper limits, while fre-
quencies �cm are the lower limits. As we see, in this case,
there are M real positive zeros of the function s���. Fixing
the “physical” sheet of the Riemann surface with the require-
ment of Im s�0 let us draw cuts in such segments, where
Im s=0. The system of such cuts is shown in Fig. 1�a�, part
II. To define the function s���=
s2���, it is required to de-
fine the radical 
�2 with the rule of 
�2=lim�→+0


�2+�2.
So we have the cuts going from point i� to i� and from

point −i� to −i� �Fig. 1�a�, part II�. It is easy to verify that,
within those parts of the contour of integration, where s2


0, the “local waves” are diminished �i.e., s= i�s��. At the
same time, on the upper banks of the cuts located on the real
axis, sgn s=sgn �. Thus, if we draw the contour of integra-
tion along the upper banks �Fig. 1�a�, part II�, the require-
ment of a group velocity direction away from the charge
movement direction will be fulfilled due to the normal dis-
persion �see Sec. II�.

In addition to the mentioned singularities, integrands of
E� and Ez can contain poles—zeros of permittivity ���� �in
the case when frequency dependence �3.1� is determined by
the function �����. Such singularities determine the so-called
“plasma trace” of the source. It represents plasma oscilla-
tions excited close to the way of the source movement, and it
does not transfer electromagnetic energy. This part of the
electromagnetic field can exist only in the domain behind the
source; i.e., the poles must be bypassed from above.

In the case of n0	�1, when the phase velocity of low-
frequency waves is less than the charge movement velocity,
the Vavilov-Cherenkov radiation spectrum starts from zero
frequency �Fig. 1�b�, part I�. At the branch points, ��c1 are
purely imaginary, but the values of ��cm at m�1 are real.
The cuts determined by the equation Im s=0 and the contour
of integration, which satisfies the radiation principle, are
shown in Fig. 1�b�, part II. Let us note that, in this case, the
radical 
�2 being a part of s��� must be determined by the
rule 
�2=�. The cuts lying on the imaginary axis go out
from the points ��c1 �Fig. 1�b�, part II�.

Further analytical transformations for both cases consist
of the following steps. Let us form a closed contour of inte-
gration by complementing the initial contour �the real axis�
with an infinite semicircle located within the domain of
Im ��0 at 
�0 and within the domain of Im ��0 at 


0. At 
�0, only the cut going along the imaginary positive
semiaxis contributes to the integrals. It gives a “quasi-
Coulomb” field, which represents a forerunner moving to-
gether with the charge in front of it. At 

0, both the con-
tour embracing the cut going along the imaginary negative
semiaxis �“quasi-Coulomb” field� and the contours embrac-
ing the cuts located on the real axis �the wave field—i.e., the
VCR field� make inputs into the integrals. Moreover, if the
permittivity ���� is a function of frequency �for instance, in
the case when �=1 and n2=��, then the poles ��sm, which
represent zeros of the function ����, make their contributions
to the components E� and Ez �they determine the so-called
“plasma trace”�. As a result of a series of simple transforma-
tions, the following expressions can be obtained:
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E� = E�C + E�W + E�P, Ez = EzC + EzW + EzP, H� = H�C + H�W, �3.3�

�E�C

EzC

H�C
� =

q

c
�

�0

� �
s�i��

	��i��
J1„�s�i��…

��1 − n2�i��	2�
c	2��i��

J0„�s�i��…sgn 


s�i��J1„�s�i��…
�exp�− �

�
�
V
�d� , �3.4�

�E�W

EzW

H�W
� = −

2q

c
�
m=1

M �
�m

�rm�
s���

	����
J1„�s���…sin��




V
�

�

c
�1 −

1

n2���	2��J0„�s���…cos��



V
�

s���J1„�s���…sin��



V
� �d���− 
� , �3.5�

2
n

�

a

1s� 2s�2c�

2��

1r�
2r�

1c�

2
0n

2
n

�1s� 2s�

2
0n

2c�

2��

1r� 2r�

b

�Im

�Re�i�

�i

1c�
1r�

1s� 2s�

2c�
2r�

0�� 0��

�Im

�Re
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FIG. 1. Part I: dependence of n2 on � for �a� n0	
1 and �b� n0	�1 in the case of a medium with two resonances �M =2�. The dashed
line shows the level of 	−2. Part II: view of the cuts �bold lines� and contours of integrations on the complex plane � for �a� n0

2	2
1 and
�b� n0

2	2�1 in the case of a medium with two resonances �M =2�. The dotted line is the initial contour of integration, and the dashed lines
are contours used for computation. The picture for the half-plane Re �
0 is symmetrical with respect to the imaginary axis. Part III:
dependence of the longitudinal component of the electrical field Ez �in units of q�r1

2 c−2� on 
=z−Vt �in units of c�r1
−1� for �a� 	=0.4 and �b�

	=0.99 in case of ruby: M =2, �r1=2��11�1012 s−1, �r2=2��14�1012 s−1, �p1=2��13�1012 s−1, �p2=2��21�1012 s−1, �d1

=2��0.02�1012 s−1, �d2=2��0.06�1012 s−1, and �=5c�r1
−1.
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�E�P

EzP

 =

4q

c2	2��− 
��
m=1

M
�

d�/d���K1���

V
�sin��


V
�

− K0���

V
�cos��


V
� ��

�=�sm

, �3.6�

where

�0 = �0 for 	 
 	0

��c1� for 	 � 	0,

 �1 = ��c1 for 	 
 	0

0 for 	 � 	0,



�m=�cm at m�2, 	0=n0
−1, Jk��� and Kk��� are, respectively,

the Bessel function and the modified Hankel function of k
order, and ���� is the Heaviside step function: ����=0 at
�
0 and ����=1 at ��0. Here, the index C is assigned to
“quasi-Coulomb” parts, the index W is assigned to wave
components, and the index P is assigned to “plasma trace”
components. The “quasi-Coulomb” field exists both behind
and in front of the moving charge and quickly decreases with
distance from it. The wave field �radiation field� exists only
behind the charge and oscillates with distance from it. Unlike
the radiation field, the “plasma trace” is concentrated close to
the charge movement trajectory and exponentially decreases
with distance from it.

From formulas �3.3�–�3.6�, it is easy to obtain the results
for the case of a medium with one resonance frequency. For
this purpose, it is sufficient to assume that �pm=0 at m�2
(there is the single integral on the interval of ��1 ,�r1� in Eq.
�3.5�). Let us note that the problem of a field of a charge
moving in a medium with one resonance frequency was con-
sidered in detail in Refs. �10,11�. In these works, expressions
for components of the field are represented in the form of
two integrals over segments of the real axis. One of them
determines the radiation field, while the other one is the sum
of the “quasi-Coulomb” field and the “plasma trace.” The
integrands, however, contain the Neumann function N0��s�,
which has a singularity at �s→0. One advantage of expres-
sions �3.4� and �3.5� is that they do not include the Neumann
functions, thereby simplifying the numerical calculation of
wave components of the field according to these formulas.
Moreover, in formulas �3.4� and �3.5�, all three components
of the field �the wave and “quasi-Coulomb” components and
the “plasma trace”� are separated, which simplifies the physi-
cal interpretation of the obtained results.

The advantages of the approach stated above are impor-
tant, for instance, for the analysis of the interaction of two
charges moving one after another. It requires one to calculate
the field on the charge movement axis, so the absence of a
singularity at �→0 in Eqs. �3.4� and �3.5� represents an im-
portant advantage of these expressions. In Ref. �29�, such a
problem is studied for the case of a medium with one reso-
nance frequency. A range of essential physical effects was
discovered.

It is noted, however, that there is a more effective algo-
rithm of computation. We can transform the contour of
integration in the initial formulas �2.1� using the above
analysis of properties of integrands. For relatively small val-
ues of �, it is convenient to transform a contour such that it
bypasses all branch points and poles. For the best conver-
gence of an integral at great values of �, it is necessary to
transform a contour so that it is parallel to the asymptote of
SDC �2.13�. For 
�0, it is possible to use the contour con-
sisting of two infinite rays parallel to the lines �2.13�. For 


0, it is possible to use the contour consisting of two trap-
ezoidal dashed lines with half-infinite parts parallel to the
asymptotes �2.13� �Figs. 1�a� and 1�b�, part II, show the pic-
ture for the area Re ��0�. This transformation allows us to
avoid the intersection of the integrands’ singularities during
the contour transformation. It is noted that the essential ad-
vantage of such an approach is that it is possible to choose
the most convenient parameters of the dashed contour for the
concrete parameters of the problem. We would remind the
reader that an arbitrary integral over a symmetric �relative to
the imaginary axis� contour is reduced to an integral over the
contour part located only in the right half-plane.

Some examples of a calculation of the longitudinal com-
ponent of an electrical field Ez in the case of a biresonance
medium are given in Fig. 1, part III. As an example of the
medium, we took a ruby that has two relatively close reso-
nances in the terahertz frequency range. Other resonant fre-
quencies are located far from this domain, so we did not
consider them in the calculations. Let us remark that, in such
a medium, a charge can move at approximately constant ve-
locity only in a vacuum channel. It is known, however, that
the presence of a channel does not affect the VCR if the
lengths of the waves exceed the thickness of the channel �7�.
Due to this, we can use the results obtained for the homoge-
neous medium. The model parameters �p1,2, �r1,2, and �d1,2
were determined on the basis of known data �30� by means
of interpolation.

Figures 1�a� and 1�b�, part III, show the dependence of the
component Ez �in units of q�r1

2 c−2� on distance 
=z−Vt �in
units of c�r1

−1� at constant distance from the charge move-
ment axis. One can see that the “quasi-Coulomb” component
of the field is dominant close to the point 
=0. In the area


0, we see a typical pattern of wave interference. One can
see, at considerable distance from the charge, beating har-
monics with two relatively close frequencies �radiation is
mainly generated at frequencies that are close to either �r1 or
�r2�. Let us also mention that, at high velocities, the “quasi-
Coulomb” field is insignificant in comparison with the wave
field �Fig. 1�b�, part III�.
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IV. EFFECT OF VAVILOV-CHERENKOV RADIATION
AMPLIFICATION IN AN ACTIVE

BIRESONANCE MEDIUM

In this section, we will consider the case of active media
�or media with inverse occupancy�. Such media are usually
produced by optical pumping and represent the main compo-
nents of lasers and masers. In recent years, the attention of
researchers has been attracted to the so-called PASER �par-
ticle acceleration by stimulated emission of radiation�. First
of all, this trend is related to a problem in the development of
new methods to generate powerful electromagnetic fields.
These fields can be used in accelerators based on the wake-
field technique �20–25�. In this area, the most important goal
is achieving the maximum possible values of the electromag-
netic fields. By using the PASER method, an active medium
provides the energy that transforms into the energy of VCR,
and it is then used to accelerate charged particles of the sec-
ond bunch. The initial theoretical and experimental works
concerning PASERs focus on acceleration in gaseous CO2
and ammonia laser media �20–23�. The first proof-of-
principle experiment on direct particle acceleration by stimu-
lated emission of radiation has been published recently
�22,23�.

It is necessary to emphasize that active media are charac-
terized by resonant-type dispersion. Waveguide structures,
which are completely or partially filled with an active disper-
sive medium having a single resonance frequency, were con-
sidered in Refs. �20,21,24�. It was demonstrated that ampli-
fication of VCR is possible even if the refractive index of the
medium is purely real �20,21�. The current section demon-
strates that amplification of VCR in an active medium with a
purely real refractive index is possible without a waveguide.
This phenomenon can take place if the medium possesses
two resonant frequencies. Furthermore, we consider a me-
dium having resonant frequencies �r1 and �r2 ��r2��r1�.
Let us write the expression for the refractive index in the
usual form:

n2��� = �������� = 1 +
�p1

2

�r1
2 − 2i�d1� − �2

+
�p2

2

�r2
2 − 2i�d2� − �2 . �4.1�

Let us note that the values �p1,2
2 are not necessarily positive.

In active media, at least one of these parameters is negative;
i.e., the respective “plasma frequency” �p1,2 has an imagi-
nary value �20� �the values of �r1,2 and �d1,2 are positive and
real, the same as in passive media�.

Let us first consider the case when �d1=�d2=0. In this
case, the function s2���=�2V−2�n2���	2−1� can be pre-
sented in the following form:

s2��� = −
1 − 	2

V2

�2��2 − �1
2���2 − �2

2�
��2 − �r1

2 ���2 − �r2
2 �

, �4.2�

where

�1,2
2 =

1

2
��r1

2 + �r2
2 − ���p1

2 + �p2
2 � � 
D� , �4.3�

D = ��r1
2 + �r2

2 − ���p1
2 + �p2

2 ��2 − 4�r1
2 �r2

2

+ 4���p1
2 �r2

2 + �p2
2 �r1

2 � , �4.4�

� = 	2�1 − 	2�−1. �4.5�

If D�0, the values �1,2
2 are real, and the roots �1

�= �
�1
2

and �2
�= �
�2

2 are either purely real or purely imaginary �it
is assumed that zeros with index �+� have a non-negative real
part; if they are purely imaginary, their imaginary part is
positive�. If D
0, then the zeros have both real and imagi-
nary parts. It is noted that the following relations take place:
�1

+=−�1
−=�2

+=−�2
−, where the overbar designates complex

conjugation. The determinant �4.4� can also be represented in
the following form:

D = ��r2
2 − �r1

2 − ���p1
2 + �p2

2 ��2 + 4��p1
2 ��r2

2 − �r1
2 �

= ��r2
2 − �r1

2 + ���p1
2 + �p2

2 ��2 − 4��p2
2 ��r2

2 − �r1
2 � .

�4.6�

Since �r2��r1, the determinant D is positive for any param-
eters of the problems if one of the following situations takes
place:

�p1
2 � 0, �p2

2 � 0,

�p1
2 � 0, �p2

2 
 0,

�p1
2 
 0, �p2

2 
 0. �4.7�

The value of D can be negative only in the following case:

�p1
2 
 0, �p2

2 � 0, �4.8�

i.e., in the case when the lower resonance is “active” and the
upper one is “passive.” This condition is, however, neces-
sary, though not sufficient. By considering D as a quadratic
polynomial with respect to �, it is easy to demonstrate that
D
0 if the conditions �4.8� are supplemented with the fol-
lowing inequalities:

�r2
2 − �r1

2

��p2 + ��p1��2 
 � 

�r2

2 − �r1
2

��p2 − ��p1��2 . �4.9�

They are equivalent to the inequalities

	min 
 	 
 	max, 	 min
max

=
 �r2
2 − �r1

2

��p2 � ��p1��2 + �r2
2 − �r1

2 .

�4.10�

Furthermore, we will consider the most interesting case
when conditions �4.8� and �4.9� are fulfilled. The dependence
of the squared refractive index on frequency for such a situ-
ation is shown in Fig. 2. As we see, the straight line 	−2 does
not cross the curve n2���. It is related to the complex char-
acter of the zeros �1,2

� of the function s2���. These zeros,
along with the resonant frequencies, are the branch points of
the integrands �2.2�. Real positive frequencies of the radiated
waves lie within the range of �r1
�
�r2, where the con-
dition n2	2�1 is fulfilled ��i.e., s2����0�. For these waves,
the Mandelshtam’s radiation condition is fulfilled. In accor-
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dance with this condition Vg��0, sgn s���=sgn�ds2 /d��
�see Sec. II�. It is easy to demonstrate that ds2 /d�=0 at
some point lying on the segment �r1
�
�r2 �see Fig. 2�,
as well as at the symmetrical point on the segment −�r2

�
−�r1. Therefore, the function s��� changes its sign at
these points; i.e., it has a break. This is possible only in cases
when these points lie on the cuts separating the “physical”
sheet of the Riemann surface from the “nonphysical” one.

The view of the cuts and the integration contour in the
right half-plane are shown in Fig. 3 �in the left half-plane, the
picture is symmetrical with respect to the imaginary axis�. It
is not difficult to demonstrate that the requirement sgn s���
=sgn�ds2 /d�� is fulfilled if the branch points ��r1,2 are
passed from above �Fig. 3�. The cuts connecting point �1

+

with point �2
+ and point �1

− with point �2
− are passed from

above as well. �If these cuts were passed from below, we
would obtain a wave field in the domain in front of the
charge. This is impossible.� If n2=�, then there are the poles
��s1,2 �zeros of function �����. They determine the “plasma
trace” of the source. They are passed from above, as the
“plasma trace” can exist only in the domain behind the
source �6�. Let us note that the contour passes between the
branch points �i���→ +0� of function 
�2

=lim�→+0

�2+�2, which is included in s���. The cuts going

out from these points determine the quasistatic field, as in
case of passive medium.

The fact that part of the contour is located in the upper
half-plane predetermines the effect of the amplification of
VCR. It is not difficult to show that, as in the case of a

passive medium �Sec. II�, all the integrals for the field com-
ponents over the contour �, which is symmetrical with re-
spect to the imaginary axis, can be reduced to integrals over
its right half �+ �see formula �2.10��. Therefore, we consider
further integrals only over contour �+. Let us note that we do
not need to define the precise geometry of the cuts as the
contour of integration, �+, can be transformed in such a way
that it would be located far from the singularities. In the
same way as in the case for a passive medium, for the field in
the half-space behind the charge �

0�, it is convenient to
replace the initial contour with a dashed line passing from
above the poles and branch points and parallel to the asymp-
tote of the steepest descent contour at infinity �Fig. 3�. Such
a transformation allows us to avoid calculating integrals in
the neighborhood of branch points, and it provides good con-
vergence at infinity.

Some results of the calculations are shown in Fig. 4. Let
us note that, for the purpose of these calculations, nonzero
values of parameters �d1 and �d2 were taken into account
�the algorithm described enables us to do this�. In the same
way as in the case of a passive medium, we will consider a
ruby as an example of a medium with two relatively close
resonant frequencies. It is assumed that the value ��p1

2 � in the
active regime is 100th of that in the passive regime. In such
a situation 	min=0.38 and 	max=0.42. As seen in Fig. 4,
considerable amplification of VCR takes place at 	=0.4 de-
spite an negligible inversion of the lower resonance. A simi-
lar effect should take place for any active media with two
resonant frequencies if the conditions described above have
been fulfilled.

It should be noted that the obtained results describe the
initial stage of wakefield amplification only. In reality, the
field magnitude does not increase permanently with an in-
crease of �
�; instead, it reaches some maximum value deter-
mined by the energy stored within the medium. The linear
approach used in this paper does not describe the saturation
process. Such a process can be the object of special research.
Nevertheless, it should be emphasized that the analysis car-
ried out in the linear approach is significant because it al-
lowed the discovery of the conditions for wakefield amplifi-
cation.

2
n

�2.14.0

10�

0

20

8.0 2.26.1

2
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��

2��
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��
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FIG. 2. Dependence of the squared refractive index of an active
biresonance medium on frequency � �in units of �r1� for the case
��p1

2 �
�p2
2 .
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�i 1r�
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�

1
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�
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�

FIG. 3. General view of cuts �bold solid lines� and integration
contours for the amplification regime �	min
	
	max�. The dotted
line shows the initial contour of integration, and the dashed line
shows the contour for numerical calculation in the domain behind
the charge �

0�.
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�
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FIG. 4. Dependence of longitudinal component of electrical
field Ez �in units of q�r1

2 c−2� on 
=z−Vt �in units of c /�r1� for ruby
in the amplification regime at �p1=2�i�1.3�1012 s−1 and �
=5c�r1

−1 �other parameters of the medium are the same as in Fig. 1,
part III�.
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V. CONCLUSION

Let us note the main results obtained in this work. First of
all, based on the methods of the complex variable functions
theory, a new approach to the analysis of a moving charge
field in media with arbitrary frequency dispersion has been
developed. The general properties of integrands determining
field components have been obtained. This provides new op-
portunities for both an analytical and a numerical analysis of
moving charge fields in media with various dispersion be-
haviors.

As one of the examples of an application of the approach
developed, the field of a charge moving in a passive medium
with an arbitrary number of resonances has been considered.
The field has been presented in the form of the sum of the
“quasi-Coulomb” field, the wave field, and the “plasma
trace.” An efficient method to numerically calculate field
components has been developed.

The case of an active medium having two resonant fre-
quencies has been considered as well. It has been demon-

strated that radiation can be amplified even with a purely real
refractive index. The conditions for realizing such an effect
are nontrivial: the “lower” resonance should be active, the
“upper” one should be passive, and the charge velocity
should lie within a certain range. Numerical analysis of the
field has been carried out, taking into consideration a non-
zero imaginary part of the refractive index. Preliminary
transformation of the integration contour has been used,
which has enabled us to develop an efficient algorithm of
numerical calculation. The examined example has illustrated
a considerable amplification of VCR even at a small inver-
sion of the lower resonance.
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