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We suggest a general approach to parameter estimation using autosynchronization with some restrictions on
system dynamics. This parameter identification method can be extended to estimate parameters from a scalar
time series. Furthermore, we propose an average filter method to suppress the influence of noise on parameter
estimation. Some limits and extensions of the autosynchronization method are given as well. Several examples
are presented to illustrate all methods suggested.
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I. INTRODUCTION

Synchronization �1� as a universal concept in nonlinear
sciences has attracted much attention during the past years.
The synthesis problem has motivated an approach of using
synchronization as a parameter estimation method, called au-
tosynchronization �2�. Recently, this autosynchronization
synthesis issue has regained considerable interest within the
nonlinear science research community �cf. Refs. �3–10��.
Practical methods �3–10� have previously been suggested to
augment the dynamical equations for a pair of synchronously
coupled systems with parameter adaptation equations in
particular cases, but no general method exists thus far. In
this paper, we shall propose a general approach to
autosynchronization-based parameter estimation and analyze
the convergence of parameter estimation by a general La-
Salle’s principle �see the Appendix� which is less conserva-
tive than the typical Lyapunov’s direct method �11�.

On the other hand, as reported in Ref. �12�, the analysis of
autosynchronization needs an improvement in theory to en-
sure parameter estimation. It should be noted that the same
drawback in theoretical analysis exhibited also in many re-
cent papers �see, for example, Refs. �8–10��. However, pro-
vided that some properties of periodical or chaotic dynamics
are applied, we can in theory ensure parameter estimation, as
illustrated in Ref. �12� for the Lorenz system. In this paper,
we shall extend this idea and show that when the linear de-
pendence of system dynamics is assumed, we can estimate
parameters of general systems using autosynchronization.

Furthermore, it is not only of theoretical interest but also
of practical value to estimate parameters from only a scalar
time series because of information acquisition restriction �or
cost�. Thus far this autosynchronization synthesis issue is not
well understood, however. In this paper we also show that
under some restrictions on system dynamics, we can estimate
parameters from a scalar time series. Noise usually deterio-
rates the performance of parameter estimation and leads to
fluctuation of parameter estimation around their true values.
It is important in practice to suppress the amplitude of fluc-
tuation. However, less attention has not been given to this
point. To recover the performance of parameter estimation,

here we shall propose an average filter method. Finally, we
shall discuss some limits and extensions of the autosynchro-
nization method suggested.

II. GENERAL THEORY

We consider general “real” systems given by

ẋi = ci�x� + �
j=1

m

pjf ij�x� , �1�

where i=1,2 , . . . ,n; x= �x1 ,x2 , . . . ,xn�T�Rn is the state vec-
tor; p= �p1 , p2 , . . . , pm�T�U�Rm are unknown parameters to
be estimated and U is a bounded set. Assume s=g�x� is �
dimensional vector denoting the experimental output of the
system.

We attempt to construct a “computational model,” given
by

ẏi = ci�y� + �
j=1

m

qjf ij�y� + ui�y,s� ,

q̇j = Nj�y,s� �2�

to synchronize identically with the “real” system �1� from
time series s by finding some appropriate control signals ui
as well as parameter update rules Nj. Here y
= �y1 ,y2 , . . . ,yn� is the state vector, q= �q1 , . . . ,qn� is an esti-
mate of p, and ui�0 for all i (e.g., ui has the form ui
=−ki�g�y�−g�x�� with gain ki) and Nj �0 for all j when y
=x.

Let e=y−x and r=q−p. Then the error equation reads

ėi = ci�y� − ci�x� + �
j=1

m

pj�f ij�y� − f ij�x�� + �
j=1

m

rjf ij�y� + ui,

ṙ j = Nj . �3�

When parameter estimation is ensured �i.e., r=0�, the er-
ror system �3� becomes
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ėi = ci�y� − ci�x� + �
j=1

m

pj�f ij�y� − f ij�x�� + ui. �4�

Therefore, we have to assume that we can design the control
signals ui such that the asymptotic stability of error system
�4� is ensured; more precisely, there exists a Lyapunov func-
tion Vo�e� decreasing monotonously along the trajectories of

system �4�, namely, �V̇o�e���4��0 when e�0 and �V̇o�e���4�
=0 when e=0. Otherwise, errors of system �4� will destroy
parameter estimation.

Even when system �4� is asymptotically stable, the
asymptotic stability of system �3� in general cannot be en-
sured and we have to choose functions Nj carefully to elimi-
nate the errors caused by the differences between estimated
parameters and their true values. Differentiating the
Lyapunov function Vo�e� with respective to the error trajec-
tory �3� results in

V̇o��e���3� = V̇o��e���4� + �
j

rj�
i
� �Vo

�ei
	 f ij�y� , �5�

where the second item of the right-hand side comes from the
difference between systems �3� and �4�.

For error system �3�, we choose a Lyapunov function

V�e,r� = Vo�e� + �
j

rj
2/�2� j� , �6�

where constants � j are positive for all j.
Then differentiating V�e ,r� with respective to the error

trajectory �3� yields

V̇��e,r���3� = V̇o��e���3��
j

rjNj/� j

= V̇o��e���4� + �
j

rj
Nj

� j
+ �

i
� �Vo

�ei
	 f ij�y�� ,

�7�

where the last step has used Eq. �5�.
It follows that we can design Nj as

Nj = − � j�
i
� �Vo

�ei
	 f ij�y� �8�

such that �V̇�e ,r���3�= �V̇o�e���4�, which implies from Theorem

2 �see the Appendix� that �V̇o�e���4�=0 and thereby e=0 as t
→�, where positive constants � j determine the updating
rate.

Substituting e→0 �i.e., y→x� into Eq. �3� and noting ui
→0 when e→0, we obtain that as t→�, the remaining
equation of Eq. �3� actually reads

ėi = �
j=1

m

rjf ij�x� ,

which implies that

�
j=1

m

rjf ij�x� → 0 �otherwise e → 0 cannot be satisfied� .

It follows r→0 provided that the linear independence of
functions f i,j�x� is assumed.

To summarize the above analysis, the following theorem
is thus proved.

Theorem 1. Assume that �i� the control signals ui are de-
signed such that there exists a Lyapunov function Vo�e� de-
creasing monotonously along the trajectories of system �4�,
and �ii� functions Nj in model �2� are designed as Eq. �8�.
Then y�t�→x�t� and � j=1

m rjf ij�x�→0 for all i are globally
satisfied as t→� for systems �1� and �2� starting from arbi-
trary initial conditions. Furthermore, r→0 if the system dy-
namics is restricted such that the linear independence of
functions f i,j�x� is satisfied for all i.

We now show how to design control signals and param-
eter update rules in terms of Theorem 1 for the case when all
states are measurable. Let Fi�y ,p�=ci�y�+� j=1

m pjf ij�y�. We
assume that function Fi�x ,p� is uniformly Lipschitzian for
all i, that is, there exists a constant ��0 satisfying

�Fi�y,p� − Fi�x,p�� � � maxj�yj − xj� .

One can simply design the control signals as

ui = − k�yi − xi� ,

where k is the uniform gain. In this case, the error system �4�
actually reads

ėi = Fi�y,p� − Fi�x,p� − kei. �9�

Choosing as the usual form the Lyapunov function

Vo = �
i

�ei�2/2,

we obtain

V̇o = �
i

ei�Fi�y,p� − Fi�x,p�� − kei
2 � �n� − k��

i

ei
2.

It follows that when k�n�, the assumption �i� in Theo-
rem 1 is satisfied. Due to Vo=�i�ei�2 /2, we can design Nj =
−� j�ieif ij�y� for all j. We can conclude from Theorem 1 that
y→x and � j=1

m rjf ij�x�→0 for all i are satisfied. If we as-
sume that linear independence of functions f ij�x� is satisfied
for all i, then r→0 is satisfied.

III. EXAMPLES

To illustrate the suggested parameter estimation method,
we first consider the Lorenz system

ẋ1 = p1�x2 − x1� ,

ẋ2 = p2x1 − p3x2 − x1x3 + p4,

ẋ3 = x1x2 − p5x3, �10�

where parameters pi are unknown and all states are measur-
able. As a “computational model” we consider the following
equation:

ẏ1 = q1�y2 − y1� − k�y1 − x1� ,
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ẏ2 = q2y1 − q3y2 − y1y3 + q4 − k�y2 − x2� ,

ẏ3 = y1y2 − q5y3 − k�y3 − x3� ,

q̇1 = − �1�x2 − x1��y1 − x1� ,

q̇2 = − �2x1�y2 − x2� ,

q̇3 = �3y2�y2 − x2� ,

q̇4 = − �4�y2 − x2� ,

q̇5 = �5y3�y3 − x3� . �11�

As analyzed above, when large enough k is chosen, y
→x and

r1�x2 − x1� → 0, �12�

r2x1 − r3x2 + r4 → 0, �13�

− r5x3 → 0 �14�

are satisfied as t→�.
It is easy to see from Eq. �12� that when �x2−x1� is not

�asymptotically� zero, the linear dependence of �x2−x1� is
satisfied and thereby r1→0. Similarly, we can conclude from
Eq. �14� that when x3 is not �asymptotically� zero, r5→0 is
ensured. Therefore, if we restrict the dynamics of the Lorenz
system such that both �x2−x1� and x3 are not �asymptotically�
zero, we can then identify parameters p1 and p3 correctly.
For example, parameters p1 and p3 can be estimated cor-
rectly for chaotic or periodical Lorenz system.

Using ẋ1= p1�x2−x1� �cf. Eq. �10�� in Eq. �13� leads to

�r3/p1�ẋ1 + �r3 − r2�x1 − r4 → 0 �15�

when p1�0 �if p1=0, the Lorenz system is in stationary state
and the linear dependence of functions f ij�x� cannot be sat-
isfied. In this case we cannot identify parameters p2, p3, and
p4 correctly.�.

We assume that r3=0 is not asymptotically satisfied and
thus Eq. �15� asymptotically becomes a first-order ordinary
differential equation �ODE� whose evolution is exponentially
convergent or divergent. If we restrict the dynamics of the
Lorenz system such that the Lorenz system is not in station-
ary state and the evolution of x1 is neither exponentially con-
vergent nor exponentially divergent, then r3=0 is asymptoti-
cally achieved. Substituting r3=0 into Eq. �15� leads to
r2x1+r4→0. Similarly, when x1 is linearly dependent, r2
=r4=0 can be ensured as time approaches to infinity. In other
words, parameters p2, p3, and p4 can be identified when we
restrict the dynamics of the Lorenz system such that the Lo-
renz system is not stationary and the evolution of x1 is nei-
ther exponentially convergent nor exponentially divergent.
For example, for chaotic or periodical Lorenz systems, x1 is
neither exponentially convergent nor exponentially divergent
and thereby we can estimate parameters p2, p3, and p4 cor-
rectly.

To summarize the above analysis, when the dynamics of
Lorenz system is restricted such that functions f ij�x� in the

left-hand sides of Eqs. �12�–�14� are linearly dependent, all
parameters pi can be estimated using the “computational
model” �11� with large enough k. Figures 1�b�–1�f� show the
parameter estimation for chaotic Lorenz system, where k
=10 and �i=1 for all i �the convergence of parameter iden-
tification is improved when larger �i are chosen�.

We now treat parameter estimation when only partial
states are measurable and we consider the following Rösseler
system as an illustrating example:

ẋ1 = − x2 − x3,

ẋ2 = x1 + p1x2,

ẋ3 = p2 − p3x3 + x1x3, �16�

where pi are unknown parameters and s= �x2 ,x3�T is as-
sumed. As a computational model we consider the following
equation:

ẏ1 = − y2 − y3 + u1,

ẏ2 = y1 + q1y2 + u2,

ẏ3 = q2 − q3y3 + y1y3 + u3,

q̇1 = − �1y2�y2 − x2� ,

q̇2 = − �3�y3 − x3� ,
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FIG. 1. Parameter estimation of chaotic Lorenz system with
p1=10, p2=28, p3=1, p4=0, and p5=2.667. �a� State synchroniza-
tion errors ei versus time. �b�–�f� qi versus time.
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q̇3 = �3y3�y3 − x3� , �17�

where u1= �1−y3��y3−x3�, u2=−k1�y2−x2�, and u3=−k2�y3
−x3�.

Then the error system reads

ė1 = − e2 − y3e3,

ė2 = e1 + r1y2 − �k1 − p1�e2,

ė3 = y3e1 − �k2 − x1 + p3�e3 + r2 − r3y3,

ṙ1 = − �1y2e2,

ṙ2 = − �2e3,

ṙ3 = �3y3e3, �18�

where the derivative of the third equation used the fact
y1y3−x1x3=y3e1+x1e3.

Choosing a Lyapunov function

V = �
i

ei
2/2 + �

i

ri
2/�2�i� ,

we obtain

V̇ = − �k1 − p1�e2
2 − �k2 − x1 + p3�e3

2.

This indicates from Theorem 2 �see the Appendix� that
when large enough ki are chosen, we obtain

e2 → 0, e3 → 0, �19�

which implies

ṙi → 0, ∀ i .

Substituting Eq. �19� into Eq. �18� results in that as t
→�,

e1 + r1x2 → 0,

y3e1 + r2 − r3x3 → 0. �20�

It follows from the first equation of Eq. �20� that x2
→−e1 /r1 when r1�0. To estimate parameter p1 correctly,
we have to restrict the dynamics of the Rössler system such
that x2→−e1 /r1 cannot be satisfied. For example, for chaotic
or periodical state x2, x2→−e1 /r1 is not ensured due to ė1
→0 and ṙi→0 for all i. In this case, r1→0 and e1→0 as t
→�.

Substituting e1→0 to the second equation of Eq. �20�
yields

r2 − r3x3 → 0.

If we restrict the dynamics of the Rössler system such that
x3 is linear dependent, then we similarly obtain r2→0 and
r3→0, as illustrated in the above Lorenz example.

Figure 2 summarizes our results. It is easy to see from
Fig. 2�a� that all state synchronization errors approach to
zero asymptotically. Figure 2�b� shows that all parameters pi
can be estimated correctly.

It should be noted that under proper restrictions on system
dynamics, we can in theory ensure parameter estimation
even when the convergence of only partial state errors can be
concluded from the general LaSalle’s principle �see Theorem
2 in the Appendix�. Furthermore, it is possible to ensure
parameter estimation when only partial states of systems are
measurable, as illustrated in Fig. 2�b�. Therefore, it is non-
trivial to apply proper restrictions on system dynamics for
convergence analysis of parameter estimation.

IV. PARAMETER ESTIMATION IN THE PRESENCE OF
NOISE

The influence of noise on synchronization is an important
aspect especially for applications. Numerically “high-
quality” synchronization can be achieved by the approach
proposed. Then noise is tolerated at a level that does not take
the system out of the basin of attraction of the synchroniza-
tion manifold. However the estimated values for unknown
parameters will fluctuate around their true values when the
experimental outputs are disturbed by noise. As an illustrat-
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FIG. 2. Parameter estimation of chaotic Rössler system with
p1=0.15, p2=0.4, and p3=8.5. �a� State synchronization errors ei

versus time. �b� qi versus time.
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ing example we revisit the Lorenz system �10� and its com-
putational model �11� but assume the output x1 is disturbed
by uniformly distributed random noise with amplitude rang-
ing from −1 to 1. Figure 3�a� shows that the estimated pa-
rameters qi fluctuate around their true values. Furthermore
the amplitude of fluctuation increases if that of noise in-
creases. Hence the parameter estimation performance of de-
veloped autosynchronization methods �3–10� deteriorates
dramatically in the presence of noise with large amplitude.

To suppress the estimation fluctuation caused by the
noise, here we suggest an average filter,

q̂i�kT� = �1/k��
i=1

k

qi�iT� , �21�

where T denotes the sampling time. It is clear to see from
Fig. 3�b� that unknown parameters pi can be estimated with
high accuracy even in the presence of large random noise.

V. PARAMETER ESTIMATION FROM A SCALAR TIME
SERIES

Theorem 1 ensures the global attraction of y=x, provided
that each partial derivative �Vo /�ei is known. For the usual
form Vo��i�ei�2 /2, the least requirement is that xi be known
if the equation for ẋi contains parameters that one seeks to
estimate. If only partial states of the system �1� are measur-
able, then only the parameters that involved in the evolution
equations of these measurable states can be estimated glo-
bally �staring from arbitrary initial estimates�. However it is
possible to estimate model parameters from a scale time se-
ries if some restrictions on system dynamics are added such
that system �1� can be transformed into the well-known
Brunovsky’s canonical form �13�. As an illustrating example,
we consider a more general system, given by

ẋ = f�x,p�, y = ��x� , �22�

where x�RN is the state vector, f= �f1 , . . . , fN�T is a known
vector-field function, and y�R denotes a scalar experimen-
tal output time series. We assume that f and � are sufficiently
smooth such that the output is Nth order continuously differ-
entiable.

Let

H�x� = �y, ẏ, . . . ,y�N−1��T = „��x�,Lf��x�, . . . ,Lf
N−1��x�…T,

�23�

where y�i� is the ith order differential of y, and L denotes the
Lie derivative operator defined by

Lf
j��x� = �

i=1

N
��Lf

j−1��
�xi

f i�x� .

We can conclude from the well-known implicit function
theorem that if �H /�x is nonsingular and continuous
everywhere on a certain open set, the system �22� can be
transformed into the well-known Brunovsky’s canonical
form �13�

żi = zi+1, 1 � i � n − 1,

żn = g�c,z1, . . . ,zn� , �24�

where z1=y and c is a function of p.
If we assume further that g is a linear function of the

parameters c and is linear independent, then, in terms of
Theorem 1, we can identify parameter vector c of system
�24� and therefore can identify parameter vector p of system
�22� from the scale time series y because zi+1=y�i� can be
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FIG. 3. Parameter estimation in the presence of measure noise.
�a� Estimated parameters fluctuate around their true values p1=10,
p2=28, p3=1, p4=0, and p5=2.667 in the presence of noise. �b�
Parameter estimation after average filtering.
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observed from y using differential estimators. To illustrate
this method, we analyze the Rössler system

ẋ1 = − x2 − x3,

ẋ2 = x1 + ax2,

ẋ3 = b + x3�x1 − c� ,

y = x2, �25�

where parameters a, b, and c are unknown. Let z1=y, z2= ẏ,
and z3= ÿ. Then system �25� can be transformed into

ż1 = z2,

ż2 = z3,

ż3 = − z2 + z1z2 + z2z3 + p1 + p2�z1 + z3� + p3z2 + p4z1z2

+ p5�z1
2 + z2

2 + z1z3 − z3� , �26�

where p1=−b, p2=−c, p3=ac, p4=a2, and p5=−a.
As a computational model we consider the following

equation:

v̇1 = v2 + u1,

v̇2 = v3 + u2,

v̇3 = − v2 + v1v2 + v2v3 + q1 + q2�v1 + v3�

+ q3v2 + q4v1v2 + q5�v1
2 + v2

2 + v1v3 − v3� + u3

� − v2 + v1v2 + v2v3 + u3 + �
i=1

5

qi	i�v� ,

q̇i = Ni, i = 1, . . . ,5, �27�

with

ui = − k�vi − ŷ�i−1�� , �28�

Ni = − �i	i�v��v3 − ŷ�2�� , �29�

where ŷ�i−1� denotes the estimation of y�i−1� by using differ-
ential estimation techniques.

It is easy to see that for chaotic or periodical Rösslers, all
pi of system �26� can be estimated correctly when large
enough k is chosen. It follows that the parameters a�=−p5�,
b= �−p1�, and c�=−p2� can then be estimated, cf. Fig. 4.

VI. DISCUSSIONS AND EXTENSIONS

The main assumption of the autosynchronization method,
that one can know the system structure, in practice is really a
restriction. We have validated that the parameter estimation
performance will deteriorate dramatically if we cannot know
the system structure accurately. However, this drawback can
be relaxed by using our recently developed system structure
identification method �14�. Detailed analysis will be reported
in a later paper.

Another restriction is associated with the assumption that
one can design the control signals ui such that system �4� is
globally and/or locally asymptotically stable, which in prac-
tice cannot always be satisfied using the general LaSalle’s
principle. However, this restriction can be relaxed a little by
the use of the conditional Lyapunov exponents �15� �or trans-
verse Lyapunov exponents �16�� as the least conservative cri-
terion. Local synchronization is ensured when all conditional
Lyapunov exponents are less than zero.

Furthermore, when f in system �22� is a nonlinear func-
tion of the parameters p, it becomes very difficult to ensure
parameter estimation globally. However, it is still possible to
design proper parameter update rules using local lineariza-
tion around the true values for ensuring local parameter es-
timation.

VII. CONCLUSIONS

We systematically investigated autosynchronization as an
approach to parameter estimation and gave the rules to de-
sign control signals and parameter update rules for general
systems. We showed that autosynchronization as an effective
method can be applied to parameter identification if proper
restrictions on system dynamics are added. We also argue
that under some restrictions on the system dynamics, we can
estimate parameters from a scalar time series. Furthermore,
we suggested an average filter method to suppress the influ-
ence of noise on parameter estimation. Some limits and ex-
tensions of the autosynchronization method suggested are
discussed as well. It should be stressed that many interesting
problems can be transformed into an autosynchronization
synthesis issue. Our recent work �17�, for example, has
shown that network connectivity can be identified using au-
tosynchronization methods. Therefore, our results are non-
trivial and provide a guidance for parameter identification
which is crucial for various engineering applications.
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FIG. 4. Parameter estimation from a scalar time series. The
computational model can identify parameters a=0.15, b=0.4, and
c=8.5 of Rössler system due to a=−p5, b=−p1, and c=−p2.

DONGCHUAN YU AND ULRICH PARLITZ PHYSICAL REVIEW E 77, 066221 �2008�

066221-6



ACKNOWLEDGMENTS

This work was partially supported by the Chinese Na-
tional Natural Science Foundation �Grant No. 10602026 and
by the Swiss National Science Foundation �Grant No.
200021–112081.

APPENDIX: GENERAL LASALLE’S PRINCIPLE

Lyapunov’s direct method �cf. Ref. �11�� is widely used
for synchronization synthesis in the literature and gives ana-
lytical criteria for local or global synchronization by con-
structing a Lyapunov function decreasing monotonically
along synchronization error system trajectories �that is, the
Lyapunov function has strictly negative definite differential
with respective to the synchronization error system trajecto-
ries�. However, for the autosynchronization synthesis prob-
lem, the time differential of the Lypapunov function does not
include parameter estimation errors and thereby is only nega-
tive semidefinite rather than being negative definite �12�. In
this case, the classical Lyapunov’s direct method cannot be
applied and instead we can use a general LaSalle’s principle
�18� admitting that Lyapunov functions have only negative
semidefinite different for general time-varying systems. This
general LaSalle’s principle �18� can be described as follows:

Theorem 2. Consider general nonlinear time-varying sys-
tems, given by

ẋ = F�x,t� , �A1�

where F is locally Lipschitz continuous in x, uniformly in t,
in a ball of radius r defined by Br= : �x : 
x
�r�. Assume that
for x�Br, there exists a function v�x , t� such that �i� for
functions 
1 and 
2 of class K,


1�
x
� � v�x,t� � 
2�
x
� ,

and �ii� for some nonnegative function w�x�,

v̇�x,t� =
�v
�t

+
�v
�x

F�x,t� � − w�x� � 0.

Then for all 
x�t0�
�
2
−1(
1�r�), the trajectories x� � are

bounded and

limt→� w„x�t�… = 0.

It should be noted that the classical LaSalle’s invariance
principle �19� is restricted in applications because it holds
only for time-invariant and periodical systems and cannot
directly be applied for chaos synchronization synthesis.
However, the general LaSalle’s principle �Theorem 2� can be
applied to general time-varying systems �including chaotic
systems�.
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