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We consider the logistic map wherein the nonlinearity parameter is periodically modulated. For low periods,
there is multistability, namely two or more distinct dynamical attractors coexist. The case of period 2 is treated
in detail, and it is shown how an extension of the kneading theory for one-dimensional maps can be applied in
order to analyze the origin of bistability, and to demarcate the principal regions of bistability in the phase
space. When the period of the modulation is increased—and here we choose periods which are the Fibonacci
numbers—the measure of multistable regions decreases. The limit of quasiperiodic driving is approached in
two different ways, by increasing the period and keeping the drive dichotomous, or by increasing the period
and varying the modulation sinusoidally. In the former case, we find that multistability persists in small regions
of the phase space, while in the latter, there is no evidence of multistability but strange nonchaotic attractors are
created.
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I. INTRODUCTION

Parametric modulation has been an important technique in
nonlinear control strategies, and has been studied extensively
in the past few decades �1,2�. Periodic, aperiodic, and quasi-
periodic variation of the parameters of typical nonlinear sys-
tems have been shown to result in bifurcations and dynami-
cal transitions �3�. In driven dissipative systems, the
dynamics is asymptotically on attractors on which the mo-
tion can be chaotic or nonchaotic. The effect of quasiperiodic
driving on nonlinear dynamical systems has been studied in
detail �4–7�, and it is known that the dynamics can be on
nonchaotic attractors having a fractal geometry.

Another important phenomena which has been frequently
observed in the parametric modulated system, is that of bi-
stability �or multistability� where two �or several� attractors
can simultaneously coexist in the phase space at a given set
of parameter values. Autonomous systems with multiple
steady states are well known, and examples can be drawn
from nonlinear optics �8�, nonlinear electronic circuits �9�,
ecological �10� or biological systems �11–13�. Multistability
is an advantage—and indeed a desirable feature—in systems
with potential applications to pattern recognition or in
memory storage devices �14,15�. On the other hand, in situ-
ations where it is required that a system respond reliably in a
specific dynamical state multistability can be undesirable:
From a practical point of view multistability can be disad-
vantageous since it often severely delimits the operating re-
gimes of those systems �16�.

Modulation can play an effective role in inducing �17� or
destroying multistability �18�. Multiple coexisting periodic
attractors—the phenomenon of generalized multistability—
has been observed experimentally in the CO2 laser �19�. In
the context of biology, switching between stable steady states
in response to external stimuli is known to play a crucial role
in cell signaling �11�, cell differentiation �12� or gene regu-
lation �13�. Modulation can arise through coupling to internal
circadian or ultradian oscillators, and thus the study of how
multistability arises and vanishes in modulated nonlinear
systems can provide a framework for understanding the op-
eration of natural biological switches �20�.

The model that we study here is a modulated logistic
mapping �3� where the nonlinearity parameter varies with
iteration step, namely

xn+1 = rnxn�1 − xn� . �1�

Our motivation is to examine the occurrence of multistabil-
ity, and to study its dependence on the period of modulation.
To that end we consider two different sequences of periodic
modulation with the periods chosen to be the Fibonacci num-
bers, Fk=Fk−1+Fk−2 , F−1=0, F0=1.

The first instance is that of dichotomous modulation: rn
can take one of two values, r+=r+� or r−=r−�, and the
sequence of the rn’s has period Fk �21�. In the second
case, the modulation is taken to be sinusoidal, rn=r
+� cos 2�n�k, with �k=Fk−1 /Fk. As k→�, the modulation
becomes quasiperiodic.

Both forms are identical for k=2, namely the case of
period-2 modulation when rn=r+ �−1�n� �22� and this case is
examined in some detail. The conditions for the multistabil-
ity and the corresponding regions in phase space can be ana-
lyzed via an extension of the kneading theory for one-
dimensional �1D� maps �23�. Complete knowledge of the
occurrence of periodic windows and their fundamental struc-
ture in parameter space is important from the point of view
of control as well as experimental design �24� and we show
how this can be done in the present instance by extending
and adapting the analysis introduced by Metropolis, Stein,
and Stein �25�. This analysis �26� is presented in Sec. II of
the paper.

We consider the case of higher period drives in Sec. III,
and see that bistable regions continue to exist, though with
varying extent in the phase space. The boundaries of these
regions can be deduced in a fairly straightforward manner,
keeping in mind that the system is effectively of dimension
Fk.

The quasiperiodic limit is considered in Sec. IV. As is
known from a number of previous studies, for sinusoidal
driving, the quasiperiodically driven logistic map supports
strange nonchaotic dynamics �5�. In this case there is no
multistability. On the other hand, we find that multistability
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persists in the case of the dichotomous drive. The paper con-
cludes with a summary and discussion in Sec. V.

II. PERIODIC MODULATION OF THE LOGISTIC MAP

The modulated systems that we consider here can be writ-
ten in the general form

xn+1 = �r + �g��n��xn�1 − xn� , �2�

�n+1 = �n + �k, mod 1, �3�

where �k=Fk−1 /Fk, the ratio of successive Fibonacci num-
bers, is a rational number. In the limit k→� , �k→ ��5
−1� /2, the inverse golden mean ratio. For definiteness we
take the initial “phase” �0=0.

For the case of sinusoidal modulation we take

g��n� = cos�2��n� , �4�

while the function

g��n� = 1 – 2���n − �� , �5�

gives the periodic dichotomous modulation �where ��¯� is
the Heaviside function�.

Period 1 is “un”modulation: When k=1, �1=1 and g���
=1 is constant for all n. When k=2, both forms of the forcing
are effectively identical and the function g can be written as
the sequence

�g� = �+ 1,− 1, + 1,− 1, . . .� .

This case can be reduced to the study of a combination of
two separate mappings, as we discuss below.

Period-2 forcing. The case of period-2 modulation

xn+1 = �r + � cos �n�xn�1 − xn� �6�

can be treated as a combination of the maps �22�

f��xn� � �r � ��xn�1 − xn� , �7�

with

xn+1 = f+�xn�, xn+2 = f−�xn+1� . �8�

The maps f2	 and f2
, which are obtained by alternate appli-
cations of the maps f+ and f−,

f2	 = f− � f+, f2
 = f+ � f− �9�

are topologically conjugate since f+ and f− are locally invert-
ible �22�

f2	 = f+
−1 � f2
 � f+ �10�

and

f2
 = f−
−1 � f2	 � f−. �11�

This implies that the kneading sequences of f2	 and f2
 are
identical �27�.

For nonzero �, the attractors of f2	 �or f2
� are not
complementary, and the possibility of bistability arises �22�
�for period 2 there can be at maximum two coexisting attrac-
tors�.

To study the global nature of dynamics, we obtain the
phase diagram for the system as a function of the parameters
r and nonzero �. We examine the behavior of typical orbits
of Eq. �6� and Eq. �7� as a function of these parameters.

To keep the dynamics globally bounded, we rescale Eq.
�6� �and similarly Eq. �7��,

xn+1 = �r + �4 − r��� cos �n�xn�1 − xn� , �12�

in the parameter regime 0����1. There can be bounded
motion for ���1, but in the present study we do not con-
sider this region here, as also the case of negative ��. Figure
1 shows the regions of stable periodic and chaotic motion in
the �r ,��� plane. This is done by computing the nontrivial
Lyapunov exponent given by

 = lim
N→�

1

N	
i=1

N

ln
 �xi+1

�xi

 , �13�

which is positive for chaotic motion and negative for peri-
odic motion.

As in our previous work �26�, here also we observe re-
gions having the characteristic and canonical shape of “swal-
lows” or “shrimps.” This has also been observed before for a
class of two-parameter maps �24,28,29�. These stable regions
occur around superstable orbits �26,29�, which we will dis-
cuss in the next section.

Along the axis ��=0, the system is merely the logistic
map, x→rx�1−x�� f�x�. Because the modulation has period
2, for nonzero �� the odd n orbits of the logistic map become
period-2n orbits.

�1� Bistability with period-2 forcing. The polynomial
f2	�x� is quartic, and there can therefore be 0, 2 or 4 fixed
points. We study the dynamics by computing the Lyapunov
exponents for different initial conditions and as shown in
Fig. 2�a�, for appropriate values of �� there can be bistability,
namely two distinct attractors with different Lyapunov expo-
nents.
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FIG. 1. Dynamics in the r ,�� plane with period-2 modulation.
The black regions correspond to the periodic dynamics and the
white regions correspond to the chaotic dynamics. For a particular
r, with ���1, there could be stable dynamical behavior, but those
regions are not considered in the present study.
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For low ��, the system has two fixed points for small r
and all trajectories are attracted to the basin of the stable
attractor x2

� �the subscript is an ordinal index, counting out-
wards from the origin�. At r=rt, there is a tangent bifurcation
creating the fixed point x3

� which is unstable and x4
� which is

stable. The two stable attractors x2
� and x4

� are not comple-
mentary �22�; the dynamics is effectively governed by the
combination mapping, f2	 which has three critical points,
xa= 1

2 and

xb,c =
1

2
�

�1 − 2�r − ��−1

2
, �14�

given by the condition f2	� �x�=0. For a general first-order
difference equation, the maximum number of coexisting at-
tractors is equal to the number of critical points �30�. Singer
�27,31� further showed that a sufficient condition for these
attractors to be stable is that the Schwarzian derivative

Sf�x� =
f��x�
f��x�

−
3

2
� f��x�

f��x�
�2

�15�

is negative. This condition holds for f2	, and thus it turns out
that there are at most two stable attractors �22,30�. The criti-
cal points xb and xc are symmetric about xa, and the bound-
ing boxes about the unstable fixed point x3

� is shown in Fig.
2�b�. If points that start inside a given box stay within the
box, there can clearly be two coexisting attractors or bista-
bility. The dynamics can be periodic or chaotic on the two
attractors.

Bistability ends at r=rc when the attractors merge in a
transfer crisis �26,32,33�; chaotic trajectories of one of the

attractors escape from its bounding box and intrude into the
basin of the other �see Fig. 2�a��. Shown in Fig. 3�a� is the
curve b1 which is a line of tangent bifurcations that divides
parameter space into regions of 2 or 4 fixed points of f2	�x�.
In the region A1, the condition for bistability is that the fol-
lowing conditions hold simultaneously:

f2	
2 �xa� � x3

�, f2	
2 �xb� � x3

�. �16�

Similarly there can be higher order bistable regions. For
f2	

2 �x�, there can be regions of four fixed points, two stable
and two unstable. The curve b2 divides parameter space into
regions of four and eight fixed point regions of f2	

2 �x�. Fol-
lowing the argument given above for identifying the region
A1, the curves cl or cr that define the crises of the left and
right attractors, respectively, bound the region of bistability
denoted A2 in Fig. 3�b�. Higher iterates give rise to still more
regions of bistability although these regions shrink in area
and become less observable.

In the pth iterate of the map, there are p tangent bifurca-
tions simultaneously and two attractors continue to coexist as
long as the local critical points of the map are “boxable”
about newly created p unstable fixed points �cf. Table I�.
Since the unstable point x3

� �which is the third fixed point
from the origin� is common to every iterate of the map, the
bistability region arising from the pth composition of the
map, f2	

p �x�, is given via the conditions
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FIG. 2. �Color online� �a� The variation of Lyapunov exponents
for different initial conditions as a function of the nonlinearity pa-
rameter r along the line ��=0.386 944. At rt3.471, there is a
tangent bifurcation that results in the creation of two coexisting
attractors. Bistability persists until the crisis at rc3.576 when tra-
jectories of the chaotic attractor intrude into the basin of periodic
attractor. �b� Return map of f2	�x� at r=3.5 and ��=0.25. Trajecto-
ries that start within one of the boxes clearly remain within that
box: Thus there is bistability.
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FIG. 3. �a� Boundaries of bistability regions A1 and A2 �as
shown in �b��. The curve b1 divides the parameter space into re-
gions of 2 and 4 fixed-point regions of f2	�x�. The crisis line cl of
the left-hand attractor meets with b1 and the region between the
inside of these curves gives the bistability region. Similarly, the b2

line dividing 4 and 8 fixed point regions of f2	
2 �x� intersect with

crisis curve cl and cr of the left-hand and right-hand attractors to
give regions of bistability arising from f2	

2 �x�. �b� Bistability re-
gions �black� in the �r ,��� plane. A1, A2, and A3 corresponds to
regions of coexisting attractors contributing from f2	�x�, f2	

2 �x�,
f2	
3 �x�, and f2	

4 �x�, respectively.
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f2	
2p�xcl� � x3

�, f2	
2p�xcr� � x3

�, �17�

where xcl and xcr are left-hand and right-hand critical points
about x3

�.
�2� One-dimensional analysis. Although at alternate time

steps the dynamics evolves according to the mappings f+ and
f−, respectively, it is possible to extend the algebraic analysis
of the itineraries of superstable orbits as introduced by Me-
tropolis, Stein, and Stein �25�. The extended MSS algebra �or
U sequences� gives a total description of the organization of
the periodic orbits in the parameter space �26� by attaching
subscripts plus �+� and minus �−� �depending on which of
the mappings f� is used� to the symbols R, L, and C, which
denote �25� whether the map iterate is to the right or left of
the center �the map maximum�.

A periodic orbit of even period k is determined by the
condition

fs1¯sk

�k� �x� � fsk
„fs1¯sk−1

�k−1� �x�… = x , �18�

where s1s2¯sk is an alternating sequence of plus and minus.
Many of these are extensions of even period orbits which
exist in the unmodulated logistic map, namely for ��=0, and
are stable when

� = 
�
i=1

k

fsi
� �xi�
 � 1. �19�

Superstable orbits, those where the critical point of either f−
or f+ belong to the orbit, have valid itineraries that are given
by extending the MSS sequences �25�. The condition for
superstability is met along a line �namely codimension 1� in
the �r−��� parameter plane: These are denoted Mj

k in Fig. 4,
the subscript j indexing the several different such orbits that
can occur. Doubly superstable �DSS� orbits occur at points in
the parameter plane since two conditions—that the critical

points of both f+ and f− are elements of the orbit—must be
met. One such point is indicated.

Odd period orbits do not occur in this system. Consider
the superstable period-3 orbit which has the itinerary CRL
in the unmodulated logistic map. This gives rise to two

different period-6 orbits, M̂1
6�C−R+L−R+R−L+ and M̂2

6

�C−R+L−L+R−L+ in the present case.
The period-6 orbits in the logistic map, which has

itineraries CRLR3 and CRL2R2, here becomes M1
6

�C+R−L+R−R+R− and M2
6�C+R−L+L−R+R−, respectively.

TABLE I. Characterization of bistable regions for period-2 modulation.

Iterates p Unstable fixed point Number of bistable region Boundary

1 x3
� 1 in 4 fixed point region �i� Boundary of regions of 2 and 4 fixed points

�ii� cl=x3
�− f2	

2 �xcl�=0 a

�iii� ��=0

2 x3
� ,x7

� 1 in 8 fixed point region �i� Boundary of regions of 4 and 8 fixed points

�ii� cl=x3
�− f2	

4 �xcl�=0

�iii� cr= f2	
4 �xcr�−x3

�=0 b

3 x3
� ,x7

� ,x13
� 2 in 14 fixed point region �i� Boundary of regions of 8 and 14 fixed points

�ii� cl=x3
�− f2	

6 �xcl�=0

�iii� cr= f2	
6 �xcr�−x3

�=0

4 x3
� ,x7

� ,x11
� ,x15

� 2 in 16 fixed point region �i� Boundary of regions of 8 and 16 fixed points

�ii� cl=x3
�− f2	

8 �xcl�=0

�iii� cr= f2	
8 �xcr�−x3

�=0

x3
� ,x7

� ,x13
� ,x23

� 1 in 24 fixed point region �i� Boundary of regions of 16 and 24 fixed points

�ii� cl=x3
�− f2	

8 �xcl�=0

�iii� cr= f2	
8 �xcr�−x3

�=0

acl=Crisis curve of attractor to the left of x3
�.

bcr=Crisis curve of attractor to the right of x3
�.
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FIG. 4. Lines of the superstable orbits in parameter space. Only
even periodic orbits are present: Some of these have been described
in the text and in Tables II–IV. The MSS superstable orbits are
denoted as Mk, k being the even period. Subscripts denote the dif-
ferent itineraries of the same period. Period-6 superstable MSS line
M6 are shown and those corresponding to other periodic orbits
�given in the tables� are not shown here. The non-MSS superstable
orbits, which are not allowed from the kneading theory for unimo-
dal maps, are denoted as Nk. J�

k orbits connect the critical points of
the maps f+ and f− in k steps. The intersection of two such lines
gives the DSS orbit. Here D6 shows the period-6 DSS orbit.
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When these two intersect, this gives the doubly superstable
period-6 orbit with the itinerary

D6 � C+R−L+C−R+R−. �20�

Periodic orbits that start from the ��=0 line and continue for
higher �� values can be classified with the extended MSS
algebra, and the corresponding U sequences are listed in
Tables II and Table III. There are also the so-called “non-
MSS” periodic orbits �26�: These do not continue onto the
��=0 line and can be seen in Fig. 1. As discussed in other
similar modulated systems, such itineraries evolve out of
doubly superstable orbits; an example of the period-6 case
being

N1
6 � L+R−L+C−R+R−, � C−R+R−L+R−L+, �21�

N2
6 � R+R−L+C−R+R−, � C−R+R−R+R−L+. �22�

Note that both these would be forbidden in a single unimodal
map �in MSS notation, they are R2LRL and R4L�.

The superstable orbits in the parameter space �both the
MSS and non-MSS ones listed in Tables II–IV� form the
skeleton about which the dynamical behavior in this system
is organized as can be seen in Fig. 4. Similar analysis is
possible for higher period dichotomous modulation, and we
discuss this in the next section.

III. HIGHER PERIOD MODULATION

For higher periods, the two different forms of modulation
that we have considered give rise to distinct dynamical sys-
tems. The period-3 dichotomous forced map is

xn+3 = f+�f−„f+�xn�…� �23�

while the sinusoidal case becomes

xn+1 = �r + ��xn�1 − xn� ,

xn+2 = �r − �/2�xn+1�1 − xn+1� ,

xn+3 = �r − �/2�xn+2�1 − xn+2� , �24�

so that over a period, the modulation averages to zero. We
have studied the cases k=3,4 ,5 explicitly, namely periods 3,
5, 8, and in the next section, we consider the limit k→�.
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FIG. 5. �Color online� Regions of coexistence for period-3
�dashed line� and period-5 �solid� modulation for �a� dichotomous
drive of map compositions f3
 and f5
, and �b� sinusoidal drive. In
both cases, bistability is observed but for f3
 and f5
, tristability is
observed.

TABLE II. Extended MSS sequences for periodic �with period
�11� orbits starting from ��=0 line, between r=3.569 946. . . and
r=3.67. . . and then moving up toward the right-hand side in the
parameter space for higher �� values.

Period k Itinerary Notation

2 C−R+ M̃1
2

4 C−R+L−R+ M̃1
4

8 C−R+L−R+R−R+L−R+ M̃1
8

10 C−R+L−R+R−R+L−R+L−R+ M̃1
10

6 C−R+L−R+R−R+ M̃1
6

8 C−R+L−R+R−R+R−R+ M̃2
8

10 C−R+L−R+R−R+R−R+R−R+ M̃2
10

TABLE III. Extended MSS sequences for periodic �with period
�11� orbits starting from ��=0 line, between r=3.569 946. . . and
r=3.67. . . and then moving up toward the left-hand side in the
parameter space for higher �� values.

Period k Itinerary Notation

2 C+R− M1
2

4 C+R−L+R− M1
4

8 C+R−L+R−R+R−L+R− M1
8

10 C+R−L+R−R+R−L+R−L+R− M1
10

6 C+R−L+R−R+R− M1
6

8 C+R−L+R−R+R−R+R− M2
8

10 C+R−L+R−R+R−R+R−R+R− M2
10

TABLE IV. Notation describing the lines in parameter space.
The subscripts on C, R, and L indicate which map, f� determines
the dynamics. Mk denotes MSS superstable period-k orbits. J�

k or-
bits connects the critical points in the two maps �f�� and vice versa
in k steps. Nk denotes non-MSS superstable period-k orbits.

Itinerary Orbit equation

J+
3 C+R−L+C− f+�f−(f+� 1

2 �)�= 1
2

J−
3 C−R+R−C+ f−�f+(f−� 1

2 �)�= 1
2

Nj
6 C−R+R−L+R−L+�j=1� f+(f−�f+(f−�f+(f−� 1

2 �)�)�)= 1
2

C−R+R−R+R−L+�j=2�
Mj

6 C+R−L+R−R+R−�j=1� f+(f−�f+(f−�f+(f−� 1
2 �)�)�)= 1

2

C+R−L+L−R+R−�j=2�
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For the dichotomous modulation, the sign sequences we
consider are constructed via concatenation, so that the com-
posite maps are, for example,

f3	 = f2	 � f− � f− � f+ � f−,

f3
 = f2
 � f+ � f+ � f− � f+, �25�

and

f5	 = f3	 � f2	 � f− � f+ � f− � f− � f+,

f5
 = f3
 � f2
 � f+ � f− � f+ � f+ � f−, �26�

respectively. The higher period-m maps fm	 �fm
� can be
constructed similarly. For the periods m=Fk�2, fm	 and fm


are not topologically conjugate and the governing dynamics
are different.

Period-3 modulation stabilizes the period-3 orbit of the
logistic map and its harmonics. This gives rise to a large
region of stable period-3 dynamics in parameter space along
with its harmonics. In a manner analogous to the period-2
case, tangent bifurcations create an unstable fixed point
about which the local maxima and minima are boxable, and
multistability results with three coexisting attractors.

Extending this analysis, it can be seen that bistablity for
period-m forcing arises when there are tangent bifurcations
and the local critical points are boxable about the newly cre-
ated unstable fixed points. In general, the multistability re-
gions of a map fm with period-m forcing and its pth compo-
sition satisfy the following conditions:

fm
2p�xcl� � x�, fm

2p�xcr� � x�, �27�

where x� is the nearest unstable point from the origin about
which the left-hand and right-hand critical points �xcl ,xcr� are
boxable. The regions of multistability in the parameter plane

are bounded by the corresponding iterates of the fixed points
of fm and the transfer crisis loci, as discussed in the case of
period 2 above; see Fig. 5.

In general, the area of regions in the parameter plane that
support multistability decreases with the period of the modu-
lation, although the variation is not necessarily monotonic.
Accurate estimates are difficult to derive since the number of
regions increases with the period while their areas decrease
with the order.

Interestingly, however, even in the limit of large Fi-
bonacci periods, multistability persists for the dichotomous
modulation. We discuss this case below.

IV. QUASIPERIODIC MODULATION

Does bistability �or multistabilty� persist in the limit of
aperiodic modulation? In order to address this question, we
consider the limit k→� when the rotation, Eq. �3�, becomes
irrational. As a consequence, the modulated nonlinearity, 	n,
becomes aperiodic, and all periodic orbits in the system are
destroyed.

Quasiperiodically driven logistic mappings have been
studied in considerable detail in earlier work �5� and it is
well known that for the case of sinusoidal modulation,
strange nonchaotic attractors �SNA� can be created in a mea-
surable region of the parameter space: The motion has non-
positive largest Lyapunov exponent although the attractor is
geometrically fractal �4–7�. In this system there is no evi-
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FIG. 6. Dynamical behavior in the limit of quasiperiodic forcing
as k→� for �a� dichotomous drive of map fk
 and �b� sinusoidal
drive. The black �white� regions corresponds to stable nonchaotic
�chaotic� dynamics. For a sinusoidal drive, strange nonchaotic at-
tractors are formed at the boundaries between regular and chaotic
motion.
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FIG. 7. �Color online� �a� Region of coexistence of attractors in
the quasiperiodic limit for dichotomously driven map fk
 �shown
inside the box�. �b� Variation of Lyapunov exponents  with r for
characteristic value of ��, here taken to be 0.390 592. �c� The
coexisting nonchaotic attractors at �r=3.19,��=0.390 592�. The
trajectories of the attractors have =−0.246 095 �black� and
=−0.014 128 �red �dark gray��, respectively.
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dence for the occurrence of bistability �or of multistability�.
The situation appears to be different for the case of di-

chotomous modulation. Shown in Fig. 6 is a characterization
of the dynamics as a function of the parameters. As can be
seen in Fig. 7, one �fairly large� region of multistability per-
sists for fk
. �Similarly, the complementary mapping, fk	 also
has multistability regions but this is not shown here.� How-
ever, perhaps owing to the dichotomous nature of the modu-
lation, the dynamics is either chaotic or regular, with no evi-
dence of the strange nonchaotic dynamics �5� that is so
characteristic of other quasiperiodically driven dynamical
systems.

When the forcing is sinusoidal, multistability vanishes
and numerous studies have established that there can be
strange nonchaotic attractors �SNAs� near the boundaries of
chaotic and nonchaotic regions �5�. Although multistability
has been reported in systems where the motion is on SNAs
�34�, these have been restricted to coupled systems. Multi-
stability has also been reported in the quasiperiodically
forced circle map �35�.

Here the regions of coexisting attractors also occur in
proximity to the boundary between chaotic and nonchaotic
dynamics. The coexisting attractors can either be both non-
chaotic or one can be chaotic and one nonchaotic; see Fig. 7.

V. DISCUSSION AND SUMMARY

The logistic map is one of the simplest dynamical models
within which one can explore the diverse phenomena that
occur in nonlinear systems. Most of the dynamical phenom-

ena is characteristic of a wider class of nonlinear systems.
Parametric modulation of the parameters gives rise to new

and interesting dynamical behavior, and here we have seen
the manner in which multistability arises with periodic
modulation of arbitrarily long periods. For the case of period
2, we have given a complete characterization of the manner
in which the regions of multistability are organized. These
have a complicated and hierarchical structure. We have
found the conditions for multistability analytically, and have
identified the �parameter� boundaries of such regions. The
origins of different multistable regions can be identified;
such knowledge could be useful in targeting different basins
of attraction to obtain a specific dynamical behavior. Further,
we showed that the organization of periodic orbits can be
understood via an extension of the results of Metropolis,
Stein, and Stein �25�; this scheme helps in rationalizing the
different periodic orbits that can arise in such periodically
driven systems.

Even with quasiperiodic driving, multistability persists for
dichotomous modulation. While this is probably peculiar to
the specific form of the drive that we have chosen, the pos-
sibility that there can be multistability in other quasiperiodi-
cally driven dynamical systems cannot be discounted. It will
be interesting to explore whether other dynamical systems
share these features.
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