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We present a simple model to explain the transition from oscillatory to smooth crack propagation in brittle
metallic glasses. We demonstrate that the smooth fracture propagation that is characteristic for higher tempera-
ture or higher crack opening velocities �for type 1 crack propagation� becomes unstable and oscillatory behav-
ior is being observed. The characteristic feature size of the crack propagation may be at the nanometer scale
and grows as the opening velocity decreases.
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Understanding crack propagation in materials and glasses
in particular constitutes an interesting and very challenging
problem. Glasses represent a good testing material for a
theory of fracture because of the absence of microstructures,
such as grain boundaries, elastic anisotropy, and lattice dis-
locations, which complicate the analysis of crystalline mate-
rials. Metallic glasses are particularly interesting, since they
can be ductile as well as brittle, while most oxide glasses are
brittle. Even when metallic glasses are macroscopically
brittle, at the atomic scale their behavior is still controlled by
viscoelasticity, while oxide glasses are atomically brittle.

A minimal model to describe oscillatory fracture propaga-
tion at the mesoscopic scale was proposed by Blumenfeld
�1�. In Blumenfeld’s model �1� the velocity of a crack oscil-
lates from some minimum �nonzero� to a maximum value for
an oscillatory behavior and is constant for a steady state case.
Velocity oscillations in rapid fracture in thin brittle gels were
recently observed by Livne et al. �2�. Models of crack propa-
gation were recently proposed by several groups �3–8�.
However, none of these models address the oscillatory crack
propagation that creates a nanoscale periodic morphology at
the atomistic scale. Such morphology was recently discov-
ered on the fracture surface of a metallic glass �9�. To initiate
fracture, a small seed crack was introduced at the edge of the
glassy alloy, and was stretched by applying a uniform dis-
placement at its vertical boundaries with moving speed of
0.01 mm /min. The characteristic feature size observed var-
ied from 30 to approximately 200 nm. We propose a simple
model to describe this oscillatory behavior based on the non-
linear response of the viscoelastic media.

The periodic fracture patterns can be created due to non-
continuous, possibly oscillatory �jerky� behavior of the crack
tip. Here we present a simple model that describes oscilla-
tory �jerky� crack propagation in metallic glasses and ad-
dresses crack propagation at the nanoscale. Our model char-
acterizes time dependence of crack propagation and accounts
for the tip dynamics in response to external uniform driving
with a constant velocity. While we do not elaborate on the
spatial structure of crack propagation, we demonstrate that
the periodicity in crack propagation is strongly correlated
with the ratio of the elastic-to-viscous properties and provide
a path for experimental confirmation of our results.

We consider crack propagation under a tensile stress, the
so-called mode one fracture. Until the applied stress reaches

a critical value the system responds elastically. Once the
critical value is exceeded the crack starts to propagate. We
describe the motion of an infinitesimally small volume of
material in the vicinity of the tip. As the tip moves, it de-
forms the vicinity by creating a deformation zone � that is
time dependent �equation for � will follow�. We propose the
following equation to describe the motion of the crack tip
with infinitesimal mass in the direction of the crack propa-
gation:

�ẋ = kel�v0t − x� − Fb, �1�

where �ẋ describes energy dissipation due to crack propaga-
tion, v0 is the average crack propagation velocity that can be
estimated from vt=v0 tan �, vt is the crack opening velocity,
and � is the opening angle.

The resistance force Fb can be described in the framework
of linear elasticity �10� and we assume that it decays expo-
nentially with the distance from the tip. We approximate
Fb=�0

�f��z�p��z�d��z� where f��z� is the elastic force, f
=kel�z, p��z� is the probability density function �the prob-
ability of surfaces being separated by the distance �z�z
−zeq at any given point along the crack propagation direc-
tion, where zeq is the equilibrium distance between atoms�
and is approximated by p��z�= 1

� exp�−�z /���z, and � is
the characteristic length of the viscous flow zone, �
�O�5–10 nm� involving approximately 20 atoms, corre-
sponding to the width of the shear band �11�.

Thus,

Fb =
kel

�
�

0

�

�zp��z�d��z�

=
kel

�
�

0

�

�ze−�z/�d��z� = kel��1 − e−�/��1 + �/��� .

The proposed form of the resistance force Fb is consistent
with the expression for separation potential suggested by Xu
and Needelman �12� and with assumptions of the elastic
chain models �13�. The expression for Fb has some similari-
ties with the expression for the normal and shear work sepa-
ration between the interfacial surfaces �14,15�. We do not
take into consideration the effects of nonlinearity �hyperplas-
ticity� recently suggested by Buehler et al. �16� that may not
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be significant for brittle materials on the nanometer scale.
The effect of viscosity is taken in consideration through

the equation for � and is related to a Kelvin-Voigt model for
viscoelasticity. Substituting the expression for Fb into Eq. �1�
leads to

�ẋ = kel�v0t − x� − F0�1 − e−�/��1 + �/��� , �2�

where F0�kel�.
We now derive the equation for � based on the following

considerations. We presume a generic form �̇=− �
��

+v0 and
1
��

= 1
�m

+ 1
�tip

. Here �m is the characteristic relaxation time of
the material expressed by the Maxwell relaxation time, �m

= �
G , where � is the viscosity and G is the shear modulus. �tip

is the relaxation time due to the tip motion and can be ap-
proximated as �tip

−1 � 	ẋ	
a , where 	ẋ	 is the velocity of the tip and

a is the characteristic interatomic length of the material. De-
fining B� 1

�m
, we obtain the following equation for �:

�̇ = − 
B +
	ẋ	
a
�� + v0. �3�

It is interesting to note that the form of Eq. �3� can be related
to the Kelvin-Vogt model for viscoelastic fluids with B cor-
responding to the ratio of the shear modulus G to the viscos-
ity coefficient �. A similar form of the equations has been
used to describe dry friction ��17,18�, and references
therein�, although there are also significant differences �see,
for example, Ref. �17� and Eqs. �2� and �3� in our model�.
Moreover, for fracture propagation the mass of the tip is
negligible �the overdamped dynamics� while the effect of
inertia on frictional dynamics is often considerable.

We estimate the range of the parameters. We assume vt
�O�10−7� m /s, ��10−2, thus v0�O�10−5� m /s. The value
of the lattice constant a is approximated as a�2.5
	10−10 m and we assume ��O�5	10−9� m. The value of
kel can be estimated as kel�E�, where E is the Young modu-
lus. Assuming E�O�5	1010� Pa, we obtain kel�O�2.5
	102� N /m. We estimate kcr �due to plastic deformation
around the tip� as kcr=
kel, where 
 is the stress concentra-
tion factor. We assume 
�60 thus kcr�O�1.5	104� N /m.
We then estimate �0=kel /F0=1 /
��O�4.0	106� m−1, the
characteristic length 1 /�0�O�0.25	10−6� m, and the value
of � can be estimated as �=E�2� /2vcr; here � is the strain
far from the crack and vcr is the maximum crack propagation
velocity �19� that we estimate to be of the same order of
magnitude as the sound velocity �vc�O�102 m /s��. We also
assumed that the elastic energy released is much higher than
the energy needed to create a new fracture surface �20�. We
assume ��2	10−2 and vcr�2	102 m /s, thus ��2.5
	10−4 J s /m2.

We now rewrite Eqs. �2� and �3� in the dimensionless
units

�̇ = ��̇0� − �� − �1 − �1 + /�0�e−/�0� , �4�

̇ = 1 − 
� +
	�̇	
D
� , �5�

where �=�0x; �=�0t; �0=
kel

� ; �0=
kel

F0
; �̇0= �

F0
v0; =

�0

v0
�;

�0=
�0

v0
�;

� =
B

�0
=

B�

kel
; D = a�0 =

akel

F0
;

�̇0

�
=

�0v0

B
=

kel

F0B
v0.

�6�

A typical behavior of the crack tip is demonstrated in Fig. 1.
At large crack velocities, the motion of the tip is smooth

�the tip position is linear in time� therefore, the solution for
Eqs. �4� and �5� is
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FIG. 1. �Color online� A typical behavior of the tip � for a

variety of � values. The parameter values are �̇0=1.59	10−4; �0

=102; D=10−3; �a� �=0.005, and �b� �=0.2.
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� = �0 + �̇0�,  = 0 =
1

� +
�̇0

D

,

�0 = − 1 − �̇0 + e−0/�0
1 +
0

�0
� . �7�

This solution becomes unstable for low velocities. We look
at the linear stability of the solution �Eq. �7�� assuming

� = �0 + �̇0� + � ,

 = 0 + � . �8�

Inserting Eq. �8� and Eq. �7� into Eqs. �4� and �5�, after some
algebra we obtain

�̇ + � = −
�0

�0
2 e−0/�0,

�̇ = 1 − 
� +
	�̇0 + �̇	

D
�0 − 
� +

	�̇0 + �̇	
D

�� . �9�

Assuming �=�0e
� and �=�0e
� we obtain the following
equation for 
:

�
 + 1��
 + A� − PC
 = 0. �10�

Here we denoted

P � 1
AD , C � 1

A�0
2 e−1/A�0, and A � � +

�̇0

D . �11�

Therefore, the loss of the stability of the smooth �linear�
propagation can be found from the following relation:

1 + Ac − PcCc = 0 → Ac
2�0

2D�1 + Ac� = e−1/Ac�0. �12�

If A��1, we can approximate e−1/Ac�0 � 1
1+1/Ac�0

=
Ac�0

1+Ac�0
to

obtain

DAc�0�Ac + 1��Ac�0 + 1� = 1 and Ac � � + �̇oc/D .

�13�

Since Ac�1 and �0�1, we can approximate Eq. �12� by a
quadratic equation Ac

2+
Ac

�0+1 − 1
D�0

2 =0, thus leading to the fol-
lowing condition for the smooth-to-oscillatory instability to
occur:

�̇0c �
�D

�0
− D� . �14�

In “real” units, Eq. �15� can be written as

v0cr �
kcra

�

1
�4�
�

− aB . �15�

For the case of �=0, we obtain �̇0c�
�D
�0

=
kcra

�
1

�4�
�
, which

puts the limit on the crack opening velocity above which a
brittle behavior will be observed. In Fig. 2 we demonstrate

the stability curve � versus �̇0c based on the numerical re-
sults of Eqs. �4� and �5� and Eq. �14�. While Eq. �14� is an
approximation, we obtain a fair fit.

For small crack velocities, an oscillatory behavior is ob-
served. One can approximate the time period of the oscilla-
tion �see Fig. 1� as

T = �
0

max
1 +

2

�0
2D

e−/�0

1 + 
 �̇0

D
− ��

d . �16�

This can be further approximated by

T �
1

�̇0 − �D
1 − e−max/�0
1 +

max

�0
�� �17�

and
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FIG. 2. �Color online� The stability curve � versus �̇0c based on
the numerical results of Eqs. �4� and �5� and Eq. �14�. The param-
eters are the same as in Fig. 1.
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FIG. 3. �Color online� Numerical �red dots� and analytical �Eq.
�17�, blue line� curve for T as a function of d�0 /dt. The parameters:
�=0.05; �0=102; D=10−3.
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max

�0
= ln�1 − �max� + ln
max

�0
� − ln��̇0�0� . �18�

A typical feature size for given values of the parameters de-
pends on the value of � and is the maximum for �=0. We
can estimate the feature size as �x��� /�0. As for �=0,
���1, we estimate �xmax�1 /�0.

The feature size �x=Tv0 is the maximum for �=0 which
corresponds to the limit of a very high viscosity �low tem-
perature limit�. It then decreases with increasing � and dis-
continuously drops to zero at some value of �=�c which
corresponds to the high temperature limit. For given values
of the parameters, the smallest feature size corresponds ap-
proximately to �xmin�� /5.

In Fig. 3 we show the numerical �red dots� and analytical

�Eq. �17�, blue line� curve for T as a function of �̇0 in the
logarithmic and linear �the inset� scales. For a given set of

parameters, our numerical results show an excellent agree-

ment with the analytical results. An increase in �̇0 leads to a

decrease in the period T and for a large enough �̇0 a transition
from the stick slip to a continuous character of the motion of
the tip occurs.

In conclusion, we have presented a simple model to dem-
onstrate a transition from the smooth to oscillatory fracture
propagation. We believe our model is applicable to the nano-
scale fracture propagation in metallic glasses. This model is
based upon the nonlinear response of a viscoelastic medium.
The results may have wide implications on the fracture be-
havior of viscoelastic materials in general.

This work was supported by the Division of Materials
Science and Engineering, Office of Basic Energy Sciences
�LLH�, U.S. Department of Energy under Contract No. DE-
AC05-00OR-22725 with UT-Battele, LLC.

�1� R. Blumenfeld, Phys. Rev. Lett. 76, 3703 �1996�; Theor. Appl.
Fract. Mech. 30, 209 �1998�.

�2� A. Livne, O. Ben-David, and J. Fineberg, Phys. Rev. Lett. 98,
124301 �2007�.

�3� J. S. Langer, Phys. Rev. A 46, 3123 �1992�.
�4� A. E. Lobkovsky and J. S. Langer, Phys. Rev. E 58, 1568

�1998�.
�5� I. S. Aranson, V. A. Kalatsky, and V. M. Vinokur, Phys. Rev.

Lett. 85, 118 �2000�.
�6� A. Karma and A. E. Lobkovsky, Phys. Rev. Lett. 92, 245510

�2004�.
�7� J. Kierfeld and V. M. Vinokur, Phys. Rev. Lett. 96, 175502

�2006�.
�8� R. Spatschek, M. Hartmann, E. Brener, H. Muller-Krumbhaar,

and K. Kassner, Phys. Rev. Lett. 96, 155502 �2006�.
�9� G. Wang, Y. T. Wang, Y. H. Liu, M. X. Pan, D. Q. Zhao, and

W. H. Wang, Appl. Phys. Lett. 89, 121909 �2006�; G. Wang,
D. Q. Zhao, H. Y. Bai, M. X. Pan, A. L. Xia, B. S. Han, X. K.
Xi, Y. Wu, and W. H. Wang, Phys. Rev. Lett. 98, 235501
�2007�.

�10� B. Lawn, Fracture of Brittle Solids �Cambridge University
Press, Cambridge, 1993�.

�11� Y. Zhang and A. L. Greer, Appl. Phys. Lett. 89, 071907
�2006�.

�12� X.-P. Xu and A. Needleman, Modell. Simul. Mater. Sci. Eng.
1, 111 �1993�.

�13� A. M. Balk, A. V. Cherkaev, and L. Slepyan, J. Mech. Phys.
Solids 49, 131 �2001�.

�14� E. Van der Diessen and A. Needleman, Interface Sci. 11, 291
�2003�.

�15� V. S. Deshpande, A. Needleman, and E. Van der Giessen, Acta
Mater. 50, 831 �2002�.

�16� M. J. Buehler, F. Abraham, and H. Gao, Nature �London� 426,
141 �2003�.

�17� B. N. J. Persson, Phys. Rev. B 55, 8004 �1997�.
�18� Y. F. Lim and K. Chen, Phys. Rev. E 58, 5637 �1998�.
�19� E. Sharon and J. Fineberg, Nature �London� 397, 333 �1999�.
�20� O. Pla, F. Guinea, E. Louis, S. V. Ghaisas, and L. M. Sander,

Phys. Rev. B 57, R13981 �1998�.

Y. BRAIMAN AND T. EGAMI PHYSICAL REVIEW E 77, 065101�R� �2008�

RAPID COMMUNICATIONS

065101-4


