PHYSICAL REVIEW E 77, 061918 (2008)

Nonlinear dilational mechanics of Langmuir lipid monolayers: A lateral diffusion mechanism
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We propose a theoretical model for the nonlinear mechanical response of Langmuir lipid monolayers sub-
jected to a dilational in-plane deformation. Lateral diffusion in conjunction with free convection has been
considered to drive nonlinear mass transport in Langmuir lipid monolayers. The present model combines the
conservative dynamical equations for lipid transport along the monolayer plane together with a material
relationship accounting for nonlinear hypoelasticity, as experimentally observed from high-strain rheological
measurements [Hilles et al., Adv. Colloid Interface Sci. 122, 67 (2007)]. The dynamical equations have been
resolved for oscillatory nonlinear motion, the theoretical spectral amplitudes being found in quantitative agree-
ment with the experimental values obtained from surface rheology experiments performed in Langmuir mono-
layers of two different lipid systems, namely DPPC and native E. Coli lipids. The presence of micrometer-sized
phase coexistence domains in these lipid systems has been claimed to pump diffusive transport along the
monolayer plane. This dynamical scenario defines a relaxation regime compatible with the observed nonlinear

mechanical behavior.

DOLI: 10.1103/PhysRevE.77.061918

I. INTRODUCTION

The picture of the lipid component of biological mem-
branes as passive supporting structures has been revised in
recent times due to the growing recognition that these struc-
tures can undergo significant density fluctuations leading to
nonuniform distributions of chemical composition, mass
density, thickness, and mechanical behavior [1-3]. Cell
shape is partially encoded in the mechanical properties of the
lipid bilayer, particularly bending rigidity and dilational elas-
ticity, which couples stretch and in-plane shear. Because lo-
cal gradients of lipid concentration and composition are
coupled to lateral transport along each monolayer leaflet, the
resultant mechanical properties of the membrane are strongly
influenced by the diffusive properties of the lipid molecules.
At mechanical equilibrium, lipid diffusion is driven by ther-
mal fluctuations restored by the linear viscoelastic response
of the lipid assembly. A number of experiments have inves-
tigated Brownian diffusion in cell and model membrane sys-
tems [4-7]. However, real membranes are subjected to
strong stress along their living cycle, thus undergoing large
shape fluctuations during division or mass trafficking, for
instance. Indeed, a variety of agents, including anionic lipids,
high salt, high pH, ATP depletion, and cholesterol enrich-
ment, can strongly modify cell shape systematically and re-
versibly [8—10]. Equivalently, the sequence of shape changes
that a cell undergoes at in vivo conditions can be artificially
induced by changing its surface area with respect to the equi-
librium value [11]. A more complex nonlinear interplay than
in the linear case must now underlie the coupling mechanism
between microscopic transport and mechanical behavior.
This is because nonlinear mechanics emerges relevant to un-
derstanding how molecular transport affects the dynamics of
membrane deformation in the regime of large deformations.
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Lipid diffusion, as modeled in Langmuir lipid monolay-
ers, is of fundamental interest to physics, chemistry, and cell
biology [12-14]. Experiments and theory have pointed out
the tight interplay between molecular lateral diffusivities and
the linear dilational rheology of Langmuir monolayers [15].
However, a nonlinear theory of lateral diffusion on model
membranes is not yet available. In the present paper, we
address a theoretical study on how lateral diffusion on Lang-
muir monolayers of lipid systems drives nonlinear mechanics
at large dilational deformations. A meaningful study of this
influence requires the ability to monitor dilational mechanics
in the broad range of displacements covering the linear and
nonlinear regimes. Predictions from theory will thus be com-
pared with data obtained from oscillatory barrier experiments
performed in Langmuir lipid films [16].

II. DILATIONAL MECHANICS OF LANGMUIR FILMS
A. Linear regime

Surface active substances, most lipids among them, spon-
taneously adsorb as Langmuir monolayers at the air/water
interface. The decrease in free energy upon the spontaneous
adsorption of the monolayer is measured by the surface pres-
sure Il (=y,—vy, 7y being the surface tension of the
monolayer-covered surface and 7, its value for the bare
aqueous surface). I1 is indeed the macroscopic descriptor for
the monolayer free energy [17], thus 811 changes caused by a
mechanical disturbance can be interpreted as the stress re-
sponse of the system against the external stimulus [16]. The
mechanical behavior of these interfacial monolayers is char-
acterized by surface rheology as they possess large elasticity
and viscosity [18]. The Langmuir trough provides the ad-
equate geometry to explore for this surface rheology [17]. A
Langmuir monolayer (spread in a rectangular trough of con-
stant width y,) can be considered as a planar elastic body
with rectangular dimensions, A(x)=yyx, defined by the sur-
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face area available between the movable barriers separated at
a distance x. Upon lateral stretching or compression along
the x axis, a planar Langmuir monolayer experiences a lon-
gitudinal dilation u,. The modulus u ), of this longitudinal

deformation vector (i, = ux z, i bemg the unitary vector in the
x direction) is easily measured as the displacement of the
barriers Ax with respect to their initial position (separated by
a distance x,), i.e., u'”’=Ax=x—x, [19]. In this planar elas-
ticity problem, the monolayer is considered as a very thin
plate, thus any z displacement, e.g., the capillary fluctuations,
is negligible with respect to the in-plane lateral motions [19],
1.e., u,~0. Additionally, because the barrier-opposite sides
of the Langmuir monolayer are clamped to the trough edges,
the in-plane transversal displacement is in this case identi-
cally zero, u,=0. In the theory of elastlclty, the generalized
strain tensor is defined as u; ~—2[(o7u i/ 0x;) +(du/ dx;)
+(duy/ dx;)(duy/ ox;)] [19]. In the present planar case (u,
=0, u,~0), thus the longitudinal component reduces simply
to uy=du,/dx [19]. Therefore, the only component of the
strain tensor relevant to the present problem is u,(x,?), in
general a function of time and of the x coordinate, with am-
plitude u. If the monolayer occupying a reference area
Ay(=yoxp) is dilated to a surface area A (=ypx) under the
action of the barriers of the Langmuir trough, the amplitude
of the strain field could be expressed in terms of the com-
pression ratio §=AA/Ay=(A-A,)/A,y. More precisely, be-
cause y, is constant in the Langmuir trough geometry, the
compression ratio is exactly defined by the relative longitu-
dinal dilation, i.e., 6=AA/Ag=(yox—yoxo)/ yoxo=Ax/xq. Af-
ter deformation, an arbitrary linear distance x is rescaled to
x'=(142u)"?x [19], thus the relative dilation actually reads
Ax/xy= (x'—x)/x=(1+2u)"?>~1. Consequently, in the limit
of small deformations (z<<1) one finds Ax/x,=~u. This is
because, for Langmuir monolayers, the amplitude of the lon-
gitudinal strain is usually identified with the relative area
dilation, u= 0 [20]. To first order, this approach is essentially
correct, but for larger deformations one has, exactly, u=#6
+1/26%

Upon lateral strain, a Langmuir monolayer experiences a
longitudinal stress measured as the change in lateral pres-
sure, o~ Oll. In the limit of small deformations, the vis-
coelastic free energy takes a quadratic form on the strain
function [19,21],

SF(u,) = 581, (1)

The viscoelastic coefficient e=g+ «(d/dt) is termed the lin-
ear dilational modulus, which actually contains a pure elastic
term (&), the dilational elasticity, plus a dissipation operator
proportional to the dilational viscosity (), which accounts
for the viscous losses. As a consequence, a linear constitutive
relationship is found between the longitudinal viscoelastic
stress and the deformation,

J(OF)
u

-dll=0,= =E&Uy,. (2)

XX
Notice that the viscoelastic stress actually contains two well-
separated terms, o, =0'®+0"), the first corresponding to

the pure elastic energy storage o =gu,, and the second to
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the energy dissipated by viscous friction o
=k(du,,/ I)=kR, R=du,,/dt=d(In A)/dt being the dilation
rate. Thus, in the linear regime, if a monolayer at an area A,
is dilated under the action of the barriers of the Langmuir
trough (the amplitude of the strain function actually is u
=~ f=AA/A,), it consequently experiences an elastic stress

B) = ST1=11-11y=—eAA/A,. If the small dilation is quasi-
static (u—0; R—0) no viscous components are found
within the stress response, i.e., o) ~0. Alternatively, if the
dilation is exerted at a finite rate, viscous effects might then
emerge within the stress function, o= x(du, /) =0, and
|| =[&l|xo.

Oscillatory barrier experiments appear then as a very con-
venient method to measure both components of the stress. If
the strain function is sinusoidal, u,(f)=ue’ (u=AA/A),
the time-dependent linear viscoelastic response of
the monolayer is such that o(t)=0cP+0V=eu,,
+ k(O /) =(e+iwKk)ue'™, ie., the viscous component
causes a phase lag, ¢=tan‘1(wk/ g), between the stress func-
tion o(r) =0y’ “*? (o, being the stress amplitude) and the
applied strain, u,(f)=ue’’. Although the stress amplitude
includes both elastic and viscous components summed
together, o=(e’+w’«*)"?u, each one can be eventually
calculated as e=0/u=(0y/u)cos ¢ and wk=0)/u
=(0y/u)sin ¢. For Langmuir lipid monolayers, the dilational
elastic term usually controls the viscous one (&> wk), which
is in practice dominated by the intrinsic viscosity of the
monolayer. Bulk viscosity effects are neglected with respect
to the intrinsic friction [22,23], thus no hydrodynamic cou-
pling between the monolayer and the subphase is explicitly
considered.

B. Nonlinear regime

In the linear regime described above, the dilational vis-
coelastic moduli are strain-independent, however at strains
high enough, beyond a threshold value u,. which strongly
depends on each system, the monolayer behavior is no
longer elastic, and the viscoelastic response becomes nonlin-
ear. Then, a polynomial expansion of the linear relationship
in Eq. (2) can be used as a good description of the stress
response, o(ity,) =& Uy, +8&ol> +&510 +- -+, or equivalently a
strain-dependent viscoelastic modulus can be considered in
Eq. (2),

&lu,,) =&+ &y + 8‘;” + e (3)

As a consequence, when the barriers of the Langmuir trough
drive the monolayer beyond the linear regime (u>u), the
stress function might contain higher-order harmonics other
than the fundamental component, i.e., of(f)= 0( ) giot
+oVe?en gOedoty. .. where 0\” =gk,

H1lles et al [24] have recently adapted the usual methods
of Fourier-transform rheology [25] to analyze the nonlinear
response of Langmuir monolayers of polymers and colloidal
particles. Similarly to bulk systems with a symmetric nonlin-
ear stress tensor, o(—u,,)=—o(u,,), only odd harmonics were
found in Langmuir monolayers of spherical colloidal par-
ticles interacting through Coulombic central force field [24].
However, the complete harmonics sequence was observed by
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FIG. 1. Stress-strain time traces and mechanical spectra as obtained in oscillatory barrier rheological experiments performed at a
frequency w on Langmuir lipid films of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) at 25 °C. The monolayer is deformed under
an oscillatory strain u,,(f)=ue" (top), and its mechanical response is monitored as a function of time II(f)=IIy+o(f) (middle). The
mechanical spectra are obtained as the Fourier transform of the stress function, P(w)=F{o(t)] (bottom). In the low strain regime (left; 6
=2%, u=6+0.56°~0.02), the dilational response is linear and only the fundamental mode propagating at a frequency w is present within the
mechanical spectrum. However, the complete series of harmonics at frequencies 2w, 3w, 4w, Sw,... is present at the high strain nonlinear

regime (right; 6=38,4%, u=60+0.56>~0.42).

these authors in Langmuir films of entangled polymers [24],
likewise analogue bulk systems in which the symmetry of
the stress tensor components is broken, o(-u,,) #—o(u,,),
e.g., in polymer liquid crystals or elastomer gels [26]. The
analysis of the monolayer mechanical response requires the
experimental o(f)=48I1(¢) curves to be Fourier-transformed,
then the response spectrum is obtained in the frequency do-
main as P(w)=J", o(t)e”*“dt. The numerical methods to
carry out the Fourier transform of the experimental data were
discussed in detail by Wilhelm [25]. In practice, the digital
fast Fourier transform algorithm (FFT) [25,27] is used, but
good signal-to-noise ratios are achieved only if (a) the ex-
perimental response data contain a large number of periods
(more than 10, typically) and (b) the sampling time is mini-
mized (1 s, typically).

Figure 1 shows a typical example obtained for a Lang-
muir monolayer of a saturated phospholipid, DPPC. At a low
deformation (u~2% <u; see Fig. 1, left), the stress re-
sponse is linear and accomplishes well the sinusoidal strain
wave o(t) ~ g ue'®. However, additional nonlinear features
start to be clearly visible within the stress response at larger
strains (see Fig. 1, right). These different behaviors are
clearly pointed out as the mechanical spectrum is computed
from the experimental time traces, P(w)=[" oIl(¢)e""“'dt
(see Fig. 1, bottom). Within the linear regime, only the fun-
damental peak is obtained at the excitation frequency w,
while other, less intense, peaks corresponding to higher har-

monics (2w, 3w, 4w,...) are observed in the nonlinear re-
gime beyond 6.

These results exemplify how Langmuir lipid monolayers
exhibit mechanical behavior characterized by a nonlinear
material relationship such as the one described by Eq. (3). To
first order, an adequate link between surface mechanics and
the microscopic mechanism of mass transport might be pro-
vided by surface hydrodynamics. Although the problem of
linear dilational mechanics of Langmuir films in the case of
small deformations restored by lateral diffusion has been
theoretically addressed in the literature [15,28,29], nonlinear
extensions describing the regime of large deformations are
still lacking. This is indeed the theoretical problem addressed
in the present paper. A correct understanding of the nonlinear
regime requires a brief description of the linear asymptotic
behavior.

III. LINEAR DILATIONAL RHEOLOGY
AND LATERAL DIFFUSION

Because any surface dilation exerted on an adsorbed
monolayer causes a concentration gradient, as a consequence
a surface tension (Marangoni) gradient appears, Sy(I")
~(dy/dl')8I'. The mechanical equilibrium imposes the bal-
ance between the tangential viscoelastic stress exerted at the
fluid interface f,=do,/dx and the restoring Marangoni force
exerted by the surface tension gradient, dvy/dx, thus
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dy  _duy,

= dx ax “

For adsorbed films, e.g., Langmuir lipid monolayers, the Ma-
rangoni stress can be conceived as a surface tension gradient
caused by a local change in the surface concentration of the
surfactant, &I'(u,,). At a given temperature, and if the
changes in lipid concentration 8" are assumed to produce an
instantaneous change in surface tension 8y [30], Eq. (4) can
be rewritten as follows:

dy _dydl _ eodl _ dun 5)
Iy dx dx

Here, the Gibbs elasticity modulus gy=-1"o(dy/dl’) repre-
sents the change in surface free energy of the monolayer
caused by the increase in lipid density at equilibrium condi-
tions (I" denotes the lipid density and I'y=1/A, is its equi-
librium value); & thus corresponds to the equilibrium com-
pression modulus of the monolayer. Equation (5) represents
the dilational response function, which establishes that a
given surface dilation must be restored by the corresponding
density gradient. However, an additional equation accounting
for the time dependence of the deformation-density coupling
might be written. If molecular transport is restricted to the
monolayer plane (i.e., there are no solubilization mecha-
nisms able to transfer molecules across the adjacent bulk
phases), lateral diffusion is the only mechanism able to re-
store the mass-deformation balance mentioned above. In
such a case, the mass conservation imposes that diffusive
transport exactly balances the flux of matter; then Fick’s law
for surface diffusion is as follows [31]:

T _prt ©
dr— ox*’
D being the lateral diffusion coefficient; for lipids, D
~ 1077 cm?/s typically [15].

Because the surface density is in general a function of
time and of the local deformation I'(¢,u,) (u, being the de-
formation, and its x derivative u,,=du,/dx, the longitudinal

component of the strain tensor), the convective term must be
considered in the left side of Eq. (6) [32,33],

ar 9 &T
—+—Tv,)=D—, 7
ar z?x( 0:) x> ™

where v,=du,/dt stands for the longitudinal velocity func-
tion.

For small-amplitude oscillatory motion, u,=u'"e/®* ¢!
(w being the oscillation frequency and g the spatial wave
vector), linear solutions to Eq. (7) must be found with
the form [(x,f)=0y+ 6l %' [, being the average
equilibrium value of the lipid concentration and I';(u,) a
linear strain-dependent fluctuation]. After linearization,
dlv,)/ox=T (dv,/dx), one gets the linear relationship be-
tween the amplitude of the strain tensor u=iqu)(c0) [fixed by

PHYSICAL REVIEW E 77, 061918 (2008)

the external stimulus in the oscillatory barrier experiments,
u=6+1/26* with 6=(A-A,)/A,] and the density fluctuation,

N e, (8)

Iy
where &(w) is a Maxwell-like relaxation function (0
=mod[¢;(w)]=1) accounting for the frequency dependence
of the linear dependence between the applied strain and the
density wave,

IoT
&(w) = ——, (9)
l+ioT
and 7, is a diffusion characteristic time,
1
THh="75, 10
D qu ( )

which scales quadratically (7,~ a?/D) with the spatial scale
over which lateral diffusion operates, a ~q‘1.

Similarly, when Eq. (5) is solved for solutions with the
form I'(x,t)=Ly+ ol e'%e’®, one gets o' /To=—(&/go)u.
By comparison with Eq. (8), one can deduce the precise w
dependence of the linear viscoelastic moduli, this is &(w)
=e+iwk=gu&;(w). These results illustrate that if the mono-
layer is strained fast enough (w> 73, then &R9=g/g,~1,

I = i/ £y~ 0), the system has no time to redistribute the
material and its mechanical response turns out to be purely
elastic, e ~gj, k~0. On the contrary, if times longer than
the diffusion time are spent to reexpand after the compress-
ing semicycle (w<<73,), lateral diffusion has enough time to
come into play and some stress is relaxed by viscous dissi-
pation; in the limit of zero frequency, € ~0, k~egy7p. In
more general terms, in the linear regime lateral mass fluxes
are expected to be directly proportional to the external defor-
mation, where &(w) is the dynamic transference function,
which describes the propagation regime of the diffusive
modes: a dissipative regime at low frequencies (mod[¢,]
<0.5 at w7, <1) and a pure elastic one at high frequencies
(mod[£,]>0.5 at wrp>1).

Oscillatory lateral strain exerted on a homogeneous
monolayer by the barriers of the Langmuir trough causes a
longitudinal (Lucassen) wave propagating at a frequency
and with a wavelength A=2/¢q. The propagation frequency
of the so-created Lucassen wave disperses as w=(3/ 2)172
(e%q*/ mp)'? (g being the wave vector of the longitudinal
wave, p the density, and 7 the viscosity of the subphase on
which the monolayer is supported) [22]. Thus, stiffer mono-
layers develop longer concentration waves; for lipid mono-
layers strained at frequencies w~ 1 Hz, typically A ~20 cm
for e~10 mN/m and A>100 cm if €~ 100 mN/m. Lipid
monolayers are very dense assemblies and the surface diffu-
sion coefficient is usually small (D~ 1077 cm?/s), thus the
concentration gradients associated with Lucassen waves
might relax at times so long as 7;,~\?*/D> 10" s. Because
this relaxation time far exceeds the experimental time scale,
diffusion-driven stress relaxation has never been evidenced
on homogeneous lipid monolayers. However, the presence of
lipid domains has been recently pointed out as a source of
stress relaxation in lipid monolayers [34]. In that work, mi-
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crometric sized condensed domains have been hypothesized
as lipid reservoirs able to exchange material with the sur-
rounding fluid upon request. In fact, this diffusive exchange
is expected to relax at times 7p,~a*/D~1-10s (a~1 um
being the domain size), as experimentally observed [34].

IV. COUPLING BETWEEN LATERAL DIFFUSION
AND NONLINEAR DILATIONAL MECHANICS

If the surface dilation exceeds the linear threshold u., the
concentration gradient might include the nonlinear features
of the macroscopic nonlinear response described by Eq. (3).
In such a case, the response function in Eq. (4) might be
rewritten as follows:

d Y €p dr

du
dxz_rodx=(§1+§2uxx+§3u§x+'“)a_;x' (]1)
In the present case, for large-amplitude oscillatory motion
u(x,t)=ue'™e' (u>uc), nonlinear solutions might be
found with the form I'(x,f)=T+ ol e/ e/ + oI ye?4*e?i!
+ 0l 5e3a% i@y .. After substituting in Eq. (11) and sepa-
rating terms, one gets

U,(CO) =gk =~ sok&. (12)
Lo

This equation teaches us that the presence of a given defor-
mation k mode in the mechanical response is only deter-
mined by the existence of nonvanishing density fluctuations
of a given k symmetry, i.e., o, # 0 if 8", # 0. From the con-
tinuity condition stated in Eq. (11), the presence of any har-
monics is not a priori forbidden in the response function. On
the contrary, while the transport mechanism engenders non-
linear density fluctuation k modes, they will be present in the
nonlinear mechanical spectrum of the monolayer. Indeed,
when the transport equation in Eq. (7) is resolved for non-
linear  solutions  I'(x,7)=Ty+ 8 e/ e/ + 8T ye?e* et
+ 0l 5eda% i@y ... the presence of the convective cross
term (~I"u,) yields a recurrence relation between the ampli-
tudes of the k£ modes,

o'y =- uﬁro,
l+iowT
ST = ot
2- u2+iw7 b
5F3 =—Uu la).T 5F2,
3+iwT
. ioT
My =-u§(w)dl_;  with &(w) = it ior (13)

Obviously, because a given amplitude 8I"; depends on 8I';_,,
one deduces that the symmetry of the diffusion is such that
every harmonics (odd and even) might be present in the
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mechanical response. Finally, if Egs. (13) are progressively
enchained and the result is combined with Eq. (12), one ob-
tains the general relationship for the nonlinear viscoelastic
stress amplitudes,

(0) _
oy =goéu,

o) =—2e0é 6,

Ugo) =3g¢§ §2§3M3,

o= (- 1)k+]k80<H &)u’ﬂ (14)
k=1

These formulas illustrate that mass lateral diffusion drives
nonlinear mechanics with a singular set of characteristics. (a)
The stress function contains both types of harmonics, odd
and even. The first are typical of symmetrical constitutive
functions, i.e., oy (—u) ~u*=—o(u) if k=1,3,5,..., but the
presence of even harmonics arises from a broken symmetry,
i.e., when the system behaves differently under compression
than in stretching. Indeed, the symmetry of the diffusion
equation [see Eq. (7)] is such that density fluctuations do not
remain invariant under sign inversion, v,—-v,. (b) The
diffusion-driven nonlinear mechanical response shows un-
equivocal plasticlike (actually hypoelastic) features; the
second-order term is negative, 0'(20 ~—goé &, thus leading,
under stretching, to an effective elasticity modulus lower
than in the linear regime, e~ €¢(1-&,) <eg. This behavior
was observed in oscillatory barrier experiments performed in
Langmuir polymer films [24,35], and more recently in Lang-
muir monolayers of natural lipids [36]. (c) Because only lat-
eral diffusion has been supposed to underlie nonlinear me-
chanics, no further constitutive effects other than Marangoni
surface tension gradients are contained within each nonlinear
coefficient, o~ (dy/dx),~ (dy/dl')(dl'/dx) ~ -yl }.In
other words, the equilibrium compression modulus g, and
the diffusion characteristic time 7, are the only constitutive
coefficient included within the present approach [more ad-
vanced developments will require further constitutive expan-
sions in the form Sy=(dy/dl)ol +1/2(d>y/dl?) o2 +--+].
For a given g, the absolute value of every nonlinear coeffi-
cient is determined by a relaxation function describing the
dynamics of the lateral diffusion at the considered frequency
Wy, 1.6., 0~ g0 & - & As a corollary, a given high-k har-
monics contains all of the information about the amplitudes
of the k—1 preceding modes.

V. VISCOELASTIC RELAXATION
WITHIN NONLINEAR MODES

As explained above, if a monolayer is largely strained at
a frequency w=w;, it can eventually respond nonlinearly
developing a series of deformation modes at a frequency
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wy=kw,. Every propagating k-mode is expected to relax dif-
fusively through the dynamic relaxation function,

k
O(wy) = H §,’(0)j)- (15)
j=1

Because the frequency w; of a given j harmonics is
j times the fundamental frequency w;, thus ¢&(w))
=§(joy) =jioT (j+jioT)=ioT/(1+iwr)=§ (w). The relax-

ation function in Eq. (15) can be thus expressed as

. k
ioT ) . (16)

l1+iowT

O () = ﬁ(w) = (

The relaxation function ®(w) actually represents the “effec-
tive” diffusive relaxation function at every k£ mode.

The modulus of each k-relaxation function, |0(w)]
=(wn)*/ (1+w?P)¥?, is plotted in Fig. 2(a). From this figure
it appears evident that lateral diffusion relaxes differently for
the different modes of deformation. As concerns the w de-
pendency, for a given k mode the relaxation modulus in-
creases as ~F, i.e., the relaxation becomes increasingly
sharp for the higher harmonics, the relaxation time scale
shifting to higher frequencies. This fact is more clearly
pointed out by the relaxation losses shown in Fig. 2(b),
which are calculated as the imaginary part of the relaxation
function, i.e., Im[®,(w;)]=sin[k tan"!(1/wk)]. The funda-
mental mode (k=1) relaxes Maxwell-like, i.e., the loss
modulus reaches a maximum at the fundamental relaxation
frequency wp=1/7p. Higher harmonics display stronger and
faster dissipation as k increases (the relaxation maxima pro-
gressively enlarge and shift to hi%her frequencies). The re-
laxation frequencies scale as wg‘ ~ k%% [see inset in Fig.
2(b)], weaker than the k mode propagation frequency, wy
~k. As a consequence, if diffusional modes are excited at a
frequency lower than the fundamental relaxation one, i.e., at
w<1/7p, different harmonics are expected to eventually
bring about different relaxation states. On the contrary, if
excited at a frequency higher than the diffusional one (w,
>1/7p), every surface mode (either the fundamental or the
harmonics) might be found propagating at the nondissipative
elastic regime, i.e., if w;< wg‘), then mod[0,(w)]>0.5.

To summarize, nonlinear mechanics is strongly coupled to
the diffusion transport mechanism in such a way that each
deformation & mode propagates influenced by a frequency-
shifted viscoelastic relaxation. Consequently, if dilational
modes are excited at a fundamental frequency close to the
diffusional relaxation one, w; ~w8 ~1/7p, nonlinear har-
monics propagating at higher frequencies, w,=kw,, far from
becoming nonrelaxed, are affected by an enhanced diffusion
mechanism. This effect is particularly important with regard
to viscous dissipation, which is also efficient for the higher
harmonics.

VI. NONLINEAR MECHANICAL SPECTRUM

From Eq. (14), the amplitudes of the mechanical spectrum
can be easily obtained. Following Egs. (15) and (16) for the

PHYSICAL REVIEW E 77, 061918 (2008)

LOF  stress relaxation

modulus

mod[O(w)]

10

(a) ot
1o 100
. . (k=6) _ [ T T
friction losses ®, 4.3/x,
08}
2 10 | 4
(=1) _ A
0.6 L o, = 1/1D 3
B y
5 o Nko.s_
E 04r k=1 110 100
2
3
02} 4
5
/6
0.0 Y/ A B R
0.1 1 10
(b) ot

FIG. 2. (a) Modulus of the viscoelastic relaxation function ®(w)
for the fundamental diffusive mode (k=1) and their nonlinear har-
monics (k modes) pumped by a dilational wave. (b) Imaginary part
of ®(w) accounting for the viscous losses within each k mode. The
inset plots the k& dependence of the effective diffusional relaxation
frequency as obtained from the maxima displayed by the loss
function.

relaxation function, one gets |@(w)|=(wn)*/(1+w?7)¥?
and the power spectrum amplitudes are obtained as follows:

|09 = keo|Olut  for k=1,23, ... . (17)

Figure 3 plots experimental data from two different lipid
monolayers at a phase coexistence state. These results point
out that the nonlinear spectral amplitudes follow powerlike
behavior, log o, ~k, as predicted by Eq. (17). Although the
present data arise from experiments performed at large de-
formations (6~ 37 %), similar nonlinear qualitative behavior
is observed to emerge at any deformation beyond the nonlin-
ear threshold (u>uc; in some cases, as E. Coli lipid mono-
layers, uc~2%) [36].
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FIG. 3. (Top) Spectral mechanical amplitudes experimentally observed from the Langmuir monolayers of two different lipids when
strained in the nonlinear regime. Experimental data depict powerlike oy~ ojf (straight lines) as predicted by the nonlinear diffusion model
[see Eq. (17)]. Inset photos correspond to the monolayer states at which mechanical experiments were performed. They were taken by BAM
(DPPC) and fluorescence microscopy (E. Coli) pointing out the existence of lipid domains of size 1-10 um which could work as mesos-
copic lipid reservoirs. (Bottom) Experimental spectral amplitudes (closed symbols) as compared to Eq. (17) for different values of the
dynamical function &; describing different relaxation states; & <0.5 implies diffusion mediated viscoelastic relaxation, i.e., w7p <1, while
a pure elastic nondissipative regime (w7p> 1) is attained when & >0.5.

The observed nonlinear powerlike behavior, a’k~uk, is
found to be concomitant with the presence of coexistence
domains, otherwise a near-linear mechanical response ex-
tends up to larger deformations. In other words, the present
mechanism seems to be relevant only when diffusion comes
into operation at the probed timescale, e.g., when lipid do-
mains of size a~1 um exchange material with the surround-
ing continuous medium with a lower lipid concentration, the
characteristic diffusion time is 7~a?/D~1 s [34]. Follow-
ing Eq. (17), the modulus of the k-relaxation functions can
be easily calculated from the spectral amplitudes 0',((0) as 0,
=0/ gokut =|&|¥. The experimental values of the relaxation
function O, have been plotted in Fig. 3(b) as calculated from
the spectral amplitudes measured from DPPC and E. Coli
monolayers [data in Fig. 3(a)]. These experimental data are
in quantitative agreement with the theoretical trends ex-
pected from the nonlinear diffusional model supposing a dy-
namical state close to the relaxation frequency [from Eq.
(16), O (w)=¢&", with £=0.4-0.6, thus wr,~ 1]. In effect,
because data in Fig. 3 correspond to experiments performed
at a frequency w~0.1 s™!, values of & ~0.5 are compatible
with a diffusional relaxation time of the order of 7p~1/w
~10 s, in agreement with the results obtained in dynamical
experiments performed in the linear regime and compatible
with the hypothesis of lipid domains working as reservoirs
dispensing lipids over the microscale (for lipid domains of
size a~ 1—10 um, one gets 7,~a’/D~ 1-10 s) [34]. How-
ever, because the present theory is actually 1D with no ex-
plicit domains, the agreement can only be qualitative.

VII. STRESS-STRAIN RELATIONSHIP

From Eq. (17), the nonlinear stress-strain relationship is
expected to follow a polynomial expansion as follows:

o) = go&)(1 =26 u+ 38> —4Ew3 + - Hu.  (18)

The nonlinear viscoelastic dilational modulus expands thus
as a polynomial strain-dependent u*-response function, £(u)
=0/u=8,(1-2&u+3Eu>—4Eu++++), which is intrinsi-
cally hypoelastic and governed by two well-differentiated
parameters, the equilibrium modulus g, and the instanta-
neous value of the relaxation function at the excitation fre-
quency & (w,). If |&u| <1, the infinite geometric series in
Eq. (18) converges at [1—2x+3x*—4x>+---=1/(1+x)* for
x<1]

§yu

U(u)—80(1+§1u)2. (19)
Thus, different nonlinear dynamical regimes can be reached
from a given equilibrium state, the instantaneous value of the
relaxation function being the dynamical parameter describ-
ing how viscoelastic energy is stored and dissipated by the
different £k modes. If the fundamental mode is excited at a
frequency lower than the relaxation one, w;7,<<1, lateral
diffusion has enough time to fully relax (£, ~iw7p) and the
mechanical response might be found to be almost linear and
purely viscous, o(u) ~ igqgwTpu~ iwku. Intuitively, if diffu-
sion has time to relax, the energy release on compression is
fully dissipated by the fundamental k=1 mode itself. On the
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FIG. 4. (a) Stress-strain relationship for different values of the
dynamical function &; describing the relaxation state of the diffu-
sion process: &; <0.5 since wr<<1, dissipative stress relaxation re-
gime (o=0g+oy); §>0.5 since wr>1, elastic regime o> oy.
The smaller stress relaxation due to viscous friction is, the larger is
the influence of nonlinear elasticity. (b) Compositional effect of the
hookean modulus g, on the nonlinear behavior; lateral diffusion
engenders similar nonlinear stresses at very low strains (u-<<0.1)
but stiffer monolayers display yielding at higher stresses (oy
=gy/4).

contrary, if the fundamental mode is excited at higher fre-
quency than the relaxation one, w;7,>1, lateral diffusion
has no time to become in operation (&, ~ 1) and the mechani-
cal response is found to be purely hypoelastic [e
=g/ (1+&u)><g]. The intermediate cases are properly ac-
counted for by Eq. (19). The stress-strain curves have been
plotted in Fig. 4(a) for different values of the dynamic pa-
rameter &; representing different dynamical states.

Figure 4(a) teaches us that if diffusion is fully relaxed,
&~ 0, the stress-strain curve corresponds to that of a linear
viscoelastic body [from Eq. (19), a Hooke-like curve is re-
covered in this limit, i.e., o(u) ~ gy&;u ~ &,u]. Nonlinear fea-
tures start to emerge as lateral diffusion becomes nonrelaxed
(i.e., if 0<<& <1); the higher is &, the lower is the critical
strain u- at which nonlinearity appears and the lower the
stress needed to reach a given deformation state (hypoelas-
ticity). In the nonrelaxation limit (w,7p>1, & ~1), the
stress-strain curves are characterized by a plasticlike hy-
poelastic plateau (constant stress at increasing deformation).
The yield stress characterizing this plasticlike plateau is
reached at a value oy=¢gy/4. This plasticlike behavior is
more clearly pointed out by Fig. 4(b), where the nonlinear
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FIG. 5. Effective values of the viscoelastic parameters as depen-
dent on the relaxation state and on the amplitude of the applied
strain, u. (a) Reduced dilational elasticity modulus, &/&;, and (b)
reduced dilational viscosity, w/ey7p. The main figures describe
typical viscoelastic relaxation, pure elastic solidlike response at
high frequencies (e ~ &g, k~0 at > 7,,), and dissipative stress
relaxation at low frequencies (e <gy, k>0 at 0= TBI). The effec-
tive viscoelastic parameters are largely affected not only by the
dynamical state but also by the applied strain. Relaxation of the
diffusion process causes the monolayer (a) to soften and (b) to
fluidize in dilating at low frequencies, but also, as a consequence of
nonlinearity, “thinning” effects emerge when dilating larger (see
insets). This nonlinear softening and fluidization happens concomi-
tantly to a larger extent at faster deformations.

stress-strain curves corresponding to the nonrelaxed dynami-
cal state (&, ~ 1) have been plotted for different equilibrium
elasticities. Such a hypoelastic material can be conceived to
undergo softening behavior under stress. We have recently
observed this behavior in E. Coli Langmuir monolayers
stretched under the action of the trough barriers [36]; in this
case, the effective plateau modulus is reached at a value
~g(/4, in agreement with the present model.
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In view of the stress-strain relationship, the nonlinear vis-
coelastic relaxation is discussed again in Fig. 5. The dynami-
cal values of the nonlinear elasticity modulus e(w)
=Re[o(u)]/u are plotted in Fig. 5(a) and the nonlinear dila-
tional viscosity, calculated as k(w)=Im[o(u)]/wu, in Fig.
5(b). As expected, the usual linear Maxwell-like relaxation is
recovered at zero strain (u—0) (see discussion above).

Similar qualitative behavior is observed at increasing
strain entering the nonlinear regime, but the viscoelastic pa-
rameters take, in general, effective values smaller at higher
strain (see insets in Fig. 5). As the system enters the nonre-
laxed dynamical regime (w>>1/7p), the stress softening be-
havior becomes more and more pronounced, i.e., the effec-
tive decrease in elasticity and viscosity as a result of the
emergence of modes of nonlinear motion is more efficient at
higher frequencies above the diffusional one. The present
results point out that the proposed diffusion-driven nonlinear
mechanism works in a way such that higher k modes are
more efficient than the linear fundamental mode: (a) to re-
distribute the elastic energy in a variety of modes of motion
thus resulting in higher deformations (plasticlike) than if
only the hookean mode were present, and (b) to minimize
viscous dissipation by flow enhancement. Therefore, a gen-
eral conclusion can be stated: the kK modes developed as a
consequence of non-linearity constitute a coupled series of
modes of motion able to enhance the viscoelastic response of
the system, in a way such that for a given applied stress the
deformation is higher and the energy losses lower than if the
response was linear.

VIII. CONCLUSIONS

Lateral diffusion in conjunction with natural convection
has been considered to drive nonlinear mass transport in
Langmuir lipid monolayers. The present model combines the
conservative dynamical equations for lipid transport along
the monolayer plane together with a material relationship
accounting for nonlinear hypoelasticity as experimentally
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observed in high-strain rheological measurements. For oscil-
latory motion, nonlinear harmonics are found to be recur-
rently coupled through a dynamical transfer function gov-
erned by the diffusion process, the diffusion characteristic
time 7p, being the only controlling parameter. At long times,
lateral diffusion is fully relaxed (1> 75) and the viscoelastic
response is found to be essentially linear and characterized
by a high viscous dissipation. On the other hand, at deforma-
tion times shorter than 7, lateral diffusion still has not
enough time to become relaxed; then the elastic energy is
efficiently distributed by the different nonlinear modes of
deformation resulting in a hypoelastic mechanical scenario
characterized by larger (plasticlike) deformations and lower
viscous friction losses than in the hookean linear regime. In
the case of oscillatory motion, the time-dependent viscoelas-
tic relationships arising from this model have been discussed
in the context of surface rheology experiments performed in
Langmuir monolayers of two different lipid systems, DPPC
and native E. Coli lipids. The presence of micrometer-sized
phase coexistence domains in these lipid systems has been
claimed to pump diffusive transport at the experimentally
accessible time scales (1>1 s). The nonlinear mechanical
response experimentally observed in these lipid systems is
found in good quantitative agreement with the theoretical
predictions from the model. We hypothesize the present
model to appropriately describe the mechanics of lipid mem-
branes under the action of lateral stresses, such as those in-
volved in cell division and motility processes.
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