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S. Bhattacharya," A. Milchev,"? V. G. Rostiashvili," A. Y. Grosberg,'” and T. A. Vilgis'
"Max Planck Institute for Polymer Research, 10 Ackermannweg, 55128 Mainz, Germany
Institute for Physical Chemistry, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
3Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455, USA
(Received 6 March 2008; revised manuscript received 9 May 2008; published 20 June 2008)

We study analytically and by means of an off-lattice bead-spring dynamic Monte Carlo simulation model the
adsorption kinetics of a single macromolecule on a structureless flat substrate in the regime of strong phys-
isorption. The underlying notion of a “stem-flower” polymer conformation, and the related mechanism of
“zipping” during the adsorption process are shown to lead to a Fokker-Planck equation with reflecting bound-
ary conditions for the time-dependent probability distribution function (PDF) of the number of adsorbed
monomers. The theoretical treatment predicts that the mean fraction of adsorbed segments grows with time as
a power law with a power of (1+)~!, where »=3/5 is the Flory exponent. The instantaneous distribution of
train lengths is predicted to follow an exponential relationship. The corresponding PDFs for loops and tails are
also derived. The complete solution for the time-dependent PDF of the number of adsorbed monomers is
obtained numerically from the set of discrete coupled differential equations and shown to be in perfect
agreement with the Monte Carlo simulation results. In addition to homopolymer adsorption, we also study
regular multiblock copolymers and random copolymers, and demonstrate that their adsorption kinetics may be

considered within the same theoretical model.
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I. INTRODUCTION

The adsorption of polymers at equilibrium is fairly well
understood from theoretical [1-7], computer simulation
[7-10], and experimental [11,12] points of view. On the
other hand, a great deal of work exists on the polymer non-
equilibrium adsorption of single polymer chains. One of the
earliest Monte Carlo (MC) simulations along this line was
implemented for single chains on the cubic lattice [13]. The
authors have tested a totally irreversible adsorption model
and a reversible one where a move resulting in the desorp-
tion of a segment was assigned a relative weight exp(x,)
with y, being the segmental adsorption energy in units kg7
It was found that at y,>2kpT the fraction of segments in
loops and trains start to deviate from their equilibrium val-
ues, i.e., the process become irreversible. Eventually at y,
=~ 10kgT the fraction of segments in loops and tails merges
the corresponding values for the totally irreversible model.

One of the important questions concerns the scaling of the
adsorption time 7,4, With the length of the polymer chain N.
Shaffer [14] has studied this problem using Monte Carlo
simulations with the bond fluctuation model (BFM) for
strong sticking energy of 10kzT. He found that the deviation
in the instantaneous fraction of adsorbed monomers from its
equilibrium value can be described by a simple exponential
decay. During the late stages, however, the relaxation func-
tion begins to deviate from an exponential, and the relaxation
slows down considerably. According to Shaffer, this might be
due to artifacts of the lattice model (cf. also Ref. [15]). The
main result of Shaffer [14] is that 7,4~ N'% (for compara-
tively short chains N =80).

The same scaling has been found by Ponomarev et al.
[16] who also used the BFM for N=100. Except the energy
gain (per segment) of €, an activation barrier €, for a seg-
ment to desorb was introduced in this simulation, defining
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thus a “temperature” T, =kzT/€,. This sets a characteristic
time for the passage of a segment across the barrier 7,
=1, exp(1/T,). Different adsorption dynamics has then been
found, depending on the ratio of 7, and the Rouse time:
7,/ Tr=N"2""1 exp(1/T,). The case 7,/ 7g <1 (at T,=1) cor-
responds to strong physisorption. On the other hand, if the
chain is relatively short and the barrier is high enough (7}, is
low enough) then 7,/7,>1, which corresponds to chemi-
sorption. They argue that at 7,/ 7, <1 the adsorption follows
a zipping mechanism whereby the chain adsorbs predomi-
nantly by means of sequential, consecutive attachment of
monomers, a process that quickly erases existing loops. In
this case 7,4,~ N'>7 for a self-avoiding walk (SAW) chain in
agreement with Shaffer’s results [14]. In the opposite limit
(chemisorption), the presence of a barrier enhances loop for-
mation in the course of adsorption. It was shown that even a
modest local barrier discourages the tendency for zipping
and switches on a new mechanism involving loop formation.
The scaling law in that regime reads 7,4~ N“, where the
exponent a=0.8 £0.2.

The irreversible chemisorption from the dilute polymer
solution has been theoretically studied [17,18] by making use
of the master equation (ME) method [19] for the loops dis-
tribution function. The authors argue that the process is
dominated by accelerated zipping when the sequential ad-
sorption is disrupted by large loops formation.

For strong physisorption the simple zipping mechanism,
as opposed to the accelerated zipping, has also been recently
considered by Descas, Sommer, and Blumen [20]. The au-
thors [20] used the BFM and suggested a simple theoretical
description of the corresponding adsorption dynamics based
on what they call a “stem-corona” model. This leads to the
scaling prediction 7,4~ N'*”, which is in reasonably good
agreement with the simulation result.

In the present paper we study the case of strong phys-
isorption by means of an off-lattice dynamic MC method and
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theoretically by employing the ME formalism. This makes it
possible to describe the adsorption dynamics not only in
terms of the average fraction of adsorbed segments but also
to include train and tail distribution functions which furnish
the main constituents of the dynamic adsorption theory. Sec-
tion II starts with the description of the adsorption dynamics
model, which shares many common features with the one
suggested by Descas er al. [20]. Then we use this model
within the ME formalism to treat the time evolution of the
distribution of adsorbed monomers (as well as the distribu-
tions of the monomers forming trains and tails). It is shown
that the problem can be mapped onto a drift-diffusion pro-
cess governed by a Fokker-Planck equation. We obtain the
numerical solution of this equation and discuss its conse-
quences. In Sec. III we briefly introduce the MC model. The
MC simulation results for homopolymers as well as for block
and random copolymers in the regime of strong adsorption
are given in Sec. IV. We show that our MC findings are in
good agreement with the theoretical predictions. We summa-
rize our results and conclusions in Sec. V. Some details of
the train distribution function calculation are relegated to the
Appendix.

II. ADSORPTION DYNAMICS IN TERMS OF TRAIN
AND TAIL DISTRIBUTIONS

Consider a single polymer molecule (grafted with one end
to a flat structureless surface) in an adsorption experiment
which is repeated over and over again. The monomer-surface
interaction is considered attractive with a sticking energy e
=E,-E,, where E, and E, are, respectively, the monomer
energies before and after the adsorption event.

A. Stem-flower scenario: A macroscopic law

As indicated by earlier MC-simulation results [16,20], in
the strong physisorption regime the process is assumed to
follow a simple zipping mechanism. Figure 1(a) gives snap-
shots of the chain conformation as it is evident from our
simulation results. One can see that the chain conformation
can be considered within the framework of a stem-flower
picture, which was discussed first by Brochard-Wyart [21] as
characteristic for a polymer chain under strong stationary
flow. Recently the stem-flower picture was employed in the
case of nonstationary pulled polymer chain [22]. It should be
pointed out that this picture shares many common features
with the stem-corona model, suggested by Descas et al. [20].
Here we reconsider it in a more systematic way and employ
it as a basic model to include fluctuations within the ME
formalism.

Figure 1(b) presents schematically the stem-flower sce-
nario of the adsorption dynamics. The number of adsorbed
monomers at time ¢ is denoted by n(r). The nonadsorbed
fraction of the chain is subdivided into two parts: a stretched
part (“stem”) of length m(z), and a remaining part (“flower”)
which is not yet affected by the tensile force of the substrate.
The tensile force propagation front is at distance R(¢) from
the surface. The rate of adsorption is denoted as v(t):aﬂ;tﬁ,
where a is the chain (Kuhn) segment length.
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FIG. 1. (Color online) (a) Snapshots of an N=256 chain confor-
mation, taken at successive time moments during the adsorption
process. The z coordinate of the ith monomer is plotted against
monomer index i. (b) Stem-flower picture of the adsorption dynam-
ics. The total number of adsorbed monomers at time 7 is denoted by
n(t). The tail, which contains all nonadsorbed monomers, consists
of a stretched part, a stem, of length m(z), and of a nonperturbed
part, which is referred to as a flower. The rate of adsorption is v(z).
The distance between the surface and the front of the tension propa-
gation is R(z).

A single adsorption event occurs with energy gain € and
entropy loss In(us/ u,), where us and u, are the connectivity
constants in three and two dimensions, respectively [23]. As
a result, the driving force for adsorption can be expressed as

€= kgl In(pus/py) F

drive = s
a a

(2.1)

where F=e—kgT In(us/ u,) is the change in free energy. The

friction force is related to the pulling of the stem at rate v(z),

i.e.,

dn(t)
dr -’

Sirie = é'oam(f) (22)
where {, is the Stokes friction coefficient of a single bead.
The equation of motion follows from the balance of driving,
Sfarives and drag force, fp;., which yields

dn(t) F

=—. 2.3
dt a’ (2.3)

Lom(t)

One may express m(?) in terms of n(z), if one assumes that at
time ¢ the flower [which is placed on average at a distance
R(t) from the surface] is not affected by the tensile force.
This means that R(7) is the size which the chain portion
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n(t)+m(r) occupied before the adsorption has started, i.e.,
aln(t) +m(t)]"=R(1), (2.4)

where v is the Flory exponent (e.g., ¥=3/5 in d=3 dimen-

sions) [23]. On the other hand, as shown in Fig. 1(b),
am(t) = R(t) (2.5)

up to a geometrical factor of order unity. Therefore the rela-
tion between m(r) and n(z) is given as

n(t) = m(O)"" = m(r). (2.6)

During most of the adsorption process the stem is sufficiently
long, m(t)>1, so that m(1)*3*>m(), i.e., m(t)=n(1)", and
Eq. (2.3) becomes

dn(t) F
Lonl(t )” =—. (2.7)
The solution of Eq. (2.7) reads
F 1/(1+V)
1)< | ——t . 2.8
n(t) [a2§0 } (2.8)

In result (for d=3 where v=3/5), one obtains a law for the
adsorption kinetics, n(z) o 1%2, which is in a good agreement
with MC findings [14,16,20]. In the course of adsorption the
stem grows and the flower moves farther away from the sur-
face. This, as it was mentioned in Ref. [20], makes the nucle-
ation of a new adsorption site on the surface less probable.

In the late stages of adsorption the flower has been largely
consumed and vanishes so that the nonadsorbed part of the
macromolecule exists as a stem only. From this moment on
the closure relation reads

n(t) + m(t) = N. (2.9)

A comparison of Eq. (2.9) with Eq. (2.6) shows that this pure
stem regime starts at n(r) =N—-N"=N, i.e., it could be basi-
cally neglected for sufficiently long chains.

The stem-flower scenario, which we used in this section
as well as the macroscopic equation of motion, Eq. (2.7), are
employed below as a starting point for the treatment of fluc-
tuations.

B. Time evolution of the distribution of adsorbed monomers

Next we focus on the instantaneous number of adsorbed
monomers (i.e., the total train length) distribution function
P(n,t). The number of adsorbed monomers n and the num-
ber of monomers in the nonadsorbed chain tail / are mutually
complementary, if one neglects the loops (we will argue be-
low that in the strong adsorption regime the loop contribu-
tion is rather small and reduces mainly to loops of size
unity). With this assumption, the corresponding tail distribu-
tion function 7(l,7) reads

T(l,t)=P(N-L1). (2.10)

Both P(n,t) and T(I,t) can be obtained either from the simu-
lation or by solving a set of coupled kinetic equations. For
the latter we use the method of the master equation [19]. We

PHYSICAL REVIEW E 77, 061603 (2008)

N-n-1

N-n+1

S~

FIG. 2. (Color online) (a) Creation-annihilation of an adsorption
state with » monomers due to a single-step process. The arrows
indicate possible single-step transitions with w*(n) and w™(n) being
the rate constants of adsorption and desorption events, respectively.
(b) The adsorbed monomers form trains, divided by defects (loops
of length unity). The total number of adsorbed monomers at time ¢
is denoted by n(z). The train length A, itself is a random number,
subject to an exponential distribution D(%,)—Eq. (2.32).

treat the adsorption as a sequence of elementary events, de-
scribing the (un)zipping dynamics while keeping in mind
that within an elementary time interval only one monomer
may change its state of sorption. Thus one can treat the (un-
)zipping dynamics as a one-step process, shown schemati-
cally in Fig. 2(a).

In order to specify the rate constants, we use the detailed
balance condition [19], which in our case [cf. Fig. 2(a)] reads

wtin-1)
w(n)

where again F=e—kgT In(us/ u,) is the free energy win
upon a monomer adsorption event and the energy gain €
=E,-E,. Detailed balance condition Eq. (2.11) is, of course,
an approximation for the nonequilibrium adsorption process
in question. This implies that, despite the global nonequilib-
rium, close to a “touchdown” point the monomers are in
local equilibrium with respect to adsorption-desorption
events. This also means that the monomer size is small
enough as compared to the stem length, so that this approxi-
mation is a good one, compatible with the stem-flower pic-
ture of adsorption dynamics.

The detailed balance requirement fixes only the ratio of
the rate constants and does not fully determine their values
which could be chosen as

w(n) = glm(n)]e™"s",

=T, (2.11)

wr(n-1)=g[m(n)]. (2.12)

In Eq. (2.12) the transmission factor g[m(n)] is determined
by the friction coefficient { which, within our stem-flower
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model, is defined as {={ym. Therefore, one obtains
kgT  kgT

2,7 2

a{ a fom

The notation g[m(n)] implies that the stem length m depends
on the total train length n and, furthermore, the relationship

m(n) is given by the closure Eq. (2.6), which also holds for
the instantaneous values, i.e.,

glm(n)]= (2.13)

n=m""-m.

(2.14)

With the rate constants from Eq. (2.12) at hand, the one-step
master equation reads [19]

%P(n,t) =w (n+ DP(n+1,0) +wr(n—-1)P(n—1,1)

—wt(n)P(n,t) —w (n)P(n,1), (2.15)
or in a more compact form,
d%P(n,t) = Alw (n)P(n,0)]+ A~ [w*(n)P(n,1)],
(2.16)

where the finite-difference operators A, A~! are defined as

Af(n) = fln+1) = f(n),
A f(n) = fln=1) = f(n).

The total number of the adsorbed monomers varies between
1 and N, ie., I=n=N. For n=1, Eq. (2.15) has to be re-
placed by

(2.17)

d%P(l,t) =w (2)P(2,1) —w*(1)P(1,1). (2.18)
Similarly, for n=N the ME reads
%P(N, H=w"(N-1)P(N-1,t) —w (N)P(N.,1).
(2.19)

Finally, the set of master equations (2.15), (2.18), and (2.19)
should be supplemented by the initial condition

P(n,t=0)=68(n-1), (2.20)

because the adsorption starts from the state of a one-chain
end grafted at the surface.

The equation of motion for the first statistical moment
(n)=="_nP(n,t), can be obtained from Eq. (2.16) by per-
forming the summation by parts as follows:

N-1

N
> g(WAf(n) = g(N)FN) = g(0)£(0) + 2 f(m) A~ g(n),
n=1

n=0
(2.21)
where f(n) and g(n) are arbitrary functions. Taking this into

account and keeping in mind that P(N,t)=P(0,t)=0 for sim-
plicity, the equation of motion for (n) then yields
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d

d—t<n) == (W (n) +w*(n)). (2.22)
With the relations for the rate constants Egs. (2.12) and
(2.13), this equation of motion becomes

fn(® En =" 1), 223)
dt a

where for brevity we use the notations n(r)=(n) and m(z)
=(m). The result, Eq. (2.23), should be compared with Eq.
(2.3) derived earlier by means of a simplified physical con-
sideration (see also paper [20] where this result was obtained
before us). Formally, Eq. (2.23) transforms back into Eg.
(2.3) when adsorption is very weak, F/kzT<<1. Importantly,
Eq. (2.23) has the same structure as Eq. (2.3) even when the
adsorption is not weak and the quantity F'/kgT is not small;
the only difference between these equations is that the effec-
tive force in Eq. (2.23) has the form (kzT/a)[1-e~*87] in-
stead of just F/a. This can be understood by the analogy
with the second virial coefficient of interaction between the
monomer and the surface. Indeed, we know that the contri-
bution to the free energy of an imperfect gas due to pair
collisions is proportional to the second virial coefficient
rather than just interaction energy; similarly in the case of
adsorption, the effective second virial coefficient is the quan-
tity that describes the effect of monomer attraction to the
wall. Thus, the zipping as a strongly nonequilibrium process
cannot be treated quasistatically by making use of a simple
“force balance.” The inclusion of fluctuations by employing
the ME formalism is important in order to obtain the correct
result for the driving force.

Fokker-Planck equation and boundary conditions

It is instructive to change now from the discrete represen-
tation, Egs. (2.16), (2.18), and (2.19), to a continuous one,
namely, to the Fokker-Planck equation for the distribution
function P(n,r) with proper boundary conditions. This can
be done by the substitution

(2.24)

After that, Eq. (2.16) takes on the form

& Pl 1) = ([ () = w ()P, )

+ %%{[w_(n) +w(n)]P(n,0)},  (2.25)

where [w*(n)—w™(n)] and [w™(n) +w*(n)]/2 play the roles of
drift velocity and diffusion coefficient, respectively.

To derive the proper boundary conditions we recall that at
n=1 the ME has a different form, given by Eq. (2.18). It is
convenient to require that Eq. (2.15) is still valid with the
additional condition
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wrn-1)P(n-1,1) —=w (n)P(n,1)],=; =0, (2.26)

i.e., the transitions between a fictitious state n=0 and the
state n=1 are also balanced.

Similarly, to reconcile the equation at n=N, given by Eq.
(2.19), with the general ME, Eq. (2.15), one should impose
the condition

(w(n+1)P(n+1,1) —w*(n)P(n,t)],y=0, (2.27)

which again expresses the balance between an artificial state
n=N+1 and the state n=N.

In order to gain deeper insight into the boundary condi-
tions given by Egs. (2.26) and (2.27), let us represent Eq.
(2.15) in the form

%P(n,t) =Alw (n)P(n,t) = wr(n-1)P(n-1,1].

(2.28)

This representation looks like a discrete version of the con-
tinuity equation, stating that the value in square brackets is
the probability current (with a negative sign), i.e.,

Jn)=wr(n-1)Pn-1,1)=w (n)P(n,1). (2.29)

A comparison of Eq. (2.29) with Egs. (2.26) and (2.27) al-
lows one to conclude that

Jn=1)=0 and Jmn=N+1)=0, (2.30)

i.e., one should impose reflecting boundary conditions on
both ends of the interval.

Within the Fokker-Planck formalism the probability cur-
rent has the form

J(n) =[w*(n) —w(n)]P(n,1) - %%{[W(n) +w (n)]P(n,0)}.

(2.31)

Thus the Fokker-Planck formalism makes it possible to map
the strong adsorption case onto a one-dimensional random
walk problem with drift and diffusion coefficients given in
terms of rate constants, Eq. (2.25). While such a description
provides physical insight into the problem, from the view-
point of numerics it is much easier to deal with the ME
discrete set, Egs. (2.15), (2.18), and (2.19). We will discuss
the results of this solution in Sec. II D.

C. Train distribution

Our MC-simulation results show that the distribution of
loops in the case of strong physisorption is mainly dominated
by the shortest loops of length unity. These loops can be
considered as defects during the process of zipping. More-
over, this distribution sets on much faster than the time for
complete adsorption. Thus one may consider the total num-
ber of the adsorbed monomers n(f) as a slow variable in
comparison to the number of defects (or loops of length
unity). The adsorbed monomers can be seen as an array of
trains, separated by an equilibrium number of defects [see
Fig. 2(b)]. The partition function of this one-dimensional ar-
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FIG. 3. (Color online) Adsorbed monomer number distribution
function P(n,r) (a) and its isolines as a two-dimensional log-log
plot (b). The variation of the distribution maximum, n,,,(7), is a
straight (dashed) line with slope 0.63.

ray can be determined rigorously (see the Appendix). Thus,
one derives an expression for the train distribution function

D(h,t) = ] , (2.32)

a0 ""p{ (1)
where h,,(r) is the average train length. Equation (2.32) is
nothing but the Flory-Schulz distribution which usually gov-
erns the molecular weight distribution in equilibrium poly-
merization of a broad class of systems, referred to as living
polymers [24].

D. Results from the ME numerical solution

The set of ordinary differential equations (2.15), (2.18),
and (2.19), with the initial condition Eq. (2.20), has been
solved numerically in this investigation. Typically, we use a
chain length N=32, the total time interval takes 300 units of
the the elementary time 7y=a’(,/ksT, and the sticking en-
ergy was chosen (in units of kzT) as €=4.0, whereas the
entropy loss In(us/ u,)=1In 2. Figure 3 demonstrates the re-
sult of this solution.

As it can be seen from Fig. 3, the adsorption kinetics
follows indeed the drift-diffusion picture. The initial distri-
bution is very narrow: the adsorption starts with n(0)=1 as a
grafted chain configuration. As time goes by, the distribution
maximum moves to larger adsorbed monomer numbers and
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FIG. 4. (Color online) The average adsorbed number of mono-
mer vs time for different chain lengths N. The dashed line denotes
the slope %%, following from Eq. (2.8). In the inset we show the
resulting scaling of the adsorption time with chain length 7oc N'9,

the distribution itself broadens. Eventually, the random pro-
cess hits the boundary n=N and stays there due to drift and
the reflecting boundary conditions. As a result, the final dis-
tribution is very narrow again, and is concentrated around
the boundary n=N. It is of interest that in the double loga-
rithmic coordinates the distribution maximum follows a
straight line (cf. Fig. 3, right panel) which reveals a clear
scaling law. The first moment n(z) of the distribution func-
tion P(n,t) also exhibits well expressed scaling behavior,
n(t)~ 1%, as shown in Fig. 4. In the inset we also show the
resulting relationship for the time of adsorption, 7o N'9, as
expected from Eq. (2.8). Based on the numerical results for
P(n,t) and making use of the relation Eq. (2.10), one can
calculate the tail distribution function T(I,7) as well. We will
discuss this in Sec. III, where we present our MC results.
There it will be seen that our MC findings are in a good
agreement with these theoretical predictions.

III. MONTE CARLO SIMULATION MODEL

To check the theoretical predictions mentioned in the pre-
vious sections we have performed Monte Carlo simulations
and investigated the adsorption kinetics of a homopolymer,
multiblock copolymers, and random copolymers on flat sur-
faces. We have used a coarse grained off-lattice bead-spring
model [25] to describe the polymer chains. Our system con-
sists of a single chain tethered at one end to a flat structure-
less surface. There are two kinds of monomers: “A” and “B,”
of which only the A type feels an attraction to the surface.
The surface interaction of the A-type monomers is described
by a square well potential U, (z)=¢€ for z<<& and U, (z)=0
otherwise. Here €/kgT is varied from 2.5 to 10.0. The effec-
tive bonded interaction is described by the FENE (finitely
extensible nonlinear elastic) potential.

-1, \2
Upene = — K(1 - )’ 111{1—(—l> } (3.1)
0

lmax -

with K=20, ,,.=1, [,=0.7, and [,,;,=0.4.
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The nonbonded interactions are described by the Morse
potential.

UM(”)

€n

= exp[_ 2'a(r_ rmin)] -2 exp[_ a(r - rmin)]’

(3.2)

with a=24, r;,=0.8, and €,/ kzT=1.

We use periodic boundary conditions in the x—y direc-
tions and impenetrable walls in the z direction. We have
studied polymer chains of lengths 32, 64, 128, 256, and 512.
Apart from homopolymers, we have also studied copolymer
chains with block size M=1-16 and random copolymers
(with a fraction of attractive monomers, p=0.25,0.5,0.75).
The size of the box was 64 X 64 X 64 in all cases except for
the 512 chains where we used a larger box size of 128
X 128 X 128. The standard Metropolis algorithm was em-
ployed to govern the moves with self-avoidance automati-
cally incorporated in the potentials. In each Monte Carlo
update, a monomer was chosen at random and a random
displacement attempted with Ax, Ay, and Az chosen uni-
formly from the interval —0.5=Ax,Ay,Az=0.5. The transi-
tion probability for the attempted move was calculated from
the change AU of the potential energies before and after the
move, as W=exp(-AU/kgT). As for a standard Metropolis
algorithm, the attempted move was accepted if W exceeded a
random number uniformly distributed in the interval [0,1). A
Monte Carlo step (MCS) is elapsed when all N monomers of
the chain are selected at random and given the chance to
perform an elementary move. Before the surface adsorption
potential is switched on, the polymer chain is equilibrated by
the MC method for a period of about 10° MCS (depending
on the chain length N, this period is varied) whereupon one
performs 200 measurement runs, each of length 8X 10°
MCS. In the case of random copolymers, for a given com-
position, i.e., percentage p of the A monomers, we create a
new polymer chain in the beginning of the simulation run by
means of a randomly chosen sequence of segments. This
chain is then sampled during the course of the run, and re-
placed by a new sequence in the beginning of the next run.

IV. MONTE CARLO SIMULATION RESULTS

We present here the main results from the computer simu-
lation of the adsorption kinetics and compare them to those
from the solution of the master equation, Egs. (2.15), (2.18),
and (2.19), validating thus the theoretical picture of Sec. IL

A. Order parameter kinetics—Homopolymers

In Fig. 5(a) we show the adsorption time transients which
describe the time variation of the order parameter n(f)/N (the
fraction of adsorbed segments) for homopolymer chains of
different length N and strong adhesion e€/kzT=4.0. Evi-
dently, in log-log coordinates these transients appear as
straight lines, suggesting that the time evolution of the ad-
sorption process is governed by a power law. As the chain
length N is increased, the slope of the curves grows steadily,
and for length N=256 it is equal to =~0.56. This value is
close to the theoretically expected slope of
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(1+v)"'=0.62—cf. Eq. (2.8), and for even longer lengths of
the polymers would most probably be observed. The total
time 7 it takes a polymer chain to be fully adsorbed can be
determined from the intersection of the respective late time
plateau of each transient with the straight line tangent to this
transient. Thus one may check the scaling of 7 with polymer
length N. In the inset to Fig. 5(a) we show the observed
scaling of the adsorption time with chain length 7<N¢,
whereby the observed power a=1.51 is again somewhat
smaller than the expected one, 1+v=1.59. This small dis-
crepancy is most probably due to finite-size effects too.
Figure 5(b) presents the adsorption transients for a chain
of constant length, N=256, for different strength of the sur-
face potential. Evidently, as the surface potential gets stron-
ger, the final (equilibrium) values of the transients at late
times t— % grow while the curves are horizontally shifted to
shorter times. Notwithstanding, the slope of the n(f) curves
remains unchanged when €/ kT is varied, suggesting that the

10/

kinetics of the process is well described by the assumed zip-
ping mechanism.

The changing plateau height may readily be understood as
reflecting the correction in the equilibrium fraction of ad-
sorbed monomers due to the presence of defects (vacancies)
for any given value of €/kgT. This is demonstrated in the
upper left inset in Fig. 5(b), where the observed plateau val-
ues are shown to be perfectly described by the expression
n_e=1-5 exp(—ka) under the assumption that the prob-
ability of a monomer to desorb from the surface (and create
a vacancy in the train) is determined by the Boltzmann factor
exp,fT. Evidently, the factor of 5 in front of the exponent
yields the entropic gain in free energy when an adsorbed
monomer detaches from the surface while its nearest neigh-
bors still stick to it.

The second inset in Fig. 5(b) shows that the adsorption
time transients collapse on a master curve, if one rescales the
time axis appropriately. Note that for a very strong potential
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FIG. 6. (Color online) (a)
Number of adsorbed segments,
Nogs(2), vs time ¢ for regular AB
copolymers with block size M=1
—64 and length N=256. For com-
parison, the transient of a ho-
mopolymer is also shown by a

-+ M=16
M=32
- M=64

solid line. The time interval, taken
by the initial “shoulder,” is shown
in the upper left inset. The lower
inset displays the variation of the
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scaling exponent «, for the time of
adsorption 7<N* vs block length
relationship. (b) The same as in
(a) but for random copolymers of
length N=256 and a different
composition p=0.25,0.5,0.75. For
p=1, one has the case of a ho-
mopolymer. The inset shows the
variation of a with p.

(b)
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€/ K3T=10.0, the corresponding transient deviates somewhat
from the master curve since the establishment of local equi-
librium (which we assumed in the theory to happen much
faster than the adsorption process itself) is hampered. Also
the transient for €/kzT=2.5 (not shown in this inset) was
found not to fit into the master curve since this strength is
close to that of the critical threshold for adsorption, the at-
traction to the surface is comparatively weak, and zipping is
not the adequate mechanism. For the transients which do
collapse on a master curve, however, one may view the res-
caling of the time axis in Fig. 5(b) by the expression ¢
— 1 1-13.7 expﬁ] as a direct confirmation of Eq. (2.23),
where the time variable ¢+ may be rescaled with the driving

10

10’

force of the process (i.e., with the expression in square
brackets). The factor =~13.7 gives then the ratio w3/ u, of the
effective coordination numbers in three and two dimensions
of a polymer chain with excluded volume interactions. s
and u, are model dependent and characterize, therefore, our
off-lattice model.

B. Order parameter kinetics—Regular
and random copolymers

In Fig. 6 we examine the adsorption kinetics for the case
of regular block copolymers with block size M—Fig. 6(a),
and for random copolymers—Fig. 6(b), bearing in mind that
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the zipping mechanism, assumed in our theoretical treatment,
is by no means self-evident when the file of sticking A mono-
mers is interrupted by neutral B segments. It becomes evi-
dent from Fig. 6(a), however, that except for a characteristic
“shoulder” in the adsorption transients, the power-law char-
acter of the order parameter variation with time remains un-
changed. Evidently, only the first shoulder in the adsorption
transient is well expressed while the subsequent ones disap-
pear against the background of much larger time scales in the
log-log representation of Fig. 6(a). If, however, one monitors
the adsorption of only a single adsorption event with time
then one observes in normal coordinates a series of such
shoulders like a “staircase” in N,y (f) (not shown here).

The variation of the power exponent «, with block length
M, where « describes the scaling of the total adsorption time
with polymer size N, 7<N¢, is displayed in the inset at the
right. Evidently, a declines as the block size is increased.
This finding appears surprising at first sight, since it goes
against the general trend of regular multiblock copolymers
resembling more and more homopolymers (with @=1+ v for
the latter), as the block size M — . Moreover, it would im-
ply shorter adsorption times for smaller block size, M — 1,
although the shoulder length visibly grows with growing
M—see Fig. 6(a). In fact, however, as one may readily verify
from Fig. 6(a), the transients are systematically shifted to
longer times (i.e., the total adsorption takes longer) due to a
growing prefactor for M — 1, which does not alter the scal-
ing relationship 7o N®. One may thus conclude that the fre-
quent disruption of the zipping process for smaller blocks M
slows down the overall adsorption process (a transient stair-
case with numerous short steps) in comparison to chains with
larger M where the zipping mechanism is fast (a staircase
with few longer steps).

The characteristic shoulder in the adsorption transients of
regular multiblock copolymers manifests itself in the early
stage of adsorption and lasts progressively longer when M
grows. We interpret the temporal length of this shoulder with
the time it takes for a segment from the second adsorptive A
block in the polymer chain to be eventually captured by the
attractive surface, once the first A block has been entirely
adsorbed. For sufficiently large blocks one would therefore
expect that this time interval, 7, associated with the capture
event, will scale as the Rouse time, M'*??, of a nonadsorbing
tethered chain of length M. The observed 7, versus M rela-
tionship has been shown in the upper left inset in Fig. 6(a).
The slope of =1.49 is less than the Rouse time scaling ex-
ponent, 2.18, which one may attribute to the rather small
values of the block length M that were accessible in our
simulation. One should also allow for scatter in the end time
of the shoulder due to the mismatch in the capture times of
all the successive A blocks in the course of our statistical
averaging over many chains during the computer experi-
ment.

In the case of random copolymers, Fig. 6(b), the observed
adsorption transients resemble largely those of a homopoly-
mer chain with the same number of beads again, apart from
the expected difference in the plateau height which is deter-
mined by the equilibrium number of adsorbed monomers.
One should note, however, that a rescaling of the vertical
axis with the fraction of sticking monomers p, does not lead
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to coinciding plateau height—evidently the loops whose size
also depends on p also affect the equilibrium number of ad-
sorbed monomers. The variation of the observed scaling ex-
ponent a with composition p is shown in the inset to Fig.
6(b) wherefrom one gets a= 1.6. Note that this value is con-
siderably lower than the power of 2.24 which has been ob-
served earlier [14], however, for very short chains with only
ten sticking beads. One may conclude that even for random
copolymer adsorption the typical time of the process scales
as 7 N%, as observed for homoblock and regular block co-
polymers. It is conceivable, therefore, that an effective zip-
ping mechanism in terms of renormalized segments, that is,
segments consisting of an A and B diblock unit of length 2M
for regular multiblock copolymers provides an adequate no-
tion of the way the adsorption kinetics may be treated even
in such more complicated cases. For random copolymers the
role of the block length M would then be played by the
typical correlation length.

C. Probability distribution functions

The time evolution in the corresponding probability dis-
tribution functions (PDF) of all the trains, loops, and tails of
adsorbed polymers provides a lot of information and insight
in the kinetics of the adsorption process. In the Appendix we
have derived theoretically the expected train distribution un-
der the assumption that the local equilibrium of loops of unit
length is established much faster than the characteristic time
of adsorption itself. The resulting distribution of possible
train lengths is shown to be exponential, in close analogy to
that of living polymers [24]. In Fig. 7(a) we plot the ob-
served PDF of train lengths for a chain with N=256 at two
strengths €/kpT of the adsorption potential. When scaled
with the mean train length h,,(r)=(h(¢)), at time 7, in both
cases for €/kzT=3.0 and 5.0 one finds an almost perfect
straight line in semilogarithmic coordinates, as predicted by
Eq. (2.32).

One may thus conclude that the PDF for train lengths
preserves its exponential form during the course of the ad-
sorption process, validating thus the conjecture of rapid local
equilibrium. The latter, however, is somewhat violated for
the case of rather strong adsorption—e/kpT=5.0—shown in
Fig. 7(a), which is manifested by the increased scatter of data
at late times when the adsorption process overtakes to some
extent the relaxation kinetics on the surface. The PDF of
loops W(k,t) at different times after the onset of adsorption
is shown in Fig. 7(b). Evidently, the distribution is sharply
peaked at size one whereas less than the remaining 20% of
the loops are of size two. Thus the loops can be viewed as
single thermally activated defects (vacancies) consisting of a
desorbed single bead with both of its nearest neighbors still
attached to the adsorption plane. As the inset in Fig. 7(b)
indicates, the PDF of loops is also described by an exponen-
tial function. The PDFs for loops at different times collapse
on a master curve, if scaled appropriately with the instanta-
neous order parameter n(z)/N.

Eventually, in Fig. 8(a) we present the observed PDF of
tails for different times ¢ after the start of adsorption, and
compare the simulation results with those from the numeric
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solution for 7(I,t) according to Eq. (2.10). One may readily
verify from Fig. 8 that the similarity between simulational
and theoretic results is really strong. In both cases one starts
at r=1 with a strongly peaked PDF at the full tail length
[(r=1)=N. As time goes by, the distribution becomes broader
and its maximum shifts to smaller values. At late times the
moving peak shrinks again and the tail either vanishes, or
reduces to a size of single segment which is expressed by the
sharp peak at the origin of the abscissa.

V. CONCLUSIONS

In this study we examine the adsorption kinetics of a
single polymer chain on a flat structureless plane in the
strong physisorption regime. Adopting the stem-flower
model for a chain conformation during adsorption, and as-
suming the segment attachment process to follow a zipping
mechanism, we develop a scaling theory which describes the
time evolution of the fraction of adsorbed monomers for
polymer chains of arbitrary length N at adsorption strength of
the surface e/kpT.

We derive a master equation as well as the corresponding
Fokker-Planck equation for the time-dependent PDF of the
number of adsorbed monomers and for the complementary
PDF of tails, and define the appropriate reflecting boundary
conditions. Inherent in this derivation is the assumed condi-
tion of detailed balance, which makes it possible to relate the
elementary steps of adsorption or desorption. From the nu-
meric solution of the equivalent discrete set of coupled first-
order differential equations we find that the growth of the
adsorbed fraction of monomers with time is governed by a
power law n(f) = ¢//1*¥, while the typical time of adsorption 7
scales with the length of the polymer N as 7 N® with a
=1+wv. The adsorption transients, found in the Monte Carlo
simulation, are in good agreement with these predictions if
one takes into account the finite-size effects due to the finite
length of the studied polymer chains.

We demonstrate also that the height of the long time pla-
teau in the adsorption transients is determined by the equi-
librium number of vacancies (defects) in the trains of ad-
sorbed monomers. The transients themselves are found to
collapse on a single master curve if time is measured in
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force for adsorption as determined by the surface potential
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A deeper insight into the adsorption kinetics is provided
by our detailed study of the relevant probability distributions
of trains, loops, and tails during the adsorption. The pre-
dicted exponential expression for the PDF of trains is in a
very good agreement with our simulational findings. The
loops in the strong physisorption regime are observed to re-
duce to occasional desorbed segments (vacancies) which
play little role in the dominating picture of trains and tails.
The PDFs of the latter are found from the simulation data to
present a shape which is fully consistent with that of the
theoretic treatment. It should be noted also that for chemi-
sorption, a monomer adsorption event involves a significant
local activation barrier [17,18]. In this so-called “accelerated
zipping” regime, the loops formation disrupts the adsorption
process and the corresponding dynamics differs significantly
from the one investigated in this paper.

! better visibility the time slices for
t=1, 5, 30, 100, 150, 200, and 300
are shifted along the time axis and
(b) arranged such that the initial dis-
tribution for =1 is represented by
the most distant slice.

30 35

Eventually, in the case of regular multiblock and random
copolymers, we find that the adsorption kinetics strongly re-
sembles that of homopolymers. The observed deviations
from the latter suggest plausible interpretations in terms of
polymer dynamics, however, it is clear that additional inves-
tigations will be warranted before a complete picture of the
adsorption kinetics in this case is established too.
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APPENDIX: DERIVATION OF TRAIN DISTRIBUTION

The partition function of a one-dimensional array of
p+1 trains, separated by p defects, has the following form:

Bn(1).p] = f~f¢m-~w

0<x;<xy -xp<n(l)

n(t) n(t) n(t) 1
=J dxlf dxz---J dx,=—[n() ],
0 Xq X,_1 p'

(A1)

where n(z) is the total number of adsorbed monomers at time
t.

Consider now the distribution of an arbitrary train A,
=X, —X,. In order to find it, one should carry out the inte-
gration in Eq. (A1) over all x coordinates except x, and x,,,.
In result of the integration one gets

1 o~
(s=1)!(p=-s— 1)!x3 Tn(r)

—s—1
- -xs+l]p dxsd-xs+l ’

q)xs)csﬂ[n(t) pldxgdxg,, =

(A2)

where Eq. (A1) has been used separately for the intervals
[vas] and [xs+l’n(t)]~

The distribution of the train length g, ;=x,,;—x,, follows
immediately from Eq. (A2) after integrating over x;, i.e.,
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1
@, [n0.0)= 5o
n(t)_hs+l
Xf X n(t) = hyyy = x, P dx,.
0

(A3)

By the substitution y=x,/[n(t)-hy, ], in the integral of Eq.
(A3) one arrives at the result

[n(t) = hyur )™ f]
s=D!(p-s-1)

@y, [n(1).p]= Y= y)ridy

0

R P (A4)

(p-1!
where one has used f(l)ys‘l(l -y ldy=(s=1)!(p-s
—1)!/(p—1)!. The result in Eq. (A4) does not depend on the
consecutive number of the train, as expected. The normalized
probability to find a train of the length 4 at time ¢ is given by

D < 7]

®[n(1),p]
__pt [ -y
C(p-D! [n(@)F

il

[ .p
"n<neXp{ hn(ﬂ}’

where one uses Egs. (A1) and (A4) as well as the conditions
p>1 and h/n(r)<1. Taking into account that the average
train length h,,(f)=n(z)/p, the last expression results in Eq.
(2.32).
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