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The dynamics of thermal capillary waves �CWs� on an ionic liquid’s surface are studied at the transition
from propagating to overdamped CWs by x-ray photon correlation spectroscopy. The analysis considers both
homodyne and heterodyne contributions, and yields excellent full line-shape experiment-theory agreement for
the structure factor. The CWs’ Brillouin scattering becomes extinct at a critical temperature Tc

JK�10 K above
Tc

LL, the propagating modes’ hydrodynamic limit, in agreement with linear response theory. Surprisingly, the
same power law applies at both Tc. The results rule out the presence of a suggested surface dipole layer.
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Synthesized first in 1914 �1�, room-temperature ionic liq-
uids �RTILs�, organic salts with room-temperature melting
points, have been intensely studied over the last decade for
numerous applications such as “green” solvents in chemical
synthesis �2�, batteries �3�, fuel and solar cells �4�, and even
telescope construction �5�. Their great interest to basic sci-
ence is due to their peculiar molecular structure and compo-
sition �a bulky organic cation with a small inorganic anion�,
which produce unusual molecular packings, and to a com-
plex combination of interactions �van der Waals, ionic, dipo-
lar, and hydrogen bonding� seldom occurring together in
other materials �6�. Among over a thousand RTILs synthe-
sized to date, 1-butyl-3-methylimidazolium tetrafluoroborate
��bmim��BF4�� is one of the best studied �7–10� due to its
favorable physicochemical properties for many applications
�9,11�. It is also one of the only two RTILs for which the
static structure of the free surface has been measured with
submolecular resolution �8,12�, including, in particular, the
time-averaged contribution from thermally excited capillary
waves �CWs�, present at all liquid interfaces �13,14�. How-
ever, time-resolved CW dynamics measurements by grazing-
incidence x rays, which sample the surface to a small �50 Å
depth only, are not available for any RTIL. X-ray photon
correlation spectroscopy �XPCS� is a method of choice for
such studies. The time ��� correlations of CW-scattered pho-
tons, G�qx ,�� �arguments defined in Fig. 1�, yield the CW
spectrum, S�k ,�� �k ,� being the CW wave vector and angu-
lar frequency�, and its Fourier transform, the dynamic sur-
face height-height correlation function, C�k ,��, the physical
quantity of interest.

We report here XPCS measurements for �bmim��BF4�,
which was chosen for its air and temperature stability, avail-
ability with high purity �8,9�, and its known physicochemical
properties. Recent x-ray reflectivity measurements �8� show
that �bmim��BF4� has a dense, 6-Å-thick layer at its free
surface, which may influence the surface dynamics, as do
Langmuir films �15,16� and surface-frozen layers �17�. Dy-

namic light-scattering �DLS� measurements of a related
RTIL suggested the existence of a dipole layer at the surface
exhibiting a ferroelectric order-disorder transition with tem-
perature �18�. Also, �bmim��BF4� should exhibit a transition
from propagating to overdamped CWs. The pioneering, and
only, XPCS study of such a transition �19� in a water-
glycerol mixture, lacked independently measured surface
tension and viscosity values, and employed a simplified
analysis, as discussed below.

Undulators at third-generation synchrotrons deliver coher-
ent beams of sufficient intensity for XPCS measurements on
liquid surfaces �19–22�. The use of grazing incidence and
short wavelength ��=1.54481 Å� has several advantages
over DLS, among them surface specificity and the ability to
probe much shorter length scales �20,23,24�. In DLS, the
scattered light is mixed with a coherent reference beam, pro-
ducing a heterodyne �rather than a homodyne� signal, which
provides field �rather than intensity� correlation information.
In XPCS, spontaneous heterodyning occurs �20�, tentatively
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FIG. 1. �Color online� Measured �symbols� and theory-fitted
�lines� time-correlation functions at the listed qx �a� and T �b�, y
shifted for clarity. Inset: The scattering geometry. kin, kout, qz, qx,
and q are the incoming and outgoing wave vectors and the surface-
normal, -parallel, and total wave vector transfers.
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assigned to the breakdown of the Fraunhofer conditions
�20,21�. Moreover, both homodyne and heterodyne signals
may be present. We show below that a quantitative analysis
of the measured data is still possible, even without knowing
what causes the spontaneous heterodyning.

Measurements were done at ID10A Troïka I beamline,
ESRF �Grenoble, France�, at a grazing incidence angle �
=0.114°, slightly below the critical angle for total reflection.
Samples, obtained from Chemada Ltd. and purified as dis-
cussed elsewhere �8�, were placed in an evacuated,
temperature-controlled cell. A fast avalanche photodi-
ode detector and a Flex01-08D correlator were used.
To obtain a surface-parallel wave vector transfer,
qx= �2� /���cos �−cos ��, the detector was placed at a non-
specular angle ��� within the reflection plane �Fig. 1�a�,
inset�, and measured time correlations for the diffusely scat-
tered radiation. The incident beam pinhole was 10 �m
�10 �m. The detector slit �25–50 �m�w��10 �m �h�,
1250 mm from the sample� provided a pointlike
�	3�10−8 Å−1� qx resolution, but a coarse
�	�4−8��10−5 Å−1� qy resolution, requiring integration
over a rectangular resolution function throughout our analy-
sis to avoid an erroneous interpretation of the measurements
�25�.

Figure 1 shows the measured and background-subtracted
XPCS spectra. All curves in Fig. 1�a� exhibit decaying oscil-
lations, the signature of propagating CWs. The CWs’ fre-
quency is roughly inversely proportional to the dip position,
implying an almost linear dispersion relation. By contrast,
the T=313 K curve in Fig. 1�b� decays exponentially, show-
ing viscosity-overdamped CWs at this T. The viscosity’s ex-
ponential T dependence increases the damping as T de-
creases. So does an increase in qx, since the fluid’s viscous
dissipation depends on spatial gradients in the velocity �26�
and these are larger for shorter wavelengths.

To obtain a theoretical expression for fitting the measured
G�qx ,��, we first address the CW modes allowed by hydro-
dynamics, though not necessarily excited in a particular sys-
tem, then discuss the actual modes thermally excited in our
system. The hydrodynamic modes obey the linearized
Navier-Stokes equation, subject to surface boundary and liq-
uid continuity conditions �16,27�. Levich and Lucassen-
Reynders and Lucassen �LL� obtain the dispersion relation,
D�k , �̃�=0 �16�,

D�k,�̃� � gk + 
k3/� − �̃2 − i�̃��k,�̃� = 0, �1�

where g=9.8 m /s2, 
, =��T� /��T�, �, and � are, res-
pectively, the gravitational acceleration, surface tension,
kinematic and static viscosities, and density.
��k , �̃�=4�+4i�2 / �̃�1−�1− i�̃ /��, where �=k2. The roots
of Eq. �1� �obtained numerically� are the CWs’ complex an-
gular frequencies, �̃=�+ i�, where � determines the CWs’
temporal damping. These roots become purely imaginary
��=0� for


�/�4�2k� � 0.145, �2�

indicating that propagating CWs are prohibited �28�.
The actual thermal population of the hydrodynamic

modes is given by Jäckle and Kawasaki’s �JK� �27� linear

response theory, yielding the CW �ripplon� spectrum

S�k,�� = − �2kBTk/�����Im D�k,��/�D�k,���2. �3�

For negligible damping, Eq. �3� yields sharp Brill-
ouin �Stokes and anti-Stokes� peaks, centered at
�= 	 �gk+
k3 /��1/2. For strongly overdamped CWs, the
spectrum is well approximated by a single Lorentzian, cen-
tered at �=0. Neither limit applies here, as revealed by sub-
stitution of the appropriate values into Eq. �2�. Thus, S�k ,��
must be Fourier transformed numerically to yield C�k ,��
�21�. C�k ,�� is real since S�k ,��=S�k ,−��. Measured
G�qx ,�� exhibits both heterodyne and homodyne contribu-
tions in varying proportions. These originate, respectively, in
wave mixing in the presence, or absence, of a reference
beam—the wings of the specular reflection �24�. Explicitly
accounting theoretically for both contributions yields

G�qx,�� = A�C̃�qx,�� + �AC̃�qx,���2. �4�

C̃�qx ,��=	C�q� ,����qy −qy��dqy�, where ��q� is the ex-
perimental �rectangular� resolution function �29� and
q�= �qx

2+ �qy��
2�1/2.

Equation �4� includes only two unknowns: A, the overall
intensity factor, and �, the homodyne to heterodyne contri-
bution ratio. Using those as fit variables, all XPCS curves
measured for 303 K�T�413 K and 13 mm−1�qx
�78 mm−1 could be well fitted. Figure 1 �lines� demon-
strates the excellent fits, obtained using independently mea-
sured 
, �, and � �31�.

The fitted A and � were used to calculate the experimen-
tal CWs’ spectra from the experimental Gexp�qx ,�� curves in
Fig. 1, by inverting Eq. �4�,

C̃�qx,�� = 
�A2�2 + 4A2Gexp�qx,���1/2 − A��/�2A2� , �5�

noting that C̃�qx ,�� is real, and that only the positive root in

Eq. �5� is physical. The Fourier transform of C̃�qx ,��,
S̃�qx ,��, yields the resolution-modified experimental CW
spectrum,

S̃�qx,�� =� S�q�,����qy − qy��dqy�, �6�

in Fig. 2 �symbols�. For low damping �i.e., low qx and high

T�, S̃�qx ,�� exhibits well-separated inelastic-scattering
Stokes and anti-Stokes Brillouin peaks, corresponding to
propagating CWs. As � increases, the two peaks merge to a
single peak centered at �=0. Here the CWs are overdamped,
and the scattering is quasielastic, since energy transfer to
propagating CWs is prohibited �32�. Substitution of Eq. �3�
into Eq. �6� yields the theoretical CW spectra �Fig. 2, lines�.
The good agreement, without any adjustable parameters, is
evident. The only earlier attempt at a similar analysis �19�,
addressed only pure heterodyne curves, neglected resolution,
and treated 
 and � as additional fit parameters. These, and
the poorer data yielded significant deviations between theory
and experiment.

A and � are related to the scattered, Is, and the reference,
Ir, intensities. Discarding �-independent background terms,
the normalized time-averaged �· · �� intensity autocor-
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relation signal is Gexp�q ,���I�q , t�I�q , t+��� / I�q , t��2

= �2IsIrg
�1����+ Is

2g�2����� / �Ir+ Is�2 �23�. g�1���� and g�2����
are the first- and second-order correlation functions of
the scattered field. Since g�1����= Is

−1C�q ,�� and
g�2����=1+ �g�1�����2, we obtain

Gexp�q,�� = �2IrC�q,�� + �C�q,���2�/�Ir + Is�2. �7�

Neglecting resolution, C�q ,��= C̃�q ,��. Equating the pre-
factors in Eqs. �7� and �4� yields Ir=� / �2A� and
Is= �2−�� / �2A�, which can now be calculated from the fitted
A and �. Ir�qx� shows no consistent trend vs qx beyond a
statistical scatter, and a random time variation. Is�qx�, how-
ever, follows, within some scatter, the qx

−2 power law �Fig.
3�a��, predicted and observed for the time-averaged diffuse
CW scattering �13�. This further validates our analysis.

Interestingly, for our 
, �, and �, the theoretical critical
temperature Tc

JK, where the inelastic double-peak structure
merges into a single quasielastic scattering peak, is found to
be, for all k, �10 K higher than Tc

LL, the theoretical hydro-
dynamic critical temperature of Eq. �2� �Fig. 3�b�, inset�.
This can be traced to the critical damping conditions,
��Tc����
� /k�1/2, where the hydrodynamic dispersion rela-
tion �Eq. �2�� yields �=1.7, while the S�k ,�� spectra �19�
yield �=0.8. The measured S�k ,�� are indeed observed to
become completely overdamped at Tc

JK�Tc
LL, in agreement

with the linear response theory �27�. This is easily rational-
ized: the dispersion relation merely states that ripplon propa-
gation is hydrodynamically allowed for T�Tc

LL, however,
thermodynamically, the thermal population of these modes at
T�Tc

JK is so small that only quasielastic scattering is ob-
served. Put differently, the short lifetime of the ripplons for
T�Tc

JK broadens the off-center Brillouin peaks of S�k ,��, so
that S�k ,�=0� becomes larger than the Brillouin peaks,
S�k ,�= 	�p�: only the quasielastic scattering ��=0� is now
allowed. The same effect is observed for the much simpler
case of a damped pendulum as a damping-induced lowering

of the actual resonance frequency below the eigenfrequency
�33�.

Figure 3�b� shows the propagating CWs’ �, calculated
from the dispersion relation �Eq. �1�� �lines� and peak posi-
tions �p of S�k ,�� �open symbols�. Both exhibit the same
power-law behavior, with a 1 /2 critical exponent, even
though the corresponding critical temperatures �Tc

LL and Tc
JK,

respectively� differ by �10 K �inset�. While available inten-
sities prohibit measurements very close to Tc, the measured
�p �closed symbols� follow closely the linear response
theory �27�, both close to �main Fig. 3�b�� and far from �in-
set� criticality.

The critical exponent 1 /2 is obtained in the linear
response theory by noting that near criticality
�p��2 /3�Re�
k3 /�−5�2 /4�1/2 �19�. Neglecting �’s weak T
dependence, �T� follows the exponential form of ��T�.
Nothing special happens in the bulk at Tc

JK, which is a tran-
sition in the surface dynamics. Thus, expanding �T� in
t=T−Tc

JK, �T→Tc
JK�=�Tc

JK�−�t+¯, substituting in �p
above, and keeping terms up to linear,

�p�T� = Re��p
2�Tc

JK� + �10/9�k4�Tc
JK��t�1/2. �8�

Since no inelastic scattering occurs at Tc
JK, �p�T→Tc

JK�→0,
and the t1/2 power law is obtained.

In conclusion, the T and k dependences of the CW spec-
trum of �bmim��BF4� have been determined by XPCS. We
demonstrate that the measured G�qx ,�� can be accurately
analyzed by a direct application of the linear response theory,
using only two fit parameters: the overall intensity and the
homodyne-to-heterodyne intensity ratio. The fits allow calcu-
lations of the experimental CWs spectra, which exhibit a
transition from propagating to overdamped modes. Brillouin
scattering by the propagating modes is extinguished �10 K
above the hydrodynamically predicted critical temperature
where the CWs become overdamped by viscosity. Neverthe-
less, � still approaches both temperatures with the same 1 /2
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power law. The good theory-experiment agreement, obtained
using independently measured 
, and bulk � and �, implies
negligible influence of the �bmim��BF4� dense surface layer
�8�. This is perhaps not too surprising, since assuming the
�unknown� dilational modulus of the layer to equal 
 /2
yields a calculated �10% decrease only in �p in our qx
range. This would be difficult to resolve in our experiment.
In low-viscosity liquids, the influence of surface layers is
clearly observed �15,17�. The dipole layer of density
�2 nC /m found by DLS for �bmim��PF6� �18� should have
yielded here, e.g., a well-observable 40% decrease in �p at

qx=36 mm−1, and a conversion of the clearly propagating
CWs at qx=56 mm−1 �see Figs. 1�a� and 2�a�� to overdamped
CWs. These effects are not observed, indicating a dipole sur-
face layer, if it exists, with fivefold �or more� lower dipole
density. XPCS measurements for additional RTILs, e.g.,
�bmim��PF6�, are required to better elucidate the surface dy-
namics of RTILs.
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