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In two independent articles, Escudier and Presti �J. Non-Newtonian Fluid Mech. 62, 291 �1996�� and
Peixinho et al. �J. Non-Newtonian Fluid Mech. 128, 172 �2005�� studied experimentally the flow structure of
a yield stress fluid in a cylindrical pipe. It was observed that the mean, i.e., time-averaged, velocity profiles
were axisymmetric in the laminar and turbulent regimes, and presented an increasing asymmetry with increas-
ing Reynolds number in the transitional regime. The present paper provides a three-dimensional description of
this asymmetry from axial velocity profiles measurements at three axial positions and different azimuthal
positions. The observed transitional flow suggests the existence of a robust nonlinear coherent structure char-
acterized by two weakly modulated counter-rotating longitudinal vortices. This new state mediates the transi-
tion between laminar and turbulent flow.
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INTRODUCTION

Understanding the mechanism of transition from laminar
to turbulent flow of Newtonian fluids has been an ongoing
quest for more than a century. It is only during this last
decade that considerable advances have been made with the
discovery of new numerical solutions that are believed to
constitute the skeleton of the turbulent attractor. For Newton-
ian fluid flow in a pipe of circular cross section, based on the
self-sustained-process �SSP� theory developed by Waleffe �1�
and the subsequent nonlinear continuation approach �2�, a
family of three-dimensional traveling waves that propagate
at a constant phase speed in the streamwise direction were
discovered by Faisst and Eckhardt �3� and Wedin and Ker-
swell �4�. These traveling waves �TW’s� originate in saddle-
node bifurcations and are immediately linearly unstable.
They are dominated by pairs of downstream vortices and
streaks and are very similar to the coherent structures ob-
served experimentally in equilibrium puffs �5�. TW’s of one-
fold through sixfold symmetries have been identified numeri-
cally, but only twofold, threefold, and fourfold TW’s are
observed experimentally below a Reynolds number Re
= ��UBD� /�=3000, where � is the fluid density, UB is the
bulk velocity, and D=2R is the pipe diameter. Very recently,
asymmetric TW’s composed by two rolls in the cross section
were computed �6–8�.

Concerning the transition to turbulence for non-
Newtonian fluids flows, very little is available in the litera-
ture, despite the importance of this problem in the design and
control of several industrial processes such as in oil-well
cementing, extrusion of molten polymers, paper coating, etc.
Nevertheless, the existing literature reveals an interesting and
yet unexplained effect: In a certain range of Reynolds num-
bers, the mean flow presents an asymmetry, while in the
laminar and turbulent regimes the flow is axisymmetric.
Here, mean refers to time-averaged. Independent observa-
tions of this asymmetry have been made by Escudier and
Presti �9� and Peixinho et al. �10�. These two groups recently

jointly published these and additional observations in �11� to
highlight the effect. It was also clearly indicated in �11� that
this asymmetry is not a consequence of the Coriolis force
arising from the Earth’s rotation. Likewise, the temperature
gradients as well as the longitudinal curvature of the pipe are
too weak to modify the velocity profile. Therefore, the asym-
metry of the velocity profiles observed in �9,10� is a conse-
quence of a fluid-dynamical mechanism rather than an ex-
perimental artifact. This conclusion is supported by two
different studies: �i� an experimental study of Eliahou et al.
�12� on the transitional pipe flow for Newtonian fluid and �ii�
direct numerical simulation of the weakly turbulent pipe flow
of shear thinning fluid performed by Rudman et al. �13�. In
the first study, an asymmetric distortion of the mean velocity
profiles is observed only when a high amplitude asymmetric
perturbation is imposed. In the second one, the authors indi-
cate that for sufficiently shear thinning behavior �power-law
fluid with n=0.5�, “the active region of the flow continually
moves along the pipe and appears to preferentially occur at
one azimuthal location for extended times.”

A three-dimensional description of the asymmetry is
given in this paper. The measurements performed in the tran-
sitional flow allowed to highlight the existence of a nonlinear
robust coherent structure. Its contribution to structuring the
transition process will be discussed. As a starting point, the
linear stability of Hagen-Poiseuille flow of a yield stress fluid
is considered.

We recall that the one-dimensional shear flow of a yield
stress fluid is characterized mainly by the presence of a plug
zone of radius r0 moving as a rigid body. In the sheared zone,
between the wall at r=R and the yield surface at r=r0, the
effective viscosity � decreases nonlinearly with increasing
shear rate. Actually, � is infinite at the yield surface and
decreases when approaching the wall. In the following, it is
assumed that the rheological behavior of the fluid can be
described by the Herschel-Bulkley model. For unidirectional
shear flow with velocity U� in the z direction, the relation-
ship between the shear stress �rz and the velocity gradient
dU� /dr is

�rz = sgn�dU�/dr��0 + K�dU�

dr
�n−1dU�

dr
⇔ ��rz� � �0,*Author to whom correspondence should be addressed.
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dU�/dr = 0 ⇔ ��rz� � �0,

where �0 is the yield stress, n is the flow behavior index, and
K is the consistency index. The axial velocity profile U��r� is
given by

U��r�
UB

= �
U� max

UB
, 0 � r � r0,

U� max

UB
�1 − 	 r − r0

R − r0

 n+1

n � , r0 � r � R ,�
�1�

with

U� max

UB
=

n

n + 1
	Hb

a

1/n

�1 − a��n+1�/n,

where UB is the bulk velocity, a=r0 /R, and Hb=�0Rn /KUB
n

is the Herschel-Bulkley number. The base flow is governed
by two parameters, n and a or n and Hb. The dependence of
a with respect to n and Hb can be found using the continuity
equation in integral form �10�.

LINEAR THEORY

The linear stability of Hagen-Poiseuille flow of Herschel-
Bulkley fluid to infinitesimal disturbances is studied for dif-
ferent values of n and Hb. Using the normal-mode approach,
the disturbance fields are assumed to be of the form
��r�exp�i��z+m	−
t��, where � and m are, respectively,
the axial and azimuthal wave numbers. The numerical results
lead to the conclusion that the flow configuration
(0,0 ,U��r�) is linearly stable for all Reynolds numbers Re
=�UBD /�w, where �w is the wall shear viscosity. This result
could have been anticipated on the basis of �14�.

When a small perturbation composed by a weighted com-
bination of linear eigenfunctions is considered, there is a
potential for a short-time amplification of the energy pertur-
bation. This is a consequence of the non-normality of the
linear stability operator, the eigenfunctions being nonor-
thogonal under the energy norm. The transient evolution of
the disturbance kinetic energy is determined following the
same methodology as in �15�. For a given Fourier mode, the
maximum amplification of the kinetic energy at any instant
in time is denoted by G and the maximum of G for all pairs
�� ,m� is denoted Gopt and is reached by the optimal pertur-
bation at a specific time topt. At the same dynamical and
rheological parameters as in the experimental tests �Re
=2420,n=0.5,a=0.1�, the numerical results show that the
strongest linear transient growth is obtained for a traveling-
wave perturbation with m=2 and �=1.20, giving Gopt

=96.14 reached after 8.98 time units R /UB. The perturbation
gains energy due to the inviscid Orr-liftup mechanism. For
comparison, in the case of streamwise independent perturba-
tion with m=1, we have supt�0G
31.9 reached at t=25.2.
The cross-flow velocity vectors and the corresponding opti-
mal streaks are represented in Fig. 1.

EXPERIMENTAL SETUP, INSTRUMENTATION,
AND TESTED FLUIDS

Full details of the flow facility and instrumentation have
been given in �10� and so only a brief description is given
here. Measurements were carried out in a Plexiglas tube of
internal diameter equal to 30 mm and 4.20 m long. This tube
is longer than the entry length Le necessary for the laminar
flow to fully develop in all experiments carried out �16�. The
velocity measurements were performed using a Dantec
FlowLite system with a measuring volume 651 �m in length
and 77 �m in diameter. The working fluid is a 0.2 wt.%
aqueous solution of Carbopol 940. It is widely used as a
model yield-stress fluid because of its stability and transpar-
ency. The rheological measurements were made with a con-
trolled torque rheometer. It is found that for a large range of
shear rates �0.1��̇�3�103 s−1�, the flow curve is very
well fitted by the Herschel-Bulkley model: �=�0+K�̇n.

RESULTS AND DISCUSSION

A set of the measured mean axial velocity profiles at z
=122 D from the entrance section in laminar, transitional,
and turbulent regimes is represented in Fig. 2�a�. At each
radial position, the mean velocity is extracted from more
than 8�104 validated data recorded during 3 mn. The mea-
surements were done along a diameter in the horizontal me-
dian plane. As indicated above, the Reynolds number is de-
fined with the wall shear viscosity, calculated using the
Herschel-Bulkley model fit at the wall shear stress estimated
from the pressure drop measurements. The continuous line is

an averaged mean velocity profile Ū�r� obtained by taking

FIG. 1. �Color� Cross flow in the �r-	� section and streaks dis-
tribution at Re=2420, n=0.5, and a=0.1. �Top� Optimal perturba-
tion with m=2 and �=1.20; �bottom� streamwise independent vor-
tices with m=1. The red and blue zones correspond, respectively, to
the fast and low streaks. The central gray zone is the theoretical
plug zone.
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the average of the mean velocity data from either side of the
centerline. An indication on the flow regime is given by the
near-wall �r /R=0.8� axial velocity fluctuations level
u��rms� /UB vs Re displayed in Fig. 2�b�. In the laminar re-
gime �Re=367 and 1285�, the axial velocity profiles are sym-
metric and in very good agreement with the theoretical pro-
files. In the transitional regime �Re=1805−4867�, an
increasing asymmetry of the axial velocity profile with in-
creasing Re is observed. The profiles Re=6421 and 10797
are symmetric; they correspond, respectively, to the maxi-
mum of �u� /UB� and turbulent flow.

In order to provide a three-dimensional description of the
asymmetry observed in the transitional regime, axial velocity
profiles are measured at three axial positions: z=20 D �near
the entrance section�, z=54 D �middle of the pipe�, and z
=122 D, and four azimuthal positions 	=0 �horizontal
plane�, 
� /4, and � /2. The anticlockwise orientation is
adopted and the Reynolds number is fixed at Re=2420. The
obtained mean velocity profiles U�r ,	 ,z� are then written as
the superposition of an averaged mean axial velocity profile

Ū�r ,z� and a streak Us�r ,	 ,z�. The azimuthal variation of
Us /UB at different radial positions and at the three axial po-
sitions indicate clearly that

Us�r,	,z�
UB

is well described by the

relation
Us�r,	,z�

UB
=A�r ,z�cos�	+��. As an example, Fig. 3

shows Us /UB versus 	 at r /R=0.72. Even if currently we
cannot conclude about the saturation of the streaks, it is
worthwhile to note that the phase � remains invariant along
the pipe, and depends probably only on the inlet conditions.
It is thus possible to draw the contours of iso-Us in a cross

section of the pipe, at each axial position considered. The
result of this procedure is given in Fig. 4. The red color
indicates regions where the flow of the fluid in the direction
of the pipe is faster than the averaged mean profile, while
blue denotes regions that are slower than the averaged mean
flow. These streaks suggest the existence of a coherent struc-
ture characterized by two counter-rotating longitudinal vorti-
ces, similar to those represented in Fig. 1 �bottom frames�.
Slow flow is advected from the wall toward the blue zone
and fast flow is advected toward the red zone. As in the case
of the self-sustained cycle proposed by Waleffe �1�, one can
anticipate that a shear flow instability of the streaks regener-
ates the vortices. The visualization of this instability, for in-
stance from the velocity-time history signal displayed in Fig.
5�c�, is not possible. Indeed, the frequency power spectra of
the velocity fluctuations indicate that the dominant frequen-
cies are practically less than 1 Hz without revealing any par-
ticular frequency. Therefore, this nonlinear state is not a
simple periodic traveling wave. It is worthwhile to note that
there is a highly viscous zone near the axis where u� /UB
remains at the same level as in laminar regime �Figs. 5�a�
and 5�b��. With increasing Reynolds number, the diameter of
this zone decreases to zero. In our experiments, u� /UB on the
axis starts to increase from Re=Rec2
4000 with the detec-
tion of the first turbulent spots, while the asymmetry is ob-
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FIG. 2. �a� Mean axial velocity profiles at different Reynolds
number, �0=9.75 Pa, K=3.82 Pa sn, n=0.47; �b� axial velocity fluc-
tuations level u��rms� /UB vs Re at r /R=0.8. The symbols denote
the experimental data and the continuous line is an average velocity
profile obtained by taking the average of the velocity data from
either side of the centerline.
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FIG. 3. �Color online� Azimuthal variation of the streak velocity
at Re=2420, r /R=0.72, and at the three axial positions: z=20 D
�square�, z=54 D �nabla�, and z=122 D �circle�.

FIG. 4. �Color� Cross section in �r ,	� at two axial positions

z /D=54 and 122 shows contours of iso-�U− Ū� /UB, with the fast
streaks �red/dark bottom� and low streaks �blue/dark top�. Re
=2420, n=0.5, and a=0.1.

BRIEF REPORTS PHYSICAL REVIEW E 77, 057302 �2008�

057302-3



served from Re=Rec1
1800. From Re=Rec2, the flow
cycles between the turbulent regime and the asymmetric
state described above. The significance of the results de-
scribed here is well analyzed in the framework of dynamical
system theory. We can choose to display them in a suitably
defined phase subspace, such as that spanned by the rate of
energy dissipation D per unit volume and the rate of energy
input I per unit volume �see Fig. 6�, along the lines of Biau et
al. �17�. Steady states must fall on the line I=D where the
two quantities are in balance. In this subspace, the steady
laminar flow is a linearly stable fixed point for all Re and a
global attractor for Re�Rec1. In our case, Rec1
1800, so
that all initial conditions are attracted to the laminar node
when Re�Rec1. At Re=Rec1, a new state with a robust non-
linear coherent structure is selected by the flow. This new
state may arise through a saddle-node bifurcation. Starting
from Re=Rec2
4000, the basin of attraction of the asym-
metric state decreases and the flow trajectory can escape
from this state through a second saddle, follow this saddle’s
stable manifold, and move toward an upper branch solution
represented by point �3�. After orbiting for a while around
such a solution, which corresponds to the mean turbulent
flow, the flow can either return to the local attractor repre-

sented by node �2�, or it can escape through yet another
low-dimensional saddle toward a different region of phase
space. The view just outlined, admittedly speculative, is sup-
ported by all available experimental results.

CONCLUSION

The following conclusions can be drawn from this study:
�i� Optimal disturbances are not useful to describe early
stages of transition; �ii� a robust nonlinear coherent structure
mediating the transition from laminar to turbulent flow ex-
ists. It persists for the whole duration of the experiments
�several weeks�; �iii� it is worthwhile to investigate whether
this new state found here is dynamically connected to the
edge states recently computed in the Newtonian case �6–8�;
�iv� the asymmetric solutions act as local attractors in phase
space. As Re is increased from zero, the basin of attraction of
this asymmetric state increases, then it shrinks.
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FIG. 5. �Color online� Instantaneous axial velocity plots at
Re=2420, z=122 D, n=0.5, and a=0.1. �a� r=0; �b� r /R=0.3,
	=7� /4; and �c� r /R=0.72, 	=7� /4.
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FIG. 6. �Color online� Qualitative description of the transition
process in the phase diagram displaying dissipation rate versus en-
ergy input rate. Point �1� is the steady, one-dimensional laminar
state, toward which the system returns spirally when Re�Rec1.
Point �2� represents the time-averaged value of D and I for the
nonlinear asymmetric state. The upper branch state �3� represents
the mean turbulent flow. The crosses with arrows sketch unstable
saddle nodes. Flow trajectories are sketched for increasing values of
Re.
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