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Chaotic mixing in a microchannel utilizing periodically switching electro-osmotic
recirculating rolls
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In this study, active mixing in a microchannel with spatiotemporal variations in ¢ potential distributions was
investigated theoretically. In this mixing system, the primary flow is a pressure-driven flow (i.e., parabolic
flow), and the electro-osmotic recirculating rolls induced by the heterogeneous { potential distributions act as
the perturbation source. By timewise alterations of two different electro-osmotic recirculating flow fields,
chaotic mixing can be induced. Blob deformation, Poincaré map, and Lyapunov exponent analyses were
employed to describe the behaviors of the particle motion in this active mixing system. Finally, the optimal
time-switching period was identified, which was also verified through direct numerical simulations.
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I. INTRODUCTION

Rapid and efficient mixing is an essential but challenging
task when developing microfluidic devices for chemical and
biological analysis applications [1-3]. In microfluidic de-
vices, viscous forces dominate the flow since the dimensions
of such devices are very small. As a result, the flow is lami-
nar and is restricted to the low Reynolds number regime. The
mixing of two or more fluid streams in a simple microchan-
nel is dominated by the molecular diffusion effect. The rate
of diffusive mixing in microscale channels is very slow com-
pared to the convection of the fluid along the channel since
the Péclet number of typical microchannel flows is very high
due to biomolecules (e.g., DNA and protein) with relatively
low molecular diffusivities. Because of the low Reynolds
number, it seems not possible to achieve turbulent flows (so-
called Eulerian chaos) to increase the interfacial contact area
over which the molecules of the two fluid streams diffuse in
a simple microchannel; consequently, another approach
called “chaotic advection (or so-called Lagrangian chaos)” is
needed to achieve effective mixing in low Reynolds number
flow regimes, which provides an effective increase in the
interfacial contact area and decrease in the diffusion length
[4]. A large interfacial contact area means a large area for
mass transfer, while a shorter diffusion length increases the
concentration gradients and increases the mass flux. In this
way, the mixing time and mixing length can be considerably
reduced. As the characteristic scale of the microchannel is
decreased, the surface forces acting on the liquid become
more significant. Therefore, surface-driven electro-osmotic
flow has received significant interest as a means of control-
ling fluid motion in microfluidic devices in recent years
[5-7]. The surface properties of the microchannel play an
important role in controlling surface-driven electro-osmotic
flow [7] and can be exploited to produce specific flow struc-
tures to improve the mixing performance. A number of active
or passive approaches for enhanced electro-osmotic flow
mixing have been proposed [3]. In this study, we will pro-
pose an active approach to cause chaotic mixing in micro-
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channels via periodically switching electro-osmotic recircu-
lating rolls induced by nonuniform ¢ potential distributions.

According to the theory of similitude between the electro-
osmotic flow velocity and the electric field [8], the electro-
osmotic flow streamlines in uniform ¢ potential microchan-
nels are the same as the electric field lines governed by the
electric vector field. As a result, the flow velocity and electric
vector fields are both irrotational. Electro-osmotic flow fields
are unique in that they can also be described as a potential
flow due to the slip condition (i.e., Smoluchowski slip veloc-
ity). However, the irrotational feature of potential flow im-
plies that closed streamlines and vortices are impossible to
generate. The presence of a surface with non-uniform ¢ po-
tential is one way to produce vortices or specific flow struc-
tures in electro-osmotic flow fields. Anderson and Idol [9],
Ajdari [10,11], and Stroock ef al. [12] have performed theo-
retical and experimental investigations into electro-osmotic
flows induced by a nonuniformly distributed ¢ potential
along the capillary or microchannel walls, and have sug-
gested that the application of oppositely charged surface het-
erogeneities to the microchannel walls generated recircula-
tion regions within the bulk flow. Recently, many researchers
have investigated the electro-osmotic flow mixing in two-
dimensional heterogeneous microchannels through numeri-
cal and experimental approaches [13-18]. The induced
electro-osmotic recirculations in the two-dimensional steady
flow field were successfully employed to improve species
mixing in microchannels in their studies. However, the non-
diffusive particles just follow the streamlines in these steady
flows and, hence, chaotic mixing was absent in their pro-
posed mixers. The mixing primarily relies on the molecular
diffusion effect. Generally speaking, chaotic mixing or cha-
otic advection can only occur either in three-dimensional
flows or time-dependent two-dimensional flows [4]. As de-
scribed in the literature, electro-osmotic chaotic mixing can
be induced in three-dimensional steady electro-osmotic flows
with time-independent { potentials through the use of two-
dimensional specific surface charge (or { potential) pattern-
ing configurations [19,20]. In addition, Wu and Liu [21] have
used time-wise periodic alternations of the two-dimensional
nonuniform ¢ potential distributions on the bottom wall of a
three-dimensional microchannel to enhance mixing. To cre-
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FIG. 1. (Color online). Schematic of flow mixing in a micro-
channel with nonuniform ¢ potential distributions, which are con-
trolled actively using a field effect.

ate electro-osmotic chaotic mixing in two-dimensional mi-
crochannels, one can spatiotemporally modulate the { poten-
tial distribution in a microchannel to generate an unsteady
complex flow. The purpose is to get streamlines to cross at
successive intervals. Qian and Bau [22] have performed the-
oretical studies of electro-osmotic flows in two-dimensional
closed systems (i.e., zero net flow rate) driven by time-
dependent ¢ potentials and have demonstrated that chaotic
advection can be induced by time-wise periodic alternations
of the electro-osmotic recirculating rolls and can improve the
mixing performance as a result, i.e., a mixing system without
throughout flow. Generally, nonuniform time-dependent {
potentials can be modulated spatiotemporally using the field
effect (i.e., the so-called capacitive effect) [23,24].

In this study, we perform theoretical investigations into
active mixing in a two-dimensional microchannel using spa-
tiotemporal modulation of electro-osmotic recirculating rolls
(i.e., secondary electro-osmotic flow [9]) resulting from non-
uniform { potential distributions. Unlike the studies of Qian
and Bau [22], we consider a parabolic flow as primary flow
(see Fig. 1) in the mixing system and the temporal alterna-
tions of the electro-osmotic recirculating rolls act as the per-
turbation sources, i.e., a mixing system with continuous
throughput flow (open flow system). The ¢ potential distri-
butions are modulated spatiotemporally using the field effect
[24] and result in different electro-osmotic recirculating flow
patterns to enhance mixing in a microchannel. In this system,
the effects of the amplitude of perturbation source, time-
switching period, and embedded electrode length on the mix-
ing are considered (note that the perturbation amplitude and
embedded electrode length effects on the mixing were not
considered in the closed flow mixing system proposed by
Qian and Bau [22]). Dynamic system techniques such as
Poincare map and Lyapunov exponent analyses are then em-
ployed to investigate the mixing system. The results show
these effects on the mixing are significant in the open flow
mixing system. Further, the optimal time-switching period
(Top) and Strouhal number [Stoy=fonl/tp,, Where fo
=1/Toy I is the embedded electrode length, and up,, is the
maximum velocity (or centerline velocity) of pressure-driven
flow] for mixing enhancement in this system are identified.

In Sec. II, the governing equations, analytical solutions,
assumptions for this problem, mapping of the Poincaré map,
and calculation of Lyapunov exponent are addressed, respec-
tively. In Sec. III, a chaotic behavior analysis is employed to
characterize the mixing and the optimal operating conditions
are identified, which are also verified through the direct nu-
merical simulation. Section IV is devoted to concluding re-
marks.
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II. FORMULATION
A. Governing equations

We consider mixing in a microchannel with high aspect
ratio (i.e., channel height is much larger than channel width)
in our work. The effect of top and bottom walls on the flow
field is assumed to be negligible and the flow field is two
dimensional. Furthermore, the Reynolds number usually is
smaller than unity in microfluidics, and the flow can be re-
garded as creeping flow or Stokes flow. Then, the combined
pressure-driven and electro-osmotic flow can be described by
the modified Stokes equation including an electrical body
force term (i.e., Coulombic force) [25] and the continuity
equation, which are given by

0=-Vp+uV2u+pkE, (1)

V-u=0, (2)

where w, p, and u are the fluid viscosity, pressure and flow
velocity vector (u=uxX+vy), respectively. Note that the total
velocity can be represented by u=up+ugg based on the prin-
ciple of superposition since Eq. (1) is linear, where up and
Ugg are the velocities of pressure-driven and electro-osmotic
flow, respectively. E is the external electric field (E=E X
+E,¥) and p, is the net charge density. Adopting the sym-
metric electrolyte solution and the Debye-Hiickel approxi-
mation [25], the net charge density can be represented by
p.=—€,€k*h, where « is termed the Debye-Hiickel param-
eter, €, is the relative permittivity, and ¢, is the permittivity
of vacuum. ¢ is the electrical double layer (EDL) potential,
which can be described by the following Poisson equation
[25]:

V=i’ (3)

For a two-dimensional incompressible flow and electro-
static field (VX E=0), the flow can be described by

/"LV4¢/: -EX Vpe» (4)

where ¢ is stream function. Since E,=0 within microchan-
nels in the current study, Eq. (4) is reduced to the following
equation:

(5)

Since the stream function can be represented by ¥=ip
+ im0 based on the principle of superposition, Eq. (5) can be
decomposed into Egs. (6) and (7),

Vip =0, (6)

€6k, (4

o (7

4
Vigo =
We introduce the following nondimensional parameters:

S

9
Upy, UpyWw

u
X= —

T Ix=

. v=2, U=
w
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where w, up,, and |{|,.x are the half channel width, the
maximum velocity of pressure-driven flow, and the maxi-
mum absolute value of the { potential, respectively. Then,
Egs. (3), (6), and (7) can be rewritten as

® (®)

V2P = K20, 9
V4\I’P=O, (10)

Froy
VA, = FKZE, (11)

where K=«kw is the dimensionless Debye-Hiickel parameter
and T'= €,€)|{|maxEx/ 1/ tp,, is called the velocity ratio of
electro-osmotic to pressure-driven flow, or the so-called am-
plitude of the perturbation source in this study.

B. Analytical solutions
1. Primary flow

In this study, we consider a fully developed pressure-
driven flow as a primary flow (see Fig. 1), and the solutions
of this flow can be easily solved with nonslip boundary con-
ditions, which are given by

1
\I'P(X,Y)=Y—§Y3, Up(X,Y)=1-Y?, (12)

and
Vp(X,Y) =0,

where Up and Vp are the dimensionless velocities of
pressure-driven flow in x and y directions, respectively.

2. Electro-osmotic recirculating flow

Figure 2(a) shows the arrangements of the embedded
electrodes and applied voltages (positive or negative) on the
electrodes within one period unit of the mixing channel. We
assume that the ¢ potential induced by the field-effect is
much larger than the original { potential induced by the per-
manent surface charge of microchannels and, thus, the
former dominates { potential along the channel wall. In ad-
dition, the distance of the gap between two separated embed-
ded electrodes is assumed to be much smaller than the chan-
nel width (2w) and the electrode length (). Therefore, the ¢
potential distribution along the channel wall is regarded as a
square wavelike periodic form. The dimensionless induced ¢
potential distribution along the channel wall is given below

I EDS i[1 — (= 1)"Isin(k,X), (13)
n=1 T

where k,=nm/L and L=I[/w. The analytical solutions of the
EDL potential corresponding to cases “A” (antisymmetric)
and “B” (symmetric) [see Fig. 2(a)] can be easily obtained
via Eq. (9), and are given by, respectively,
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FIG. 2. (Color online). (a) The arrangements of the embedded
electrodes and applied voltages (positive or negative) on the elec-
trodes within one period unit of the mixing channel. (b) Electro-
osmotic recirculating flow patterns resulting from two different spa-
tial ¢ potential distributions within one period unit of the mixing
channel. (c) Total flow patterns of pressure-driven and electro-
osmotic recirculating flows. Note that the symbols + and — refer to
the positive and negative voltage that is applied on the embedded
electrodes, respectively. The “solid” streamline refers to the
counter-clockwise recirculating rolls and the “dashed” stream line
refers to clockwise ones. The symbol “@” in (c) refers to the stag-
nation points. Here K=500, I'=1.0, and L=2.0.

DX Y) =2 i[1 - (= 1)”]sin(an)M’
n=1 T sinh(e,,)
(14a)
D01 = S {1 - (- 1G]
n=1 1T cosh(a,)
(14b)

where a,=(k2+K?)"2,

Upon substituting Egs. (14a) and (14b) into Eq. (11), re-
spectively, the electro-osmotic flow fields “A” and “B” can
be solved with the nonslip boundary condition and the fol-
lowing boundary conditions, i.e.,

Veo(x,1) =0go and  Wgo(x,—1)=0, (15)
where Qg is the dimensionless flow rate of electro-osmotic
flow. From Eq. (13), we know that the effective { potential
along the channel wall within one period unit is zero and,
thus, the net flow rate of the electro-osmotic flow is zero, i.e.,
0Oro=0 in this study. The analytical solutions of the elec-

troosmotic flow fields “A” and “B” are given by Egs.
(16a)—(16€e) and (17a)—(17e), respectively,
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Vo 4(X,Y) = r> i[1 — (= 1)"]sin(k,X) [An cosh(k,Y) + D, Y sinh(k,Y) + a—;M] (16a)
p=1 N K* sinh(a,)
- a, sinh(a,,Y)
Ugo 4(X,Y) = r>, —[1 — (= 1)"]sin(k, X){A k, sinh(k,Y) + D,[sinh(k,Y) + k,Y cosh(k,Y)]+ T} (16b)
n=1 1
o2 a, cosh(a,,)
Veo A(X,Y) =— r>, —[1 - (= D"k, cos(k,X) [A cosh(k,Y) + D,Y sinh(k,Y) + 2,—} (16¢)
n K~ sinh(a,,)
where
B a,lk, cosh(k,)coth(a,) + sinh(k,)coth(a,) — «, sinh(k,,)] (164
T K2[cosh(k,)sinh(k,) + k,] ’ )
~ a,| a, cosh(k,) — k, sinh(k,)coth(a,)]
Dy=~ K?[cosh(k,)sinh(k,) + k, ] ’ (16¢)
Voo JX1) =TS 211 - (- l)"]sin(an)[ B, sinh(k,Y) + C,Y cosh(k,Y) + —2 M} (17a)
So T cosh(a,,)
Upo 5(X,Y) = FE _77[1 — (= 1)"]sin(k, X){B k, cosh(k,Y) + C,[cosh(k,Y) + k,Y sinh(k,Y)] + O %} (17b)
n=1 n
Vio s(X,¥)=-T i[1 — (= 1"k, cos(k X)[B sinh(k,Y) + C,Y cosh(k,Y) + “’;M}, (17¢)
ol K~ cosh(a,)
where
B a,[k, sinh(k,)tanh(e,) + cosh(k,)tanh(,) — a,, cosh(k,,)] (17d)
nT K?[cosh(k,)sinh(k,) — k] ’
C o= a,|a, sinh(k,) — k, cosh(k,)tanh(«,)] (170)

C. Important time scales for quasi-steady Stokes flow
assumption in our analysis

Two time scales should be considered for the case of the
temporal { potential induced by the field effect. One is the
charge relaxation time for the EDL capacitor, which is gen-
erally less than several microseconds when the EDL thick-
ness is thin (~\%/D;, where \, is the Debye length [25] and
D; is the diffusivity of ions). Another is the time required for
fully charging the capacitor of the wall (i.e., RC time or
charge relaxation time). The charge relaxation time for the
Pyrex 7740 / soda-lime glass is on the order of 107> s. The
time-switching period of the applied voltage on the embed-
ded electrodes in this study is usually much larger than the
two charge relaxation time scales, and the value of the tem-
poral { potential can be regarded as a quasisteady value. In
addition, the time-switching period is also much larger than

K*[cosh(k,)sinh(k,) — k,]

the time scale of viscous diffusion (~w?/v) in our work (i.e.,
the dimensionless time-switching period 7> Re, where Re
=up,w/v, Re<0.1 in the current study). Consequently, the
time-dependent flows can be regarded as quasisteady Stokes
flows.

D. Particle tracing algorithm and characterization
of chaotic mixing

We adopt the particle tracing algorithm to investigate the
dynamic behaviors of the mixing in this study. The motion of
a passive tracer can be governed by the following kinematic
equation:

—— =8a(DUA(X.Y) + gp(nUp(X.Y),

dr (18)

where
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1, k=-DT<7<Q2k-1)T/2
gA(T)Z 5

0, Rk-1)TR2<7<kT

0, k-1DT<7<Qk-1T/2
gB(T): s

1, Qk-1)T12<7<kT

X is the location of the tracer particle, the dimensionless time
T=t/wlup,,, the dimensionless time period T=T/w/up,,,
and the number of time periods k=1,2,3,.... Note that Uy,
=Up+Ugp 4 and Ug=Up+Ugg 5. The fourth-order Runge-
Kutta method with a fixed time step is employed to integrate
Eq. (18).

In order to understand and optimize fluid deformation
during the mixing process, it is necessary to understand the
mechanisms of fluid stretching and folding and evaluate
them in a quantitative manner. In the past two decades, it has
been demonstrated that chaotic mixing is associated with the
stretching and folding of fluid elements as described by dy-
namic system techniques [4]. In this study, we adopt both of
the Poincaré map and Lyapunov exponent analyses to de-
scribe the mixing system. Poincaré maps can be used to ex-
plain the mixing process of the system as the system goes
from periodic to chaotic. A Poincaré map analysis is com-
monly used to simplify the analysis of an n-dimensional dy-
namic system by reducing it to n—1 dimensions. For the
active mixing scheme, the Poincaré map can be applied by
setting an appropriate mapping. For the trajectory of any
initial point, we choose the Poincaré section in time to be
7,=k X T, and the number of time periods k=1,2,3,.... The
trajectory will intersect these planes successively at locations
X, X;,..., X; and define a mapping X,,,;=/(X;). Note that
X,=mod(X,,2L). Lyapunov exponent, as the average expo-
nential rates of divergence or convergence of nearby orbits in
the phase space, can describe chaos in a quantitative manner
and then provide information on the effects of the parameters
such as the amplitude and frequency of perturbation source
as the system goes chaotic. The infinite-time Lyapunov ex-
ponent (\) is expressed as Eq. (19), which is given by

|dX<r)|}
|ldXo| |

1
A=1lim lim —ln{
T—=%|dXo|—0 T

(19)

where |dX,| and |dX(7)| are the distance between two par-
ticles at initial condition and time 7, respectively. This study
adopts Sprott’s method to calculate the value of the infinite-
time Lyapunov exponent (i.e., largest Lyapunov exponent)
[26]. A positive Lyapunov exponent indicates chaos.

III. RESULTS AND DISCUSSIONS

Figure 2(b) reveals the electro-osmotic flow patterns “A”
and “B” within one period unit of the mixing channel (i.e.,
2L) calculated from Egs. (16a) and (17a), respectively. The
fluid flows in the opposite direction of the external electric
field in the positively charged walls due to excess negative
ions in the diffuse layer move opposite to the electric field
direction, while the fluid flows in the same direction as the
electric field in negatively charged walls. To satisfy the con-
tinuity condition, the recirculating flows are then produced,
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which act as a perturbation source in this active mixing
scheme. The total flow patterns (i.e., combination of
pressure-driven and electro-osmotic recirculating flows) for
flow fields A and B are shown in Fig. 2(c), respectively. It
can be seen clearly that the stagnation points exist at the
location (mL, *+ 1), where L=2.0 and m=1,2,3.... The stag-
nation point is similar to the saddle point referred to in the
mathematical definition of bifurcation in a dynamic system
[26], which plays an important role in achieving chaotic mix-
ing. The stretching rate near these points is much higher than
that of shear flow [27]. In addition, the recirculating rolls
may fold the fluid element. By periodically switching flow
fields A and B (U, and Uy), the chaotic mixing can be in-
duced under the appropriate operating conditions.

A. Dynamic analysis

Figure 3 shows the Poincaré maps corresponding to the
different time periods with an amplitude of I'=1.0. Lines and
white regions are revealed in the Poincaré maps. The lines
represented particles continued to move in ordered trajecto-
ries. The white region is isolated due to the presence of
KAM curves. It could be a single ordered region, or it could
contain both ordered and chaotic regions. The KAM curves
separate the ordered region from the chaotic region [4]. Any
trajectory of a point initiated in one attractor (quasiperiodic
area or chaotic area) cannot cross over the KAM curves to
another attractor. In other words, the KAM curves act as
boundaries that prevent the mixing of fluid elements between
the two types of regions without considering the molecular
diffusion effect. In the case of 7=1.0, the major portion of
the particles continued to move in ordered trajectories, as
indicated by the presence of lines. Only particles close to the
channel wall (Y=-1.0) become locally chaotic. These lines
break up as the time period is increased. When T=4.0 and
T=5.0, the results show the size of the chaotic regions is
large compared to the other time periods. Although the lines
seem to break up and result in chaotic behavior in the cases
of T=2.0 and T=8.0, there are periodiclike lines (KAM
curves) close to the interface line acting as a barrier that
separates the blue and red chaotic regions. The periodiclike
line prevents any exchanges between the two regions, and
results in a poor mixing compared to the cases of 7=4.0 and
T=5.0 in Fig. 3 even for those particles moving in a chaotic
manner. In the Poincaré maps analysis, we found that the
size of the white region isolated by the KAM curves is the
smallest when the time-switching period is around 7=4.0 for
most of the amplitudes (I).

Poincaré maps provide schematic illustrations on chaos.
Lyapunov exponent can describe the stretching rate of a fluid
element in a quantitative manner. Combination of both
Poincaré maps and Lyapunov exponent, therefore, can be
employed to measure and analyze the relationships of differ-
ent operating conditions with chaos. To investigate the effect
of the amplitude (I') and time-switching period (7) of the
perturbation source to chaos, we calculate the infinite-time
Lyapunov exponent (i.e., largest Lyapunov exponent) for dif-
ferent values of I" and T by dividing the (I',7) plane into
grids to obtain Fig. 4. In the chaotic regions with a positive
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value, the Lyapunov exponent increases as I" increases and
the larger Lyapunov exponent appears around 7=4.0. For
most of the initial positions, 7=4.0 is the best time-switching
period in the present analysis. It seems to be independent of
the amplitude of the perturbation source (I') in the range of
0=TI"=2. From the Poincaré maps and Lyapunov exponent

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

FIG. 4. (Color online). Contour plots of infinite-time Lyapunov
exponents on the (I',7T) planes with different initial positions: (a)
(0.0, 0.0) and (b) (0.0, 0.5). Here L=2.0.
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FIG. 3. (Color online). Poincaré maps for the
different time periods when I'=1.0 and L=2.0.
(a) T=1.0, (b) T=2.0, (c) T=3.0, (d) T=4.0, (e)
T=5.0, and (f) T=8.0. These figures were all
mapped for 2500 time periods with nine particles,
which are located at initial points (Xg,Y) (0.0,
-0.8), (0.0, -0.6), (0.0, -0.4), (0.0, =0.2), (0.0,
0.0), (0.0, 0.2), (0.0, 0.4), (0.0, 0.6), and (0.0,
0.8), respectively.

analysis, the optimal time-switching period for mixing ap-
pears to be around 7=4.0.

In Fig. 5(a), the value of the Lyapunov exponent is shown
to be strongly dependent on the initial position of the particle
at the fixed time period 7=4.0 when the amplitude is small.
This is because the initial positions of the particles are in
different attractors. From Poincaré maps in Figs. 3, we know
that the trajectory of any initial position will be trapped in
the attractor that the initial position lies in, whether it is a
chaotic attractor or a periodic attractor. Therefore, the
Lyapunov exponent should also depend on the initial posi-
tions, which is quite different from simple temporal chaotic
systems such as the Lorenz attractor. As a result, the
Lyapunov exponent is not the only parameter determining
the effective mixing in the system when the amplitude is
small or the system is not globally chaotic. However, the
value of the Lyapunov exponent would be weakly dependent
on the initial position of the particle when the amplitude is
larger than 0.5, especially for I"> 1.0, which implies the dy-
namic behavior is almost globally chaotic. Figure 5(b) shows
the Lyapunov exponent of the particle located at different
initial positions within one period unit of the mixing channel
when L=2.0, T=4.0, and I'=1.0. Comparing this with the
Poincaré map shown in Fig. 3(d), the white island reveals the
zero Lyapunov exponent region. Note that small variations in
the Lyapunov exponents of the chaotic region in Fig. 5(b) are
due to finite-time effects in calculating the infinite-time
Lyapunov exponent. A KAM curve exists between the zero
Lyapunov exponent region and the chaotic region. The size
of the island is found to decrease as the amplitude I' in-
creases. Using the combination of both the Poincaré maps
and Lyapunov exponent analysis, we infer that the optimum
mixing would be induced in the system when the time-
switching period (7T) is around 4.0 and the amplitude (I') is
larger than 1.0. Figure 6 shows a sequence of blob deforma-
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0.12 0.14 0.16 0.18

0.02 0.04 0.06 0.08 0.1

FIG. 5. (Color online). Contour plots of infinite-time Lyapunov
exponents on the (a)(T',Y) plane (7=4.0, X;=0.0) and (b) (X,Y)
plane (7=4.0, T'=1.0). Note that the (X,Y) plane refers to the ini-
tial point of the particles within one period unit of the mixing
channel.

tions when 7=4.0 and I'=2.0, which also reveals that the
system is chaotic.

B. Visualization of mixing through direct numerical
simulations

To verify the above results (Poincaré map and Lyapunov
exponent analysis) obtained from the particle tracing algo-
rithm, the species mixing under the different operating con-
ditions was visualized through direct numerical simulations
[i.e., the species convection-diffusion equation was solved
numerically using an alternative-direction-implicit (ADI)

(a) (d)
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scheme [14]], as shown in Fig. 7. Here the Péclet number is
defined as Pe=up,w/D,, where D, is the species diffusivity.
The results indicate that the optimal time periods for the two
different amplitudes I'=1.0 and I'=2.0 are both 4.0, which
confirms the results obtained from the Poincaré map and
Lyapunov exponent analysis. It also can be seen clearly that
the fluid elements were stretched and folded significantly
under the appropriate operating conditions, especially for the
case of '=2.0 and 7=4.0. Therefore, the time and length
required for complete mixing can be effectively reduced.

C. Effect of the embedded electrode length (L) on the optimal
time-switching period (7)

The above results showed that the dimensionless optimal
time period T, is 4.0 in the case of L=2.0, which is weakly
dependent on the amplitude of the perturbation source in the
range of 0<I'=2.0. We infer that the optimal time period
may be dependent on the length of the embedded electrode.
Furthermore, the infinite-time Lyapunov exponent analysis is
also employed to find the optimal time periods for different
embedded electrode lengths (L). From Egs. (16b), (16c),
(17b), and (17¢), we know that computing the infinite-time
Lyapunov exponent is a time-consuming task in the case of
the square wave ¢ potential distribution due to the fact that
the solutions of the velocity fields are series solutions. In
order to reduce the computation time, the sinusoidal wave {
potential distribution along the channel walls is assumed to
investigate the effect of the embedded electrode length on
the optimal time period. In Fig. 8, it is obvious that the
optimal time period is strongly dependent on the length of
the embedded electrodes. In addition, the value of the
Lyapunov exponent decreases as the length of the embedded
electrodes is increased. In the case of L=2.0, the optimal
time period is also shown to be weakly dependent on the
amplitude (I'), which is close to 4.0. The value of the
Lyapunov exponent is smaller than that in Fig. 4 for a given
operating condition. This is because the strength of the
electro-osmotic recirculating rolls in the case of the sinu-
soidal wave { potential distribution is always smaller than
that of the case of the square wave { potential distribution.
The dimensionless optimal time periods are approximately
3.0, 4.0, and 6.0 for L=1.5, L=2.0, and L=3.0, respectively.

0 10 20 30 40 0 10
X

FIG. 6. (Color online). A sequence of blob
deformations when L=2.0, I'=2.0, and T=4.0.

0 10 20 30 40 0 10 2)?

30 40 0 10

(a) 7=2T, (b) 7=4T, (c) 7=6T, (d) 7=8T, (e) 7
it =107, and (f) 7=12T. The size of the blob is
40 0.1X0.1 and comprises 10000 particles, which
were placed initially at location (0.05, —0.55).
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FIG. 7. (Color online) Contour plots of spe-
cies concentration distribution at different opera-
tion conditions. (a) I'=1.0, T=1.0, (b) I'=1.0, T
=2.0, (¢) I'=1.0, T=4.0, (d) I'=1.0, T=8.0, (e)
I'=2.0, T=1.0, (f) ['=2.0, T=2.0, (g) ['=2.0, T
=4.0, and (h) I'=2.0, T=8.0. Note that the Péclet

However, the dimensionless optimal time period also seems
dependent on the amplitude when L>3.0 and I'> 1.0.
Furthermore, we infer that the optimal time period is ap-
proximately T, ~2t., where 7. is defined as the time re-
quired for the particle to travel across the half-length of one
period unit of the mixing channel (i.e., [). The time can be
roughly scaled by I/up,, if t. weakly depends on the ampli-
tude of the perturbation source. In other words, the dimen-
sionless optimal time period is T,y =~2L/Up,, where Up,
=1.0. This can be explained by the stagnation point effect on
chaotic mixing in this active mixing system [stagnation
points exist at the positions (mL, *1), m=1,2,3,...]. Re-
calling the flow fields shown in Fig. 2(c), we imagine that the
fluid element near the inlet is first transported to L in the x
coordinate during the first half of the time period (flow field
A), and then flow field B pushes it to the region near the
stagnation points during the second half of the time period.
This working process will result in the largest stretching rate.
Note that the stagnation point usually plays an important role
for fluid element stretching, while the recirculating roll plays
an important role for fluid element folding in this mixing
system. From the definition of the Lyapunov exponent, we
know that the value of the Lyapunov exponent (i.e., stretch-

()

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

1216 20 24

number Pe=1000, the mixing length is 10 times
the width of the channel, and L=2.0.

ing rate) decreases as the time . increases, which confirms
the results presented in Fig. 8. The dimensionless time (7,)
required for a particle to travel from the position (0.0, 0.0) to
L in the x coordinate during the first half time period (flow
field A) can be obtained from the following equations:

L= J UL(X,Y)dr, (202)
0

YL=f Va(X,Y)dr, (20b)
0

where Y; is the particle position in the y coordinate when the
particle reaches the x coordinate (L). Equations (20a) and
(20b) are solved numerically together. The dimensionless
particle travel time 7. for the different amplitudes and em-
bedded electrode lengths are shown in Fig. 9. It can be ob-
viously seen that the particle travel time is slightly dependent
on the amplitude I in the cases of 1.5=L=3.0 and 0.0
<I'=2.0. However, it may be strongly dependent on the
amplitude when I'>2.0. In the cases of L>3.0, the dimen-
sionless particle travel time decreases significantly as the am-

FIG. 8. (Color online) Contour plots of
infinite-time Lyapunov exponents on the (I",7)
planes for the different embedded electrode
lengths. (a) L=1.5, (b) L=2.0, (¢) L=3.0, (d) L
=4.0, (e) L=5.0, and (f) L=8.0. Note the differ-
ences in the color code for the top and bottom
panels. The initial position of the particle is (0.0,
0.0) and the spatial { potential distribution is as-
sumed to be a form of sinusoidal wave.
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FIG. 9. The time required for a particle to travel from (0.0, 0.0)
to (L,Y;) as a function of the amplitude (I") for the different dimen-
sionless embedded electrode lengths (L).

plitude is increased when I'>1.0. We infer that the dimen-
sionless optimal time period 7, decreases as the amplitude
is increased in the cases of L=4.0 and L=5.0, which con-
firms the Lyapunov exponent computation results of the case
of L=4.0 shown in Fig. 8. Figure 10 reveals that the dimen-
sionless optimal time periods for L=3.0 is approximately 6.0
at the amplitude of I'=1.0, which is shown to be consistent
with the scaling expression T, ~27,.. Note that 7. for the
case of L=3.0 is 2.8 at an amplitude of I'=1.0.

Finally, we conclude that the dimensionless optimal time
period is T, ~27.. The scaling expression can be simplified
to be T, =~2L when 7. is weakly dependent on the ampli-
tude I', e.g., in the ranges of 1.5=L=3.0 and 0.0<I'=2.0.
Then, the optimal Strouhal number is defined as Sty
=fopt(20)/ up,=1.0, where fo,=1/Tqy.

IV. CONCLUDING REMARKS

The Poincaré map and infinite-time Lyapunov exponent
analysis both have been employed to investigate the chaotic
mixing induced by periodically switching the electro-
osmotic recirculating rolls in two-dimensional microchan-
nels. The electro-osmotic recirculating rolls were created by
patterning nonuniform £ potential distributions in microchan-
nels, which are spatiotemporally modulated using the field
effect. We found that the Lyapunov exponent increases as the
amplitude of perturbation source is increased but decreases
as the embedded electrode length is increased. The dimen-

PHYSICAL REVIEW E 77, 056311 (2008)

(a)
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0 01 02 03 04 05 06 07 08 08 1

FIG. 10. (Color online) Contour plots of species concentration
distribution at different time periods when L=3.0. (a) T=4.0, (b)
T=5.0, (c) T=6.0, and (d) 7=7.0. Here I'=1.0 and Pe=1000.

sionless optimal time period was found to be approximately
Top = 27.. When the particle travel time 7, is slightly depen-
dent on the amplitude of the perturbation source (I'), the
dimensionless optimal time period was simplified to be Ty,
~2L. Then, the optimal Strouhal number Stoy,=/fo,(20)/up,,
is approximately 1.0. In microfluidics, the channel dimen-
sions are typically of the order of several hundreds microme-
ters, and the flow velocities typically are of the order of
several hundreds of micrometers per second. This implies
that the active mixing system usually works at low fre-
quency. For example, if the primary flow velocity is u,
=200 pum/s and the embedded electrode length is !
=100 um, the optimal time period is approximately fy
=~ Hz. In addition, the { potential dominated by the perma-
nent surface charge of the microchannel may not be much
smaller than the field-effect induced ¢ potential and should
be considered. Hence, the homogeneous surface-driven
electro-osmotic flow (pluglike flow), instead of pressure-
driven flow, acts as the primary flow, and could also be in-
vestigated in the future. As such, this active flow mixing
system is entirely driven by electro-osmosis.
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