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Permeability and percolation of anisotropic three-dimensional fracture networks
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The percolation properties and permeability of a group of anisotropic three-dimensional fracture networks
are studied numerically. Finite-size scaling is used to extrapolate the percolation thresholds of infinite networks
in three spatial directions, i.e., X, Y, and Z directions. The influence of the angular dispersion parameter of
fracture orientations on percolation thresholds is analyzed. In this analysis, we considered a family of fractures
in a three-dimensional space that are oriented around the Z axis based on the Fisher distribution. We revealed
that increased anisotropy leads to decreased percolation thresholds in both X and Y directions, and in these two
directions percolation thresholds in anisotropic networks demonstrate a declining trend as anisotropy goes up.
However, in the Z direction the trend is the opposite. The fracture networks are triangulated via an advancing
front technique and the macroscopic permeability of the networks is determined by solving the two-
dimensional Darcy equation in each fracture. We found that the macroscopic permeability in the X and Y
directions is higher than the associated permeability of isotropic fracture networks, and this property for
anisotropic networks in the Z direction is lower compared with that of the isotropic case. Furthermore, as the

anisotropy of networks increases the differences become more remarkable.
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I. INTRODUCTION

Fracture in different disciplines has different meanings. In
geology and hydrogeology, a single fracture is commonly
considered as a subplanar discontinuity in a rock, soils, or
geological formations formed mostly by mechanical stresses.
A subplanar discontinuity is composed of two solid surfaces
which surround a three-dimensional interstitial space. In the
earth’s crust the gap between single sub-planar discontinui-
ties of fractures may vary between fractions of a millimeter
to several kilometers. At large scales, in rocks and geological
formations these fractures usually intersect randomly and
form a stochastic structure that is called a fracture network.
The macroscopic transport properties of the fracture network
are a combination of the individual properties of the fractures
and depend on their connectivity and intersecting properties.

Permeability is the most significant property of fractured
and porous media, and its estimation and measurement is
essential in the treatment of flow problems in such environ-
ments. It is commonly defined as the property of a medium
that allows fluids to pass through it without changing the
structure of the medium or displacement of its parts [1]. Per-
meability is a key transport parameter with great theoretical
and practical significance in membrane science, drug deliv-
ery systems, medicine, hydrogeology, and reservoir engineer-
ing. For example, in reservoir engineering, accurate knowl-
edge of permeability provides petroleum engineers with a
tool for efficient management of the production of oil fields,
and design and management of enhanced or improved oil
recovery operations. In hydrogeology, this transport property
is determined by the fracture networks in fractured geologi-
cal formations. Various aspects of this issue are discussed by
Bear et al. [2], Sahimi [3], and Adler and Thovert [4].

The first systematic study of permeability of three-
dimensional (3D) fracture networks was initiated by Koudina
et al. [5]. The permeability of a 3D network of polygonal
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fractures was determined by triangulating the network and
solving the 2D Darcy equation in each fracture. Bogdanov et
al. [6,7] extended the results reported by Koudina er al. [5]
to fractured porous media for one- and two-phase flows and
for arbitrary distributions of permeability in the porous ma-
trix and in the fractures. Moreover, the influences of the frac-
ture shape and of their size were studied and rationalized by
means of the excluded volume by Mourzenko e al. [8].

Since all these efforts have been restricted to isotropic
fracture networks, the main purpose of the present contribu-
tion is to extend these results to anisotropic three-
dimensional fracture networks which are closer to physical
reality. It is well known that the fracture orientation distribu-
tions are not uniform in space and that the distribution func-
tion of fracture orientations can be characterized by spherical
distribution functions such as the Fisher distribution
[4,9-13]. An extensive literature search including a recent
review article by Berkowitz et al. [14] indicates that a sys-
tematic treatment of the permeability problem in anisotropic
3D fracture networks has not been done yet in a systematic
way. However, attempts have been made to model specific
sites. For example, Sisavath et al. [15] studied a real fracture
network which is located in the Baget watershed basin in the
southeast of France. They utilized line survey data of the
basin to reconstruct several types of anisotropic fracture net-
works, and studied the percolation properties and permeabil-
ity of the site.

In the present study, the percolation threshold and perme-
ability of anisotropic three-dimensional fracture networks are
systematically investigated. In Sec. II, the geometrical as-
pects and general features of the anisotropic fracture network
model are described. The numerical approaches to determine
the excluded volume, percolation threshold, and macroscopic
permeability of anisotropic fracture networks are described
in Sec. III. Results are gathered in Sec. IV. A systematic
account of analytical and numerical results that were ob-
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tained in the course of this study is given and discussed. The
excluded volume of anisotropic fracture networks is calcu-
lated. Then, the influence of anisotropy on the directional
percolation threshold is investigated. Finally, the Darcy
equation is solved in fracture networks and the macroscopic
network permeability is determined and compared with ana-
lytical results and isotropic permeability reported in the lit-
erature. Furthermore, the effect of anisotropy on permeabil-
ity is studied. Finally, some concluding remarks are given in
Sec. V.

II. GENERAL
A. Fundamentals of the fracture network model

The fracture network generator is described in detail by
Huseby et al. [16] and Khamforoush and Shams [17].
Briefly, the fracture networks are composed of monodisperse
(fixed size) polygons. Each fracture is approximated by a
regular plane hexagon inscribed in a disk of radius R.

Since the fracture network is assumed to be statistically
homogeneous, it is replaced by a spatially periodic network
and only a unit cell of size L3 is generated. L is generally
large with respect to the size of the fractures, i.e., L signifi-
cantly exceeds the size of the fracture (L/R=4). Hence, L is
a homogenization scale over the fractured medium. There-
fore, the medium is assumed to be spatially periodic at large
scales. It is good to mention that the assumption of a spa-
tially periodic medium is a standard practice in studying in-
finite media by analytical [18] and/or numerical approaches
[16,19]. The general properties of spatially periodic media
are given by Adler [19]. The main characteristic of such a
medium is that its geometrical properties are invariant under
translations, i.e.,

Rn=n111+n212+n313, (1)

where n;, n,, and ny are integers and I, I,, and I are three-
vectors that constitute the unit cell to study the fractured
system. The whole network is therefore composed of peri-
odic juxtaposition of unit cells in space, translated by R,,. In
this study, we consider only cubic unit cells with |I;|=|L,]
=|I;|=L. We assume that the fracture centers are distributed
uniformly within the cell. The orientation of each fracture is
specified by the unit normal vector of its plane. In order to
generate anisotropic fracture networks, the fracture normal
vectors are directed in an anisotropic fashion according to
the Fisher distribution. The finite size of the unit cells in-
duces problems close to the percolation threshold as will be
seen in Sec. III B.

B. Fisher distribution

Consider three-dimensional fracture networks where each
fracture is perpendicular to its unit normal vector n. In stan-
dard polar coordinates, this unit normal vector is defined by
the two angles 6 and ¢. Therefore, the orientation vector n
can be considered as a point on the surface of a unit sphere.
Since the fracturing process in natural rocks is usually in-
duced by mechanical stresses [20], the fracture orientations
are often nonuniformly distributed in space, and usually
families of fractures with a preferred orientation along the
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stress direction are formed. The fracture orientations of each
set are more or less widely spread around a mean direction
[4,12,13].

One of the successful models used to describe the real
angular dispersion of fractures is the Fisher distribution
[4,11-13]. The Fisher distribution is the analog of the Gauss-
ian distribution on the sphere. If (6, ¢,) are the initial polar
coordinates, the Fisher distribution can be deduced as fol-
lows [21]:

f(6,9) = +Ksin 0 exp{«[cos 6, cos
447 sinh
+sin 6 cos(¢ - ¢y) 1}, (2)

where 0=60=, 0=¢=2m, and the distribution is rota-
tionally symmetric around the initial direction (mean pole).
For the particular case where (6, ;) are equal to zero, the
Fisher distribution reduces to

f(6,¢) = sin 8 exp(k cosb). (3)

41 sinh k
Therefore, the normal vectors are oriented around the Z axis.
Here, « is the dispersion parameter about the mean direction.
It is called the Fisher distribution parameter; the larger «, the
more the distribution is concentrated around the direction of
the mean pole. This behavior is illustrated in Fig. 1 and a
typical anisotropic fracture network is represented in Fig. 2.
In this network, the 6 angles of fractures are allocated ac-
cording to Eq. (3) and the ¢ angles of fractures are distrib-
uted uniformly in [0,277].

However, in order to homogenize the rotational distribu-
tion of polygons around the normal vectors of their planes, a
rotation angle ¢ about the normal vector of each fracture on
the polygon plane is defined. The value of this angle is uni-
formly chosen in the interval [0,2]. Such networks with
different values of « are used to determine the percolation
threshold and macroscopic permeability of anisotropic sys-
tems in this study.

III. COMPUTATIONAL PROCEDURE
A. Excluded volume

In all the subsequent calculations, it is assumed that the
fractures are hexagonal. It should be mentioned that it is not
necessary to consider the fracture shape effect in this study
since it has been shown that, where fracture network densi-
ties are rendered dimensionless by means of the excluded
volume, the macroscopic network properties are independent
of fracture shape [5-8,16,22]. The excluded volume V., of
an object in the context of fractured media was defined for
the first time by Balberg er al. [23] as the volume into which
the center of another similar object should not enter, if one
wants to avoid overlap of two objects. For identical plane
polygons in isotropic fracture networks, V., is defined by
Adler and Thovert [4] as

1
Vo=—AP 4
=7 (4)
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FIG. 1. (Color online) Prob-
ability density of € according to
- the Fisher distribution for k=1, 5,
10, 20, and 50 (a). Distribution of
fracture normal vectors over a unit
7 sphere for k=10 (b), 20 (c), and
50 (d). Each dot corresponds to
a unit normal. The colors are
used to distinguish the different
hexagons and carry no further
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where A and P are the polygon area and perimeter, respec-
tively.

The density p of fracture networks is defined as the num-
ber of fractures per unit volume L3. Therefore, if N hexa-
gons are distributed in a cubic cell of dimension L, the den-
sity p will be equal to

=& (5)

The dimensionless density p’ is defined as the number of
fractures per excluded volume or equivalently

p' = pVex. (6)

Huseby er al. [16] have shown that p’ is exactly equal to the
mean number of intersections per fracture. This parameter
represents a direct measure of the network connectivity;
therefore

p'=pVex={(np). (7)

It should be emphasized that Eq. (4) is valid only for isotro-
pic fracture orientations. For the anisotropic case, an analyti-
cal derivation of the excluded volume VexA(K) seems impos-
sible [4], especially for a complex distribution function such
as the Fisher distribution. However, it is expected that the

3 35 information.

mean number of intersections per fracture is still related to
VeXA(K) by a relation analogous to (7) because of the defini-
tions of the various quantities involved. For the sake of com-

pleteness, let us write this relation as

VexA(K) = @,

(8)
where (n,) is the average number of intersections per fracture
and VeXA(K) is the excluded volume of the anisotropic frac-
ture networks.

This obvious relation is extremely useful since it will be
used in order to estimate VCXA(K) by means of Monte Carlo
calculations. Random anisotropic networks are generated for
a given value of «; it is a simple matter to determine the total
number of intersections in these networks and to derive {n,)
and VeXA(K). Note that Eq. (8) can also be used for isotropic
networks, because it presents the frequency of intersections,
and is independent of fracture orientations.

B. Percolation threshold

To estimate the percolation threshold of the anisotropic
fracture network, the classical finite-size scaling technique
described by Stauffer and Aharony [24] is used. The perco-
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lation threshold is studied independently along the X, Y, and
Z directions in spatially periodic unit cells. The probability
of percolation (i.e., the existence of continuous clusters
which span the system) is a function of relative cell size L/R,
of the Fisher parameter «, and of the fracture network den-
sity p. However, the critical density of fracture networks, P,
at the percolation threshold depends on the shape of the frac-
tures. When the excluded volume is used, the dimensionless
percolation threshold péA, which is the critical number of
fractures per excluded volume, is constant for a wide range
of polygons [16]. Therefore, the anisotropic dimensionless
density is used instead of the simple density.

The relative cell size L/R is changed from 4 to 12, and the
dimensionless density is gradually increased. To investigate
the effect of the Fisher constant on percolation thresholds the
value of « is varied as k={2,5,10,20,50}. For given values
of L, p), and «, the probability of existence of a percolating
cluster, IT(L, K,p;,), is determined along each direction from
500 realizations of the system. This value is a trade-off be-
tween precision and CPU time recommended in [16]. The
critical density pc , or percolation threshold of a finite sys-
tem of size L, can be defined as the value for which
II(L, x,p}) is equal to 0.5. It is determined by fitting the data
for H(L,K,p;‘) with a two-parameter error function of the
following form [24,25]:

(E-p., )

H(L K pA) 2(AL)2

PA 1
dé¢, (9
J_ ALY ( ) £ 0
where p|. AL and the width of the transition region AL are

adjustable parameters Since the finite-size percolation
threshold pc is size dependent, it is only in the limit of

infinite cell 51ze that one can define the real percolation
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FIG. 2. (Color online) Typical illustration of
anisotropic 3D fracture networks composed of
monodisperse hexagons. The volume of size L3
contains 450 hexagons with k=20 and L=12R.
The colors are used to distinguish the different
hexagons and carry no further information.

threshold pc , whose value for an infinite cell is denoted by
the subscrlpt . The value of the infinite percolation thresh-

old pc can be extrapolated from the data obtained for finite
cells by two scaling relations [26,27]:
1\
Py, ™ Py, ™ (z) : (10)
1\
AL « (Z) . (11)

Practically speaking, in order to calculate the real percolation
threshold, péA . is plotted as a function of AL, a linear fit is
done, and péA’w is determined when AL approaches to zero.

C. The flow problem

Since nonpercolating systems have zero permeability,
flow calculations are limited to densities above the percola-
tion threshold. The fractures are assumed to be embedded in
an impermeable solid matrix. On a local scale within a typi-
cal fracture of aperture b, where the Reynolds number is low,
the Newtonian fluid flow is governed by the Stokes equa-
tions. According to the classical Poiseuille law, the typical
permeability o of a fracture with aperture b is of the order

b3
=—; 12
MRED) (12)
however, b is assumed to be much smaller than the typical
lateral extent 2R of the fracture, and flow on scales between
b and 2R is governed by the Darcy equation
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1
q=—-—0o-Vp, (13)
o

where q is the locally averaged flow rate per unit width
(dimensions L2T"), u is the fluid viscosity,
o (dimensions L%) is the fracture permeability tensor, and
Vp is the pressure gradient. In this paper, o is taken to be
constant and isotropic over each fracture. The dependence of
o upon the fracture characteristics was investigated by
Mourzenko et al. [28] and O’Brien et al. [29]. Therefore, the
tensor o reduces to ol where I is the unit tensor and o the
scalar fracture permeability.

The mass conservation equation for an incompressible
fluid is

Vs q= 0, (14)

where V, is the two-dimensional gradient operator in the
mean fracture plane.

The fractured medium is composed of the periodic juxta-
position of identical unit cells along the X, Y, and Z direc-

tions and a macroscopic pressure gradient Vp is applied as
boundary condition upon the unbounded medium of fracture
networks. Fluid flow is described by Egs. (13) and (14), to-
gether with periodic conditions for v, ¢, and Vp. The mac-

roscopic pressure gradient Vp can be expressed as follows:

= 1
v =—f p ds, (15)
v

v

where v is the volume of the cubic cell.

The local equations are solved according to the method-
ology described in [5]. When the local fields are known, the
macroscopic quantities of interest such as the seepage veloc-
ity v can be evaluated as

_ 1 1
V=—f le):—fqu, (16)
v, v,

where v, is the interstitial volume of the fractures and s, is
their projection on their mean planes. This flux is related to
the macroscopic pressure gradient by a Darcy law [4] valid
for the fracture network,

_ 1 =
v=——K. Vp, (17)
M
where K is the macroscopic permeability tensor

(dimensions L?), to be derived from Eqs. (16) and (17),
when Egs. (13) and (14) are solved. It must be noted that K
is a symmetric and positive definite tensor when averaged
over all realizations of networks,

K=KI. (18)

In this study, b is defined as the characteristic length for the
fracture aperture; R is the typical fracture extent, and p is a
reference pressure. These three parameters can be used to
recast the equations in a dimensionless form. We define
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b o o o
a=""0 Uy="20 Ko=) (19)

oy=—"_, s =—.
712 wR UR? R

The dimensionless quantities and gradient operator (with
primes) are defined as follows:

1
=pp', V==V,
D = PoP R
V=U0V,’ qquq,’ (20)
o=o00', K=KXK'.

This dimensionless formulation is used in the following de-
velopments. The dimensionless permeability tensor K’ can
be simplified because of the statistical symmetry of the gen-
erated networks. Since 6, is equal to zero, the two axes X
and Y play similar roles; therefore,

K. 0 0 K/ 0 0

0 K, 0 |=|0 K, 0], (21)
0 0 K., 0 0 K

K'=

where K| is the dimensionless scalar permeability in the X
and Y directions and K| is the dimensionless scalar perme-
ability in the Z direction.

The numerical approach and code used to solve the flow
problem are the same as implemented by Koudina et al. [5].
First, the fracture network is triangulated by the advancing
front technique [30,31]. This technique is an appropriate
method for unstructured triangulation. The mesh is charac-
terized by the prescribed maximum edge length &, which is
set equal to R/4 [5]. The flow equations are discretized by
the classical finite volume method which consists of integrat-
ing the equation over elementary volumes. The value of the
pressure p’ is determined at each point of the triangular mesh
via a flux balance condition by the finite volume technique.
Finally, the linear algebraic equations of discretized transport
equation are solved to specify the unknown pressure at each
point.

IV. RESULTS AND DISCUSSION

In this section, a systematic account of analytical and nu-
merical results that were obtained in the course of this study
is given and discussed. First, the excluded volumes and the
percolation thresholds are presented. Then, the influence of «
(angular dispersion parameter) on analytical and numerical
values of the permeability is introduced.

A. Excluded volume

Excluded volumes of anisotropic fracture networks for
various values of the Fisher parameter, as well as the ex-
cluded volume of an isotropic fracture network, are calcu-
lated for various densities, ranging from slightly below the
percolation threshold up to the connected networks. In each
case, (n;) is determined and the excluded volume is calcu-
lated by Eq. (8). The corresponding excluded volumes are
averaged over 1000 realizations for each fracture network.
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Since the fracture networks are generated in a spatially peri-
odic medium, the average number of intersections is not af-
fected by the cell size.

The results obtained for the isotropic case and anisotropic
cases for different values of the Fisher parameter are given in
Table 1. As expected, the excluded volumes are independent
of density and the statistical fluctuations of the averages in-
fluence only the second decimal digit of the quantity. Con-
sequently, we have used the average of these values as the
final excluded volume in the subsequent calculations.

The average value of the calculated excluded volume of
the isotropic network («=0) over various densities is equal
to 7.7926, and the theoretical value of the excluded volume
for hexagons by a straightforward application of Eq. 4) is
equal to 9v3/2=7.7942. The comparison between these two
values shows that the numerical excluded volume of isotro-
pic fracture networks is approximately equal to the theoreti-
cal value. This shows that Eq. (8) is reliable for computing
the excluded volume.

The final results for anisotropic excluded volumes for dif-
ferent values of the Fisher parameter are illustrated in Fig. 3,
where Vex, is a decreasing function of k. Increasing the an-
isotropy «, as shown in Fig. 3, induces the reduction of the
excluded volume of the network. This behavior can be ex-
plained based on the directional configuration of fractures.
For k=0, fracture networks are isotropic and the fracture
normal vectors are uniformly distributed over the whole sur-
face of the unit sphere. Conceptually, the average number of
intersections should be a maximum in this case. However,
for strictly positive values of «, the fracture normal vectors
are distributed in a narrow region about the mean pole and as
the value of k increases this region gradually shrinks (see
Fig. 1). Hence the fractures are oriented in a nearly parallel
situation, and the intersections between the fractures are
drastically decreased. This implies that the excluded volume
is reduced.

B. Percolation threshold

The infinite percolation thresholds (average number of
connections per object) along the X, Y, and Z directions are
systematically reported in Table II and represented in Fig. 4
for various values of the Fisher parameter «. The following
comments are in order to explain these data.

For the isotropic case, k=0, the percolation thresholds in
the X, Y, and Z directions are nearly equal. This is to be
expected, since, in a fracture network with elements uni-
formly oriented in 3D space, the chances of finding the per-
colating clusters should be the same in all directions. The
average of the isotropic percolation thresholds in the three
directions is equal to 2.3019 which is approximately equal to
the reported value 2.3 of Huseby ez al. [16].

For nonisotropic cases, k>0, when « increases, the val-
ues of the percolation thresholds in the X, Y and Z directions
are changed. For a constant value of «, the percolation
thresholds along the X and Y directions are nearly identical.
However, the percolation threshold in the Z direction is
higher than the corresponding values in the X and Y direc-
tions. In other words, because of the special configuration of
the fracture normal vectors, the average number of necessary
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TABLE I. The excluded volume VexA(K) of isotropic and aniso-
tropic fracture networks for various densities versus the Fisher dis-
tribution parameter KOy, is the standard deviation of Vex, for

XA

1000 realizations.

K p=Ng/L3 VCXA(K) v,
0.0 0.2441 7.7925 0.0717
0.2563 7.7931 0.0655
0.2686 7.7891 0.0569
0.2808 7.7929 0.0515
0.2930 7.7976 0.0481
0.3052 7.7954 0.0453
0.3174 7.7933 0.0427
0.3296 7.7891 0.0377
0.3418 7.7865 0.0356
0.3540 7.7968 0.0351
2.0 0.2441 7.6141 0.0672
0.2563 7.6064 0.0567
0.2686 7.6091 0.0556
0.2808 7.6143 0.0540
0.2930 7.6085 0.0451
0.3052 7.6025 0.0431
0.3174 7.6058 0.0379
0.3296 7.6071 0.0380
0.3418 7.6076 0.0370
0.3540 7.6153 0.0325
5.0 0.2441 6.4608 0.0583
0.2563 6.4616 0.0523
0.2686 6.4537 0.0513
0.2808 6.4675 0.0476
0.2930 6.4621 0.0419
0.3052 6.4585 0.0410
0.3174 6.4670 0.0364
0.3296 6.4517 0.0327
0.3418 6.4611 0.0318
0.3540 6.4639 0.0299
10.0 0.2441 5.1216 0.0458
0.2563 5.1327 0.0441
0.2686 5.1182 0.0413
0.2808 5.1234 0.0372
0.2930 5.1221 0.0329
0.3052 5.1232 0.0327
0.3174 5.1289 0.0288
0.3296 5.1256 0.0264
0.3418 5.1301 0.0273
0.3540 5.1265 0.0243
20.0 0.2441 3.7672 0.0346
0.2563 3.7685 0.0310
0.2686 3.7575 0.0299
0.2808 3.7608 0.0271
0.2930 3.7629 0.0234
0.3052 3.7521 0.0223
0.3174 3.7625 0.0217
0.3296 3.7634 0.0198
0.3418 3.7692 0.0185
0.3540 3.7613 0.018
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TABLE 1. (Continued.) TABLE II. The asymptotic values of percolation thresholds for
isotropic and anisotropic fracture networks versus the Fisher distri-
K p=Ny/L> VeXA( K) v, bution parameter in the X, Y, and Z directions.
50.0 0.2441 2.4521 0.0225 s Pln Pc’ocy,A pc"wz,A
0.2563 2.4578 0.0201
0.2686 2.4516 0.0187 (Isotropic case) 2.3083 2.2939 2.3036
0.2808 2.4503 0.0168 2 2.2795 2.2704 2.3227
0.2930 2.4632 0.0153 5 2.2295 2.2335 2.3720
0.3052 2.4524 0.0140 10 2.1821 2.1773 2.4022
0.3174 24529 0.0143 20 2.1363 2.1402 2.4207
0.3296 24553 0.0128 50 2.1063 2.1094 24381
0.3418 2.4603 0.0118
0.3540 2.4588 0.0116
0.7< pé <2.8. (22)

connections per object for percolation in the Z direction com-
pared with the X and Y directions occurs at higher densities.
This means that the chances of percolation for a given den-
sity in the Z direction are lower than the chances of percola-
tion along the X and Y directions. The reason should be the
nonisotropic orientations of fractures about the Z axis. That
is, the arrangement of fracture orientations as shown in the
typical illustration of fracture networks in Fig. 2 has a format
that hinders the percolation in the Z direction. This is be-
cause all the fractures have been oriented about a preferred
direction along the Z axis and it is intuitive that the intersec-
tions of fractures with each other in the Z direction are pre-
vented when compared to the X and Y directions. Further-
more, the Fisher distribution is rotationally symmetric about
its mean pole; therefore the percolation thresholds in the X
and Y directions must be the same. This is confirmed by the
results listed in Table II. As the anisotropy of networks in-
creases, the angular dispersion of fracture normal vectors is
restricted to a narrow region around their pole. For larger
values of « this region becomes smaller, so the fractures tend
to a relatively parallel situation. The direct result of this
transformation is the reduction of fracture intersections as is
shown in Fig. 3.

In addition, Balberg [32] has established the following
universal criterion for percolation of convex objects in 3D
systems whether they are isotropic or not:

9

8t 4

7F 4

0 10 20 30 40 50
K

FIG. 3. (Color online) Excluded volume of anisotropic 3D frac-
ture networks Vex,» Versus K (A). The straight line is the isotropic
excluded volume (H).

The previous results agree with the percolation threshold
limits reported by [32].

C. Permeability of anisotropic fracture networks
1. Analytical (Snow) model

Snow [10] considered networks made of infinite planes
with an arbitrary orientation distribution. The general expres-
sion of the permeability tensor K, of an anisotropic network
made of infinite fractures is given in [4,10] as

K, = f J S(n)Kg(n)(I-nn)d’n, (23)
Q

where S(n) is the surface area per unit volume of the family
of fractures with normal n and K(n) is the surface perme-
ability of these fractures.

Let us restrict this general expression to a network whose
orientations obey the Fisher distribution (2) and whose sur-
face permeability is a constant equal to o. Then,

KA=pAa'fff(0,<p)(I—nn)sin 0dode. (24)
Q

When n is expressed in spherical coordinates, the integral in
6 is evaluated with the trivial change of variable X=cos 6.
We easily obtain

25
2.45 |
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2.35 |

. 231
2.25
22 -
215

2 4 I
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]
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2.05 T T T T T
0 10 20 30 40 50 60

K

FIG. 4. (Color online) Percolation thresholds for infinite aniso-
tropic 3D fracture networks along the X (@),Y (M), and Z direc-
tions (A) against the Fisher distribution parameter .
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1 1
K, =K,——| sinh K(l + —2> ——cosh x|, (25)
2 sinh K K
Ki=K,—5— (k cosh k —sinh k), (26)
k- sinh k

where K, is the permeability of an isotropic network (k=0).
For regular hexagons Koudina et al. [5] have deduced that
K,=2p'/9.

2. Numerical results

The permeability of anisotropic networks of regular
monodisperse hexagonal fractures is systematically deter-
mined in a cubic cell with periodic boundary conditions for a
normalized density p’ ranging from slightly below the per-
colation threshold up to p'=18 for various values of the
Fisher parameter, i.e., k={2,5,10,20,50}. As for the perco-
lation study, it is not necessary to investigate the effect of
fracture shape on permeability, because Koudina et al. [5]
have shown that, if the density of fracture networks is ren-
dered dimensionless by the excluded volume, the final results
for the permeability will be independent of the fracture
shape; also they have shown that in the proximity of the
percolation threshold the permeability of polygonal fracture
networks is slightly affected by the cell size, but for dimen-
sionless densities p’ greater than 3.5 the cell size effect is
vanished. Therefore, the permeability of anisotropic fracture
networks in this study is predicted at a relative cell size
L/R=4. All the results along the three spatial directions for
p'=7.0 and p’>7.0 are statistical averages over 400 and
100 random realizations of fracture networks, respectively.

As we mentioned earlier, the flow properties of aniso-
tropic fracture networks have not been systematically studied
yet, and we could not find a similar systematic study in the
literature to compare our results with. Therefore, we have
tried to validate our permeability results by comparing them
with three sets of data. The first two are reported by Koudina
et al. [5] for isotropic monodisperse hexagonal fracture net-
works and the third are the analytical results which were
derived in the previous section for anisotropic fracture net-
works with infinite fractures. The first set of data reported in
[5] is based on the solution of the two-dimensional Darcy
equation in each fracture; we have reproduced them in Figs.
5-10 by thin solid lines passing through solid circles. The
second and third sets of data are based on analytic expres-
sions that have been obtained based on the Snow model [10]
for isotropic and anisotropic networks, respectively. Accord-
ing to Koudina et al’s discussion [5], the Snow model is
valid only in the limit of very dense networks. In subsequent
figures we have shown this model for isotropic and aniso-
tropic networks by thick solid lines.

As mentioned before, the permeability tensor is symmet-
ric, and as expected this tensor is anisotropic. In other words,
due to the special arrangement of fracture orientations, the
value of permeability in the Z direction is different from the
associated values in the X and Y directions. This behavior is
illustrated for a typical value of the Fisher parameter
(e.g.,k=10) in Figs. 5 and 6 along with numerical and ana-
lytical results. Both figures present the same results. The
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4.5

35F

25

KI

FIG. 5. (Color online) Dimensionless permeability components
in X (+), Y (O), and Z directions ([J) for anisotropic 3D fracture
networks with k=10 versus the normalized density p; in a cubic
cell with size L=4R in Cartesian coordinates. The thick solid lines
are the Snow model, and isotropic permeability is indicated by (@).

only difference is that the former is a Cartesian plot and the
latter is a log-log plot. As anticipated, the dimensionless per-
meability in the Z direction, K;z, is much smaller than the
corresponding values in the X and Y directions, i.e., K}, and
K)',V. This is because fractures are oriented about the Z axis
and the fracture connections in the Z direction are drastically
lower than the fracture connections in the X and Y directions.
As shown in Figs. 5 and 6, there is good agreement between
the numerical and analytical results.

Moreover, as revealed in Figs. 5 and 6, K|, and K], are
larger than the associated permeability of isotropic fracture
networks, while K_ is lower than the isotropic case, in agree-
ment with physical intuition. One can see from Figs. 5 and 6

10’

KI
o
o

—1 0 1 2

10 10 10 10
7 ’
P A P Coo, A

FIG. 6. (Color online) Dimensionless permeability components
in X (+), Y (O), and Z directions ([J) for anisotropic 3D fracture
networks with k=10 versus py—p/.., in a cubic cell with size L
=4R in log-log coordinates. The thick solid lines are the Snow
model, and isotropic permeability is indicated by (@).
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FIG. 7. (Color online) Average dimensionless permeability in X
and Y directions, (K)'C+K",)/2, of anisotropic 3D fracture networks
for various values of the Fisher distribution parameters k=2 (+),
5 (<€), 10 (O), 20 (X), and 50 (A), versus the normalized den-
sity pj. The results are for L=4R. The thick solid lines are the Snow
model and the isotropic case is indicated by (@).

that the values of K| and K| are approximately equal. So
we define the arithmetic average permeability as (K,
+K }’,y)/ 2; then to demonstrate the effect of anisotropy on per-
meability it suffices that we consider the variations of (K},
+K,)/2 and K with the respect to the Fisher parameter
separately. This is shown in Figs. 7-10. In these figures the
effect of the Fisher dispersion parameter « has been taken
into account in the macroscopic permeability.

When the density is rendered dimensionless according to
the anisotropic excluded volume Vex,s from Figs. 7 and 8 one
can see that increased « leads to considerable growth of per-

10'

yy

(K'_+K’ )2

FIG. 8. (Color online) Average dimensionless permeability in X
and Y directions, (K]'C+K",)/2, of anisotropic 3D fracture networks
for various values of Fisher distribution parameters k=2 (+),
5 (<), 10 (0), 20 (X), and 50 (A), versus py—p., 4.The results
are for L=4R. The thick solid lines are the Snow model and the
isotropic case is indicated by (@).
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FIG. 9. (Color online) Dimensionless permeability component
in the Z direction, K;, of anisotropic 3D fracture networks for vari-
ous values of Fisher distribution parameters, k=2 (+), 5 (<),
10 (O), 20 (X), and 50 (A), versus the normalized density pj.
The results are for L=4R. The thick solid lines are the Snow model
and the isotropic case is indicated by (@).

meability along the X and Y directions, especially when com-
pared with isotropic networks, but the opposite trend is ob-
served for the permeability in the Z direction as is illustrated
in Figs. 9 and 10. This behavior can be interpreted as fol-
lows: for low values of the Fisher parameter, the fracture
normal vectors are distributed in a wide region over the sur-
face of the unit sphere; therefore the fracture networks tend
to be isotropic and the difference between (K|, +K7,)/2 and
K'Z is not considerable. However, for large values of «, as
intuition suggests, the difference between (K +K; )/2 and
Kz’z has become more profound. In other words, when the

KIl (k=0)
K" (k=2)

K" (k=5)
K" (xk=10)
K" (k=20)

Kil (k=50)

FIG. 10. (Color online) Dimensionless permeability component
in the Z direction, Kéz, of anisotropic 3D fracture networks for vari-
ous values of Fisher distribution parameters, k=2 (+), 5 (©),
10 (O), 20 (X), and 50 (A),versus py—p,,, 4. The results are for
L=4R. The thick solid lines are the Snow model and the isotropic
case is indicated by (@).
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Fisher parameter increases, fracture normal vectors are more
and more inclined toward the Z axis. As a result, the fractures
tend to a parallel situation along the X and Y directions.
Therefore, the average number of connections in the Z direc-
tion is decreased and the chances of finding the connected
spanning paths are decreased too. Consequently, since there
are not enough connections to transmit fluid, the permeabil-
ity in the Z direction, K;Z, is drastically reduced.

In contrast, the results of Table II reveal that the probabil-
ity of existence of percolating clusters in the X and Y direc-
tions is increased; therefore, the number of connected span-
ning paths is increased too. As a matter of fact, this behavior
is confirmed by the results shown on Figs. 7 and 8. Increased
permeability due to larger values of « along the X and Y
directions can be attributed to the generation of new con-
nected spanning paths which provide open channels for fluid
transmission. These findings comply with the analytical re-
sults as illustrated in Figs. 7-10.

V. CONCLUDING REMARKS

In this study a group of anisotropic fracture networks is
constructed according to the Fisher distribution. The aniso-
tropy of fracture networks is controlled by the Fisher disper-
sion parameter. As the Fisher parameter is increased, the dis-

PHYSICAL REVIEW E 77, 056307 (2008)

tribution of fracture normal vectors becomes more dense and
inclined toward the Z axis. The excluded volume, percolation
properties, and permeability of fracture networks are studied
systematically for various values of angular dispersion pa-
rameter. For the anisotropic case, at low values of the disper-
sion parameter, fracture networks tend to be isotropic, and
the difference between (K, +K; )/2 and K  is not appre-
ciable. However, for large values of « the difference between
(K, +K;,)/2 and K is increased. It is found that, as the
Fisher parameter is increased the probability of existence of
percolating paths along the X and Y directions goes up com-
pared with the probability of existence of percolating paths
in the Z direction. Furthermore, the permeability of fracture
networks in the X and Y directions is increased when normal
vectors of fractures are distributed in a smaller region about
the mean pole. Also, the Z component of permeability of
fracture networks decreases in comparison with the isotropic
case. This result is in good agreement with our physical per-
ception.
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