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Steady two-layer thin-film planar flow under gravity is investigated theoretically in this study. The film is
assumed to emerge out of a channel and flow over a straight plate. The interplay among inertia, viscous and
surface or interfacial tension is emphasized. It is found that the film and interface profiles, as well as the flow
field, are strongly influenced by the viscosity ratio, film thickness ratio at inception, and surface-to-interfacial
tension ratio. In the absence of surface and interfacial tension, the profiles of the film layers vary monotonically
streamwise. The surface tension effect leads to waviness in layer profiles, with increasing wave number as the
surface tension effect is reduced.
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I. INTRODUCTION

The steady flow of two superimposed Newtonian layers is
examined theoretically in this study. The two-layer film is
assumed to emerge from a channel and flow over a flat solid
boundary. Although the flow of a single-layer film on a solid
plate has been extensively investigated in the literature, little
work has been devoted to multilayered films. One reason for
the intense interest in thin-film flows is the wide variety of
natural and industrial applications of such flows �1�. The
influence of inertia, gravity, and substrate topography on
steady flow and early stages of flow development of a single-
layer Newtonian thin film, as it moves on a solid stationary
substrate, was previously examined by Khayat and co-
workers �2,3�. The pioneering work of Watson �4� focused on
the steady laminar and turbulent radial and planar spread of a
liquid jet over a horizontal plane, including the special case
of two-dimensional flow. For a large distance from the
source, a similarity solution of the laminar thin-film equa-
tions is sought. In particular, it is found that, for two-
dimensional flow, the steady �dimensionless� shape of the
free surface is given by hs=1.81x /Re, where x is the distance
from the source, and Re is the modified Reynolds number.
This result was used by Khayat and Welke �2� to assess the
validity of their formulation. The steady surface profile was
obtained in the absence of gravity and surface tension. It
constitutes an important limiting form. In the literature, most
of the theoretical work has concentrated on Newtonian fluids
�1,5�, and to a much lesser extent on non-Newtonian fluids
�6,7�. The effect of other external �body� forces, such as an
electrostatic field, has also been examined on the flow of a
film, its stability, and eventual rupture by Gorla and Byrd �8�.
While most work in the literature has concentrated on the
steady flow of the film over a straight substrate, some studies
have focused on the effect of substrate topography. The
steady free surface shape of thin-film flows over trenches and
mounds was examined by Kalliadasis et al. �9�. Their study
was limited, however, to surface-tension-dominated inertia-
less flows. They found that the free surface develops a ridge
right before the entrance to the trench or exit from the

mound, and that the ridge can become large for steep sub-
strate features of significant depth. Earlier, Stillwagon and
Larson �10� investigated this problem experimentally. They
measured the changes in thickness of silicon oil films at the
centers of holes and trenches of a silicon substrate using a
noncontact interferometric technique. In this case, the flow
was also surface tension dominated, and the inertia effect
was negligible. Later, Stillwagon and Larson �11� considered
the leveling of thin films over uneven substrates during spin
coating.

Although the thin-film formulation reduces the pressure to
its hydrostatic part, thus eliminating the momentum equation
in the transverse direction from the problem, the dimension
of the problem remains the same as in the original equation.
At moderately high Reynolds number, inertia is better ac-
counted for through the boundary-layer �BL� approximation,
which includes the effect of transverse flow. The major dif-
ference between the original Navier-Stokes equations and the
BL equations is the hydrostatic variation of pressure across
the film depth. As a result, only the transverse momentum
equation is eliminated, but the convective terms are retained
in the remaining equations, and the number of boundary con-
ditions is reduced. However, the solution of BL equations
remains essentially as difficult to obtain as that of Navier-
Stokes equations �12�. As proposed by Shkadov �13�, a
depthwise integration of the momentum equations in the
transverse direction is usually performed by assuming a self-
similar semiparabolic flow profile in the transverse direction.
Although the depth-averaged BL equations are only of sec-
ond order in time, they yield plausible results. The parabolic
flow approximation is widely used in the literature, and its
validity was established experimentally by Alekseenko et al.
�14�. Recently, Ruschak and Weinstein �15� examined the
gravity-driven flow of a thin film over a round-crested weir.
The surface tension effect was neglected, while the inertia
effect was included. The equations were depth averaged in
the radial direction. Steady-state profiles of the free surface
were obtained as functions of Reynolds number and weir
diameter. More recently, Costa et al. �16� studied lava flow
based on depth-averaged equations.

Multilayer film flow remains relatively unexplored, and
has been considered mainly in relation to various applica-
tions in polymer processing, such as coextrusion and coin-
jection molding �17�. Thickness profiles and pressure drops*rkhayat@uwo.ca
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across ducts and channels in two- and three-layer flows have
been measured and estimated in early studies �18–21�. These
studies were motivated either to reduce the pressure drop or
to study the interface deformation in the form of encapsula-
tion of the viscous fluid by the fluid of low viscosity. The
viscosity ratio is found to be the important parameter respon-
sible as it affects the thickness and pressure drop. More re-
cently, Anturkar et al. �22� studied multilayer Newtonian
thin-film flow with application to extrusion and coating using
depth-averaged equations. Although they included the sur-
face tension effect, the inertia effect was neglected. Joseph et
al. �23� carried out a linear stability analysis for the flow of
two immiscible fluids of different viscosities and equal den-
sity in a pipe. They showed that the volume ratio, related to
the fluid thicknesses, is a crucial factor for the interface
shape and stability. Thereafter the instability of two co-
current-superposed viscous fluids in a channel was examined
by Hooper and Grimshaw �24�. They found that the interface
may or may not be stable. In the latter case, the interface
evolves to another steady state. Loewenherz and Lawrence
�25� tackled the linear stability problem analytically for two-
layer flow of fluids of equal density, in the absence of free
surface and interfacial tension, and in the limit of Stokes
flow. More recently, the interfacial stability for a two-layer
film flowing under gravity through an inclined or vertical
channel, as well as the free-surface two-layer flow down an
inclined or vertical plane wall, were studied by Pozrikidis
�26�. The analysis was carried out in the limit of Stokes flow.

The current study focuses on the influence of flow param-
eters, such as the viscosity ratio, velocity, and film thickness
ratio at inception and the surface-to-interfacial tension ratio
on two superimposed Newtonian thin films flowing on a
solid and stationary substrate at a large distance from the
source. The flow is analyzed first in the absence of surface
and interfacial tension but fluid inertia is taken into account.
Then the interplay between inertia and free surface and in-
terfacial tension effects is investigated. The depth averaging
approach is used by assuming a self-similar semiparabolic
velocity profile for the streamwise velocity component. The
paper is organized as follows. The problem formulation and
solution procedure are given in Sec. II. The results and their
discussion are presented in Sec. III, where steady flow be-
havior is covered. Finally, concluding remarks are given in
Sec. IV.

II. PROBLEM FORMULATION AND SOLUTION
PROCEDURE

In this section, the film flow configuration is introduced,
and the scaled conservation equations for two-layer incom-
pressible Newtonian film flow, as well as boundary condi-
tions, are briefly discussed. The solution procedure is also
outlined.

A. Thin-film equations and boundary conditions

Consider the two-layer gravity-driven flow of incompress-
ible Newtonian fluids moving on a flat plate, making an
angle � with the horizontal. The two-layer film is assumed to
emerge out of a channel and flow over the plate. Figure 1

displays schematically the flow configuration in the �X ,Y�
plane. Layers 1 and 2 are taken to correspond to the upper
and lower layer, respectively, with H1�X� being the height of
the free surface and H2�X� that of the interface. In this work,
the two layers are assumed to have the same density � and
different viscosities �1 and �2. Let �1 and �2 be the free-
surface and interfacial tension coefficients, respectively. At
inception �X=0�, layers 1 and 2 have heights H01 and H02,
and mean flow velocities U01 and U02, respectively. Refer-
ence scales are conveniently introduced in terms of the geo-
metric and flow parameters of the lower layer. In this case,
H02 is taken as the length scale in the depthwise direction,
and U02 is taken as the velocity scale streamwise. Conse-
quently, the length scale in the streamwise direction is de-
noted by L, which is typically much larger than the film
thickness �L�H02�. Assuming each layer to be thin, the fol-
lowing similarity parameters emerge in the problem, namely,
the Reynolds number Re, Froude number Fr, capillary num-
ber Ca, thickness-to-length ratio �, the height ratio RH, vis-
cosity ratio R�, and surface-tension ratio R�. More explicitly,

Re =
�U02H02

�2
, Fr =

U02
2

Lg
, Ca =

�2U02

�2
, � =

H02

L
,

RH =
H01

H02
, R� =

�1

�2
, R� =

�1

�2
. �1�

where g is the gravitational acceleration. The velocity scale
is taken to correspond to Poiseuille flow in the channel,
which, in this case, is given by

U02 =
H02

2 g sin �

2�2
� �R� − 1 + RH

2 �
2�RH + R� − 1�

−
1

3
� ,

where �2=�2 /� is the kinematic viscosity of the lower layer.
Consequently, the Froude number can be expressed in terms
of the remaining variables as

FIG. 1. Schematic illustration of two-layer thin-film flow exiting
a channel. Dimensional notations are used.
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Fr =
�

2
sin �� �R� − 1 + RH

2 �
2�RH + R� − 1�

−
1

3
�Re.

This is an interesting relation as it shows the intricate inter-
play among gravity, inertia, viscosity ratio, and thickness ra-
tio. The conservation equations for thin-film flow are ob-
tained in dimensionless form, with terms of O��2� and higher
being excluded. In this case, the relevant equations for the
problem are

�u1

�x
+

�v1

�y
= 0,

u1
�u1

�x
+ v1

�u1

�y
= −

1

Re �

�p1

�x
+

sin �

Fr
+

1

Re �
R�

�2u1

�y2 ,

�p1

�y
= − Re �2cos �

Fr
�2�

for layer 1, and

�u2

�x
+

�v2

�y
= 0,

u2
�u2

�x
+ v2

�u2

�y
= −

1

Re �

�p2

�x
+

sin �

Fr
+

1

Re �

�2u2

�y2 ,

�p2

�y
= − Re �2cos �

Fr
�3�

for layer 2. Here u, v, and p are the dimensionless velocity
components in the x and y directions, and the pressure, re-
spectively, with subscripts corresponding to each layer. Note

that �U02 and �2 /�2U02L are taken as the velocity scale
depthwise and the pressure scale, respectively. The dynamic
conditions at the free surface reduce to �see Appendix A�

p1 = − �R��3

Ca
�h1�,

�u1

�y
= 0 at y = h1. �4�

At the interface,

p2 − p1 = − � �3

Ca
�h2�, R�

�u1

�y
=

�u2

�y
at y = h2, �5�

where h1�x� and h2�x� represent the dimensionless heights of
free surface and interface, respectively. Here a prime denotes
total differentiation. The kinematic conditions at the free sur-
face and interface are given by

vi�x,y = hi� = hi�ui�x,y = hi� �i = 1,2� �6�

No-slip and no-penetration conditions at the substrate are
assumed, so that

u2�x,y = 0� = v2�x,y = 0� = 0. �7�

The continuity of flow across the interface leads to

u1�x,y = h2� = u2�x,y = h2� �8�

In this case, and assuming no mass transfer across the inter-
face, the kinematic condition at the interface reads

v1�x,y = h2� = v2�x,y = h2� . �9�

At inception �x=0�, the height of the free surface as well as
that of the interface are assumed fixed, so that

h1�x = 0� = RH, h2�x = 0� = 1. �10�

In addition, the flow rate is also specified in each layer, or

�
1

RH

u1�x = 0,y�dy =
RH

4 + �− 4 + 4R��RH
3 + �− 9R� + 6�RH

2 + �6R� − 4�RH + �− R� + 1�
R��RH − 1��3RH

2 − 2RH + R� − 1�
,

�
0

1

u2�x = 0,y�dy = 1. �11�

B. Solution procedure

Upon using the dynamic conditions �4� and �5�, the
y-momentum equations in �2� and �3� yield the following
expressions for the pressure in each layer, namely �see
Appendix A�,

p1 = Re �2cos �

Fr
�h1 − y� −

R��3

Ca
h1�,

p2 = Re �2cos �

Fr
�h1 − y� −

�3

Ca
�h2� + R�h1�� . �12�

Substituting for pressure into the x-momentum equations
finally gives

u1
�u1

�x
+ v1

�u1

�y
= − �

cos �

Fr
h1� +

1

Re

R��2

Ca
h1� +

sin �

Fr

+
1

Re �
R�

�2u1

�y2 ,

u2
�u2

�x
+ v2

�u2

�y
= − �

cos �

Fr
h1� +

1

Re

�2

Ca
�h2� + R�h1��

+
sin �

Fr
+

1

Re �

�2u2

�y2 , �13�

STEADY TWO-LAYER GRAVITY-DRIVEN THIN-FILM FLOW PHYSICAL REVIEW E 77, 056304 �2008�

056304-3



which must be solved subject to conditions �6�–�11�. In this
study, a depth-averaging approach is implemented for the
solution of the problem. Following the standard procedure
for one-layer film flow �13–15�, the profiles for the stream-
wise velocity component is assumed to be semiparabolic in y
in each layer. Using conditions �6�, the depthwise velocity
component is then obtained upon integrating the continuity
equation in each layer. Thus, upon letting ui�x ,y�=Ai�x�y2

+Bi�x�y+Ci�x�, it is not difficult to show that the coefficients
can be expressed in terms of the mean velocity components
ū1�x� and ū2�x�, and heights h1�x� and h2�x�, and the viscos-
ity ratio, namely,

A1 =

�h1 − h2��ū1 −
3

2
ū2�

f�h1,h2,R��
,

A2 =
3

2h2
2 �R�A1h2

2 − R�A1h1h2 − ū2� ,

B1�x� = − 2A1h1, B2�x� = 2R�A1h2 − 2R�A1h1 − 2A2h2,

C1�x� = 2A1h1h2 − 2R�A1h1h2 − h2
2A1 − h2

2A2 + 2R�A1h2
2,

C2�x� = 0, �14�

where

f�h1,h2,R�� = h1h2
2 −

2h1
3 + h2

3

3

+ �2h1h2 − h2
2 −

1

2
R�h1h2 +

1

2
R�h2

2��h1 − h2� .

Equations �13�, along with the continuity equations in �3�
and �4�, can now be integrated over each layer to yield
the following equations for the coefficients Ai and heights hi
�i=1,2�:

P1A1� + Q1A2� + R1h1� + S1h2� = 0,

P2A1� + Q2A2� + R2h1� + S2h2� = 0,

P3A1� + Q3A2� + R3h1� + S3h2�

=
2A2h2

Re �
+

sin �

Fr
h2 +

�2

Re Ca
h2�h2� + R�h1�� ,

P4A1� + Q4A2� + R4h1� + S4h2�

=
2R�

Re �
A1�h1 − h2� +

sin �

Fr
�h1 − h2� +

R��2

Re Ca
�h1 − h2�h1�,

�15�

where the coefficients P� ,Q� ,R� ,S� ��=1,2 ,3 ,4� are ex-
plicit functions of A1 ,A2 ,h1 ,h2, and are given in Appendix
B. Equations �15� are solved as an initial-value problem us-
ing a fourth-order Runge-Kutta integration scheme. The ac-
curacy of the numerical scheme has been ensured by moni-
toring the constancy of the flow rate at different locations
along the film flow.

III. RESULTS AND DISCUSSION

The formulation and numerical implementation above are
now applied to investigate steady two-layer film flow. The
effect of geometric and flow parameters on the film profile
and flow field is investigated. The limiting case of one-layer
flow is also discussed for reference. The effect of surface and
interfacial tensions will be examined through the capillary
number Ca and surface-to-interfacial tension ratio R�. De-
pending upon the level of the surface-tension effect, a regular
and singular perturbation solution near inception is also ob-
tained for one-layer film flow. Given the many parameters in
the problem, the flow will be considered first in the absence
of surface and interfacial tension effects. In this case, Ca
�O��� or larger. The influence of surface tension tends to be
weak, for instance, for flow with dominant inertia. This has
been particularly demonstrated for single-layer film. Lee and
Mei �27� found that the surface-tension effect decreases
strongly with increasing inertia. When cast in terms of the
present similarity parameters, they showed that the capillary
number behaves roughly as Ca�1/�. The capillary number
can in fact be large even for some flows with high viscosity,
such as the flow of polybutene oils. As an illustration, con-
sider polybutene fluid with average viscosity �=80 mPa s,
density �=1200 kg m−3, and surface-tension coefficient �
=50 mNm−1 flowing at average velocity of 12 ms−1. For a
film of 2 mm thickness at inception, �=1 /360 and Ca
=19.2, making surface-tension effects clearly negligible in
this case. This value of Ca is within the same order of mag-
nitude as that encountered in polymer processing, such as the
injection molding of polybutene �28�. Nevertheless, surface
and interfacial tension effects will also be examined in detail.

A. Flow with negligible surface and interfacial tension

The typical flow field and layer shapes are depicted in
Fig. 2. Although this flow case is relatively simple, it will
serve as reference for the more complex flows below. The
distributions of the velocity components along the free sur-
face h1�x� and interface h2�x� are also shown. Both h1 and h2
tend to decrease overall with increasing x as a result of film
contraction �Fig. 2�a��. However, the interface exhibits a
nonmonotonic decrease with a weak maximum near the
channel exit. Generally, h1 and h2 decrease at the same rate.
The emergence of a maximum at the interface is the result of
a relatively strong vertical flow in the lower layer caused by
the vicinity of the lower layer to the plate. This is further
confirmed from Fig. 2�b�, where the relative drop in the
depthwise flow intensity between the interface and the free
surface is generally more significant than the drop in the
streamwise velocity. This drop is particularly large near in-
ception as a result of strong elongation or the sharp increase
in the streamwise velocity due to film contraction.

One of the most important dimensionless parameters ap-
pearing in two-layer flow problems is the viscosity ratio.
This parameter is also a key factor in the onset of flow in-
stability �29�. The overall dependence of the free surface and
interfacial heights on viscosity ratio is illustrated in Fig. 3.
Since the parametric flow response is expected to vary with
position, both the heights close to the origin �at x=1 in Fig.
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3�a�� and far downstream �at x=10 in Fig. 3�b�� are plotted
against R�. Simultaneously, Fig. 4 displays the profiles of the
free surface and interface at four different viscosity ratios.
Figure 3�a� shows that the interface height remains relatively
unaffected by the viscosity ratio near the origin, whereas the
free surface height decreases essentially linearly. Further
downstream, Fig. 3�b� shows that h1 decreases less strongly
with increasing R�, exhibiting two distinct slopes. This
change in slope at some critical viscosity ratio is reminiscent

of phase transition phenomena �30�. Although the interface
displays a minimum in height, it remains relatively unaf-
fected by the viscosity ratio. This is indeed confirmed from
Fig. 4. For small R�, the relatively low viscosity of the upper
layer prohibits its contraction as Fig. 4�a� indicates, with the
layer behaving close to an inviscid fluid. As R� increases, a
relatively sharp drop in height occurs in h1, reflecting stron-
ger contraction. The increase in viscosity ratio is equivalent
to the thinning of the lower layer relative to the upper layer,
which in turn leads to a less effective overall momentum
transfer with the �stationary� plate. The increase in contrac-
tion is evident from Figs. 4�b�–4�d�. For very high viscosity
ratio �R�	10�, the two-layer film behaves like a one-layer
film as a result of the strong gravitational effect relative to
viscous effects.

Gravity plays an important role as a driving force. Indeed,
in the absence of capillarity, the free surface and interface
shapes depend only on the interplay between viscous forces
and gravity. The effect of gravity can be examined by chang-
ing the plate angle �see also Fig. 11 in the presence of surface
tension�. Figure 5 depicts the influence of �. The figure
clearly illustrates the nonmonotonic response of film shape
as gravity increases. For very small inclination angle ��
=1°�, the film is essentially flat, reflecting a film at rest. As �
increases while remaining small, viscous forces remain
dominant, and the film grows with distance. Given the pres-
ence of gravity, the film does not grow linearly as in Wat-
son’s similarity solution �4�. For dominant gravity ��	5°�,
the film contracts, and reaches an asymptotic level far down-
stream �see Figs. 5�c� and 5�d��. The behavior in Fig. 5 is
similar to that encountered for one-layer flow. In the latter
case, the film height h�x� is dictated by the following equa-
tion �see Appendix C�:

��
cos �

Fr
−

6

5h3�h� = −
3

Re �h3 +
sin �

Fr
. �16�

Note in this case that Fr=�Re sin � /12 so that Eq. �16�
reduces to

FIG. 2. Typical two-layer film flow for �=90°, �=0.1, R�=2,
RH=2, and Re=100. �a� shows the free surface �solid curve� and
interface �dash-dotted curve� heights as well as the velocity magni-
tude contours. �b� displays the dependence of velocity components
at the interface �dash-dotted lines� and free surface �solid lines�
on x.

FIG. 3. Dependence of interface height �dash-dotted curve� and free surface height �solid curve� on the viscosity ratio for �=90°,
�=0.1, RH=2, and Re=100. The heights are plotted at x=1 �a� and 10 �b�.
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2�2 cot �

Re
−

1

5h3�h� =
1

Re �
�4 −

1

h3� . �17�

Clearly, the right-hand side of Eq. �17� remains positive at
inception. In this case, the equation suggests that the film
slope changes sign at a critical plate angle given by �c
=cot−1�Re /10�, which in turn reflects the change from film
expansion to film contraction at inception.

Figure 6 illustrates typical streamwise velocity profiles for
small and large inclination angles. The profiles are given at
different but equally distant x locations. The free surface and
interface profiles are also shown. Here again R�=RH=2. Fig-
ure 6�a� shows the profiles when gravity is negligible for �
=3° �see also Figs. 5�a� and 5�b��. Figure 6�b� displays the
profiles for dominant gravity for �=90° �see also Figs. 5�c�
and 5�d��. Although both elongational and shear effects are
expected to be present, the predominantly elongational char-
acter of the flow is evident when gravity is strong, as re-
flected in the rapid axial gradient of the velocity exhibited in
Fig. 6�b�. For weak gravity, elongation is particularly strong
near inception but rapidly becomes constant because of the
uniform expansion rate �see Fig. 6�a��.

The interplay between viscosity and thickness ratios is
illustrated in Fig. 7. The heights h1 and h2 at x=10 are plot-

ted against RH for typically a small and a large R� value.
Figure 8 displays the profiles of the free surface and interface
for three different RH values for the same two viscosity ratios
as in Fig. 7. In order to investigate the effect of RH on film
heights, this parameter is varied over a fairly broad range,
RH� �1,10�. Note that the limit RH→1 corresponds to one-
layer film flow. Close to this limit, there is essentially no
fluid flowing in the upper layer, which explains the lack of
dependence of film height on R� �see also Fig. 8�a��. As RH
increases, the interface height remains relatively unaffected
but that of the free surface increases essentially linearly with
RH. The increase in free surface height is clearly depicted in
Fig. 7, which reflects weaker gravity. This is also confirmed
from the expression of the Froude number in Sec. II, which
for dominant thickness ratio gives Fr	 � / 4sin �RH Re. This
shows that gravity is weakened for films with large thickness
ratio.

B. Flow with dominant surface or interfacial tension

The influence of surface and interfacial tensions is now
examined by varying the capillary number Ca and surface-
tension ratio R�. It is generally found that surface or interfa-
cial tension at even relatively large capillary number can

FIG. 4. Effect of viscosity ratio on the interface and free surface profiles, for R�=0.001 �a�, 0.03 �b�, 0.1 �c�, and 10 �d�, for �=90°,
�=0.1, RH=2, and Re=100.
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have a significant qualitative effect on the flow, although the
flow field remains quantitatively close to the flow without
surface and interfacial tension. The flow field in the presence
of surface and interfacial tension is typically illustrated in
Fig. 9 for Ca=0.1, R�=1, and �=0.1. The film shape and the
distributions of the streamwise and depthwise velocity com-
ponents along the free surface and interface are shown in
Figs. 9�a�–9�c�, respectively. Note that the film heights in the
absence of surface or interfacial tension are the mean heights
�see also Fig. 10�b��. Surface tension is expected to have a
stabilizing effect near the origin. The stabilizing effect of
surface or interfacial tension is of course due to the weaken-
ing of elongational flow �and consequent film flattening�
upon flow inception. Further downstream, however, surface
or interfacial tension is destabilizing. From the distributions
of h1�x� and h2�x�, it appears that this destabilization is ex-
perienced essentially uniformly across the film depth. This
uniform response across the film is somewhat expected in the
present case since R�=1. However, even in this case, al-
though the modulation amplitude and phase in h1�x� and
h2�x� are essentially the same, there is significant discrep-
ancy in the behavior of the velocity at the free surface and
the interface. There seems to be considerable elongational
effect experienced at the free surface compared to the inter-
face as indicated by the higher jumps and drops in u1�x ,y
=h1� compared to u2�x ,y=h2� in Fig. 9�b�. In contrast, Fig.
9�c� shows that the depthwise velocity component at the free
surface is essentially the same as that at the interface. Some

higher harmonics are present in v1�x ,y=h1�. In general, the
amplitude of film modulation grows with streamwise dis-
tance, leading to sharp gradients in film shape and flow field.

The level of surface and interfacial tension influences the
film shape and flow field significantly. This is illustrated in
Fig. 10, which displays the interface and free surface profiles
at four different capillary numbers. In the limit Ca→
, one
expects to recover the flow in the absence of surface and
interfacial tension. This limit is approached with surface or
interface modulation exhibiting an increasingly larger wave
number and smaller amplitude as Ca increases. Note that the
limit of infinite Ca leads to a singularity and consequently to
the large wave number. At large capillary number �Ca=1�,
Fig. 10�a� shows that both h1�x� and h2�x� remain wavy, but
the profiles display a similar mean behavior to that corre-
sponding to the flow with negligible surface and interfacial
tension. This is further illustrated in Fig. 10�b� for Ca=0.1.
The curves corresponding to the flow in the absence of sur-
face and interfacial tension are added in the figure for refer-
ence. As surface tension effects become stronger, the modu-
lation wavelength and amplitude increase. This behavior was
also predicted by Benjamin �31� for one-layer flow, who
showed that, for different values of the Reynolds number,
increasing surface tension results in a decrease in wave num-
ber �an increase in wavelength�. Figure 10�b� shows that
only the amplitude increases with position, reflecting an ob-
vious destabilization of the film downstream. As Ca de-
creases further, the instability is swept further downstream

FIG. 5. Effect of viscosity ratio on the interface and free surface profiles, for �=1° �a�, 3° �b�, 30° �c�, and 90° �d�, for �=0.1, R�=2,
RH=2, and Re=100.
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�Fig. 10�c��, but eventually disappears altogether when Ca
decreases below a critical value �Fig. 10�d��. This apparent
convective instability is related to the onset of ribbing lines
in three-dimensional one-layer flow �32�. Pitts and Greiller
�33� determined the capillary number at which the coating
meniscus between linearly diverging surfaces becomes un-
stable. They found that the critical capillary number in-
creases with angle of divergence. The present flow is inertia
dominated, which involves a film with small angle of diver-
gence; the film tends to move downstream instead of accu-
mulating near the origin. Accordingly, surface- or interface-
induced modulation is expected to disappear at relatively
small Ca.

The influence of gravity on the two-layer flow in the pres-
ence of surface and interfacial tension is illustrated in Fig.
11, where the effect of the plate slope on the interface and
free surface profiles is displayed. It is generally observed
that, as the driving �gravity� force decreases, the free surface
and interface modulation amplitude increases, resulting from
the increasingly dominating surface tension effect. This be-
havior is in agreement with the predictions of Parau et al.
�34�, who examined the effect of capillarity and gravity on
solitary waves in deep media.

Finally, the interplay between free surface and interfacial
tensions is examined by varying the surface tension ratio at
relatively small capillary number �Ca=10−5�, and is illus-
trated in Fig. 12. Here, the free surface and interface profiles
are shown at R�=0.05, 1, and 10, and the other parameters
are R�=2, RH=2, Re=100, and �=0.1. A relatively large free
surface tension tends generally to stabilize the film and re-
duce the surface curvature �see curves corresponding to R�

=10�. In this case, the interface exhibits pronounced wavi-
ness. On the other hand, larger interfacial tension has a de-
stabilizing effect on the film surface. In this case, the modu-
lation appears to be particularly enhanced in wave number at
the free surface. The interface tends to display delayed
modulation, but with relatively less pronounced amplitude
�see curves corresponding to R�=0.05�. At large R�, the in-
terface modulation amplitude is large enough for it to pen-
etrate through the free surface at some location downstream.

C. One-layer flow

The emergence of surface modulation is an important is-
sue, which can be further understood by examining the sim-
pler one-layer steady film flow. In this case, the equation
governing the film thickness h�x� reduces to �see Appendix
C�

�h� = ��
cos �

Fr
−

6

5h3�h� +
3

Re �h3 −
sin �

Fr
, �18�

where �=�2 /Re Ca. The equation above must be solved sub-
ject to the boundary conditions h�0�=1, h��0�=0, h��0�=0.
For large �, a regular perturbation expansion can be carried
out in 1 /�, for �=90°, namely,

h�x� = 1 + � 3

Re �
−

1

Fr
� x3

6
�1

�
�

− 
� 3

Re �
−

1

Fr
��� 3

Re �
−

1

Fr
� +

1

Fr
� x6

240

+ � 3

Re �
−

1

Fr
� x5

100

�1

�
�2

+ O�1

�
�3

. �19�

FIG. 6. Streamwise velocity profiles for �=0.1, R�=2, RH=2,
and Re=100. Free surface �thick solid curve� and interface �thick
dash-dotted curve� are also shown. �a� and �b� illustrate the velocity
profiles at different x locations, from x=0 to 10 in equal steps for
�=3° and �=90°, respectively.

FIG. 7. Dependence of free surface �solid curves� and interface
�dash-dotted curves� heights on film thickness ratio, for small and
large viscosity ratios R�=0.3 and 10, respectively, for �=90°, �
=0.1, and Re=100.
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Clearly, this solution, although approximate, suggests that
the film growth is strictly monotonic in the presence of
strong surface tension. This behavior is also in agreement
with the current numerical findings for two-layer flow �see
Fig. 10�d�� where the modulation is significantly attenuated.
On the other hand, for small �, Eq. �18� exhibits a global
breakdown as opposed to the local breakdown typically en-
countered in boundary-layer problems. This fact is intuitively
expected given the absence of the second derivative in Eq.
�18�, and the rapid oscillation exhibited at small � for two-
layer flow �see Figs. 10�a� and 10�b��. Nevertheless, an ap-
proximate solution can still be sought using singular pertur-
bation expansion in the neighborhood of x=0. A suitable

rescaling in this case is given by X=x /��, H=h, which leads
to the following equation for H:

H3H� +
6

5
H� +

H3

Fr
�� −

3��

Re �
= 0. �20�

This equation is now solved using a regular perturbation
expansion,

h�x� = 1 +
5

6
� 3

Re �
−

1

Fr
�x − �5

6
�1.5

�� 3

Re �
−

1

Fr
�sin��6

5

x
��
��� + c� . �21�

FIG. 8. Effect of film thickness ratio on the free surface and interface profiles for small and large viscosity ratio, R�=0.3 and 10,
respectively, and RH=1.1 �a�, 2 �b�, and 5 �c�, for �=90°, �=0.1, and Re=100.
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In this case, the solution clearly hints at an oscillatory behav-
ior which confirms the current numerical findings for two-
layer flow �see Figs. 10�a� and 10�b��. In addition, it is not
difficult to infer from solution �21� that, while the amplitude
of oscillation of the streamwise velocity at the free surface is
O����, that of the transverse component is O�1�. This behav-
ior correlates closely with the one depicted in Figs. 10�b� and
10�c�. Figure 13 displays the profile of the free surface for
typically large �Fig. 13�a�� and small �Fig. 13�b�� surface
tension, along with a comparison between approximate and
numerical solutions. For large surface tension, agreement be-
tween the two solutions is found over a long distance from
the origin, far beyond the region of validity of the regular
perturbation expansion. In contrast, for small surface tension,
the two solutions agree only over a small distance. The wavy
behavior of the free surface shown in Fig. 13�b� may be
qualitatively compared to the numerical results given by
Parau et al. �34� for inviscid three-dimensional gravity-
capillary solitary waves. They found that the oscillatory
wave amplitude decreases as surface tension decreases. This
behavior is confirmed here in Fig. 14, where the wave am-
plitude 
 is plotted against Ca for different angles of inclina-
tion, at a location sufficiently far from inception where the
flow is fairly settled �in this case x=2�. As is evident from
Fig. 14, at small Ca, the wave amplitude tends to decreases
rapidly as surface tension diminishes, but eventually be-
comes insensitive to the surface-tension effect at large Ca.
Note that this behavior is also predicted for two-layer film
flow �see Fig. 10�. The inset in Fig. 14 shows a log-log plot,

which in turn reveals a simple general dependence of the
wave amplitude on surface tension, namely, 
�Ca−0.3. Inter-
estingly, there is essentially no dependence on the angle of
inclination.

The possibility of conducting experiments for two-layer
flow is limited by the complex nature of the problem. How-
ever, there are numerous experiments carried out on the one-
layer film flow, with results that can still be generalized to
two-layer flow under certain circumstances. For instance,
Pierson and Whitaker �35� examined the wavy structure of
water flowing down a vertical plane experimentally and nu-
merically. They showed that when the Reynolds number in-
creases, the wavelength of surface waves decreases, which
results in an increase in wave number �. This phenomenon
can also be seen from Fig. 15 where the free surface profile
is plotted for different Reynolds numbers using the proper-
ties of water. Figure 16 depicts the dependence of the wave
number defined as �=2�hm /�, where hm is the mean film
height and � is the wavelength, on Re. The data, which are
based on the profiles shown in Fig. 15, suggest a linear re-
sponse, which is reflected in the results of Pierson and Whit-
taker �35� for large Reynolds number.

IV. CONCLUSION

Two-layer thin-film flow over an inclined stationary solid
substrate is examined in this study. The film is assumed to
emerge out of a channel and flow over a straight plate. The
fluid density is assumed to be uniform over the flow domain,

FIG. 9. Typical two-layer film
flow for �=90°, �=0.1, R�=2,
RH=2, R�=1, Ca=0.1, and Re
=100. �a� shows the free surface
�solid curve� and interface �dash-
dotted curve� heights as well as
the velocity magnitude contours.
�b� and �c� display the dependence
of horizontal and vertical velocity
components, respectively, at both
interface �dash-dotted curve� and
free surface �solid curve� on x.
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but the viscosity and surface tension in each layer can be
different. The influence of flow parameters, such as the vis-
cosity ratio R�, film thickness ratio at inception RH, plate
angle �, and surface-to-interfacial tension ratio R�, is inves-
tigated. Depending upon the level of the surface-tension ef-
fect, a regular and singular perturbation solution near incep-
tion can be obtained for one-layer film flow, and close
agreement is found between the numerical and approximate
solutions. Furthermore, for one-layer film flow down a ver-
tical wall, the effect of Reynolds number Re on wave num-

ber is also studied, indicating that the surface wave number
increases linearly with inertia.

The viscosity ratio and film thickness ratio at inception
have a strong influence on the film thickness downstream. In
the absence of surface and interfacial tension, the film thick-
ens with increasing RH and decreases in height with increas-
ing R�. A jump in height occurs at some critical viscosity
ratio further downstream. The free surface and interface tend
to become thinner as the gravity effect becomes stronger.

FIG. 10. Effect of surface tension on the interface and free surface profiles. �a�, �b�, �c�, and �d� correspond to Ca=1, 0.1, 0.01, and 0.001,
respectively, for �=90°, �=0.1, R�=2, RH=2, R�=1, and Re=100. In addition, curves corresponding to flow in the absence of surface and
interfacial tension are also added to �b� for reference.

FIG. 11. Effect of plate slope on the interface and free surface
profiles for different plate angles �=90°, 50°, and 10° for �=0.1,
R�=2, RH=2, R�=1, Ca=0.01, and Re=100.

FIG. 12. Effect of surface tension ratio on the free surface �solid
curves� and interface �dash-dotted curves� profiles, corresponding to
R�=0.05, 1, and 10. Other parameters are �=90°, �=0.1, R�=2,
RH=2, Ca=10−5, and Re=100.
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There is a change from film expansion to film contraction at
inception as the gravity effect increases. For one-layer flow,
the film slope changes sign at a critical plate angle �c
=cot−1�Re /10�. The surface or interfacial tension at even
relatively large capillary number is found to have a signifi-
cant qualitative effect on the flow, although the flow field

remains quantitatively close to the flow without surface and
interfacial tension. Despite the stabilizing effect of surface
tension near inception, surface modulation appears down-
stream, which increases in wavelength and amplitude as the
surface-tension effect becomes stronger, and finally disap-
pears at relatively small Ca. The free surface modulation
tends to diminish with increase in R�. Finally, the effect of
capillary and Reynolds numbers on the wave amplitude and
wave number is investigated for the simpler one-layer case,
and the results show good agreement with existing theory
and experiment.

APPENDIX A: DYNAMIC CONDITIONS

Cast in dimensionless form, the explicit forms for the dy-
namic condition in the normal and tangential directions at the
free surface �y=h1� are given by

2�2

1 + �2� �h1

�x
�2�− �2� �h1

�x
�2�u1

�x
+

�h1

�x

�u1

�y
+ �2

�h1

�x

�v1

�x
−

�v1

�y
� + p1 =

−
R��3

Ca

�2h1

�x2

�1 + �2� �h1

�x
�2�3/2

, �A1�

− �1� �u1

�y
− �2�v1

�x
��1 − �2� �h1

�x
�2� + 2�1�

�h1

�x
��

�u1

�x
− �

�v1

�y
� = 0. �A2�

Similarly, the dynamic conditions in the normal and tangential directions at the interface �y=h2� are

2�2

1 + �2� �h2

�x
�2�− �2� �h2

�x
�2�u2

�x
+

�h2

�x

�u2

�y
+ �2�h2

�x

�v2

�x
−

�v2

�y
� + p2

+
2R��2

1 + �2� �h2

�x
�2��2� �h2

�x
�2�u1

�x
−

�h2

�x

�u1

�y
− �2�h2

�x

�v1

�x
+

�v1

�y
� − p1 =

−
�3

Ca

�2h2

�x2

�1 + �2� �h2

�x
�2�3/2 , �A3�

FIG. 13. Free surface profiles for one-layer film flow. Compari-
son between numerical and approximate solutions for typical �a�
large surface tension �=103 and �b� small surface tension �=10−3

for �=90°, �=0.1, Re=100.

FIG. 14. Wave amplitude versus Ca for �=0.1 and Re=100 for
different plate angles. Inset shows log-log plots.
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�1� �u1

�y
+ �2�v1

�x
��1 − �2� �h2

�x
�2� − 2�1�

�h2

�x
��

�u1

�x

+ �
�v1

�y
� − �2� �u2

�y
− �2�v2

�x
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�x
�2�

+ 2�2�
�h2

�x
��

�u2

�x
− �

�v2

�y
� = 0. �A4�

When higher-order terms in � are neglected, the dynamic
conditions reduce to expressions �4� and �5�.

Integrating the y-momentum equation in �2� of the upper
layer and in �3� of the lower layer with respect to y leads to
the following expressions for the pressure in each layer:

p1 = − Re �2cos �

Fr
y + C1�x� , �A5�

p2 = − Re �2cos �

Fr
y + C2�x� , �A6�

where C1�x� and C2�x� are determined by using �4� and �5�,
to give

C1�x� = Re �2cos �

Fr
h1 −

R��3

Ca
h1�, �A7�

C2�x� = −
�3

Ca
h2� − Re �2cos �

Fr
h2 + Re �2cos �

Fr
h1 −

R��3

Ca
h1�

+ Re �2cos �

Fr
h2, �A8�

which in turn lead to Eqs. �12�.

FIG. 15. Effect of Reynolds number on the free surface profile for Re=100 �a�, 150 �b�, 200 �c�, 250 �d�, 300 �e�, and 350 �f� for �
=90° and �=0.1 using water properties.
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APPENDIX B: COEFFICIENTS IN EQ. (15)

The coefficients are

P1 =
2

3
h1

3 + �R� −
2

3
�h2

3 + �− 3R� + 2�h1h2
2 + 2�R� − 1�h2h1

2,
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3
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2,
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2 + �− 4 + 4R��A1h1h2 + �A2 + �− 3R� + 1�A1�h2

2,
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2

2
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2�h2 − h1� ,

Q2 = −
2

3
h2

3,

R2 = − R�A1h2
2,

S2 = 3R�A1h2
2 − 2R�A1h1h2 − 2A2h2

2,

P3 =
1

3
�2R�

2 h2
5A1 − 4R�

2 A1h1h2
4 + 2R�

2 A1h1
2h2

3

− 2R�A2h2
5 + 2R�A2h1h2

4� ,

Q3 =
1

3
�6

5
A2h2

5 − R�A1h2
5 + R�A1h1h2

4� ,

R3 =
1

3
�2R�

2 A1
2h1h2

3 − 2R�
2 A1

2h2
4 + 2R�A1A2h2

4� + �
cos �

Fr
h2,

S3 =
1

3
�2R�

2 A1
2h2

4 − 4R�A1A2h2
4 − 2R�

2 A1
2h1h2

3

+ 2R�A1A2h1h2
3 + 2A2

2h2
4� ,

P4 = �h1
5 − h2

5�
A1

15
−

�h1
4 − h2

4�
3

A1h1 + 2�h1 − h2�A1h2
2h1�h1�1 − R�� + h2�−

1

3
+ R��� +

�h1
3 − h2

3�
3

�2�1 − R��A1h1h2 − h2
2A2

+ �2R� − 1�A1h2
2 + 2A1h1

2� + �h1
2 − h2

2���1

3
− R��A1h2

3 + 2�R� − 1�A1h1
2h2 − R�A1h1h2

2 + h2
2A2h1� + h2�2�1 − R��h1

+ �− 1 + 2R��h2��A1h2
3�1

3
− 2R�� −

1

3
A1h1

3 + A1h2h1
2�1 − 2R�� + A1h1h2

2�− 1 + 4R�� − h2
2A2h1 + h2

2A2h2� ,

Q4 = �− h2
2�� �h2

3 − h1
3�A1

3
+ �h1

2 − h2
2�A1h2 + �h1 − h2��− 2R�A1h1h2 + �− 1 + 2R��A1h2

2 − h2
2A2��

−
4A1h1h2

3

3
�h1 − h2� +

2A1h2
3

3
�h1

2 − h2
2� ,

R4 = �− A1��−
2A1h1

3
�h1

3 − h2
3� + �h1

2 − h2
2��2A1h1h2�1 − R�� − h2

2A2 + 2R�A1h2
2� − 2A1h1h2

2�h1 − h2��
+ 2A1h2�1 − R���A1

3
�h2

3 − h1
3� + �h1

2 − h2
2�A1h2 + �h1 − h2��− 2R�A1h1h2 − h2

2A2 + �2R� − 1�A1h2
2��

+ R�A1�A1h2
2�h1

2 − h2
2� − 2A1h1h2

2�h1 − h2�� + �
cos �

Fr
�h1 − h2� ,

FIG. 16. Wave number versus Re �same parameter values as in
Fig. 15�.
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S4 = � �h2
3 − h1

3�A1

3
+ �h1

2 − h2
2�A1h2 + �h1 − h2��− 2R�A1h1h2 − h2
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APPENDIX C: GOVERNING EQUATION
FOR ONE-LAYER THIN-FILM FLOW

In the limit h1→h2 �A1→A2�, the first equation in �15�
reads

�P1 + Q1�A2� + �R1 + S1�h2� = 0. �C1�

Substituting for the coefficients P1, Q1, R1, and S1 into �C1�
gives

�h2
3A2���h�� = 0 �C2�

or

A2 =
C

h2
3 �C3�

where C is a constant. On the other hand, from Eq. �14�, A2
can be expressed as the following:

A2 =
3

2h2
2 �R�A1h2

2 − R�A1h1h2 − ū2� .

In this case, and at the origin, A2 can be rewritten as

A2�x = 0� = −
3ū02

2h02
2 , �C4�

where ū02, the dimensionless mean velocity at the origin, and
h02, the dimensionless height at the inception, are equal to
unity; so A2=−3 /2 at x=0. Finally Eq. �C3� gives C=−3 /2.

Now let us consider the third equation in �15�,

P3A1� + Q3A2� + R3h1� + S3h2� =
2A2h2

Re �
+

sin �

Fr
h2 +

�2

Re Ca
h2�h2�

+ R�h1�� .

Note that h1=h2, A1=A2=−3 /2h2
3, and R�=0. After simplifi-

cation, the governing equation for one-layer thin-film flow
height can be expressed as

�h� = ��
cos �

Fr
−

6

5h3�h� +
3

Re �h3 −
sin �

Fr
, �C5�

where �=�2 /Re Ca. In the absence of surface tension, Eq.
�C5� becomes

��
cos �

Fr
−

6

5h3�h� = −
3

Re �h3 +
sin �

Fr
�C6�

�1� A. Oron, S. H. Davis, and S. G. Bankoff, Rev. Mod. Phys. 69,
931 �1997�.

�2� R. E. Khayat and S. Welke, Phys. Fluids 13, 355 �2001�.
�3� R. E. Khayat and K. Kim, Phys. Fluids 14, 4448 �2002�.
�4� E. J. Watson, J. Fluid Mech. 20, 481 �1964�.
�5� S. F. Kistler and P. M. Schweizer, Liquid Film Coating �Chap-

man and Hall, London, 1997�.
�6� R. G. Larson, Rheol. Acta 31, 213 �1992�.
�7� T. G. Myers, Phys. Rev. E 72, 066302 �2005�.
�8� R. R. Gorla and L. W. Byrd, J. Fluids Eng. 121, 651 �1999�.
�9� S. Kalliadasis, C. Bielarz, and G. M. Homsy, Phys. Fluids 12,

1889 �2000�.
�10� L. E. Stillwagon and R. G. Larson, J. Appl. Phys. 63, 5251

�1988�.
�11� L. E. Stillwagon and R. G. Larson, Phys. Fluids A 2, 1937

�1990�.
�12� O. Takeshi, Phys. Fluids 11, 3247 �1999�.
�13� V. Y. Shkadov, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 1,

43 �1967�.
�14� S. V. Alekseenko, V. E. Nakoryakov, and B. G. Pokusaev,

AIChE J. 31, 1446 �1985�.
�15� K. J. Ruschak and S. J. Weinstein, J. Fluids Eng. 121, 673

�1999�.

�16� A. Costa and G. Macedonio, Geophys. Res. Lett. 32, L05304
�2005�.

�17� W. J. Schrenk and T. Alfrey, Jr., in Coextruded Multi-Layer
Polymer Films and Sheets, in Polymer Blends, edited by D. R.
Paul and N. Seymour �Academic Press, New York, 1978�, Vol.
2, p. 129.

�18� J. L. White, R. C. Ufford, K. R. Dharod, and R. L. Price, J.
Appl. Polym. Sci. 16, 1313 �1972�.

�19� T. C. Yu and C. D. Han, J. Appl. Polym. Sci. 17, 1203 �1973�.
�20� C. D. Han and Y. W. Kim, J. Appl. Polym. Sci. 20, 2609

�1976�.
�21� J. H. Southern and R. L. Ballman, J. Appl. Polym. Sci. 20, 175

�1973�.
�22� N. R. Anturkar, T. C. Papanastasiou, and J. O. Wilkes, Chem.

Eng. Sci. 45, 3271 �1990�.
�23� D. Joseph, M. Renardy, and Y. Renardy, J. Fluid Mech. 141,

309 �1984�.
�24� A. P. Hooper and R. Grimshaw, Phys. Fluids 28, 37 �1985�.
�25� D. S. Loewenherz and C. J. Lawrence, Phys. Fluids A 1, 1686

�1989�.
�26� C. Pozrikidis, J. Fluid Mech. 371, 345 �1998�.
�27� J. Lee and C. C. Mei, J. Fluid Mech. 307, 191 �1996�.
�28� R. A. Behrens, M. J. Crochet, C. D. Denson, and Metzner.

STEADY TWO-LAYER GRAVITY-DRIVEN THIN-FILM FLOW PHYSICAL REVIEW E 77, 056304 �2008�

056304-15



AIChE J.. 33, 1178 �1987�.
�29� W. Y. Jiang, B. Helenbrook, and S. P. Lin, Phys. Fluids 16,

652 �2004�.
�30� L. E. Reichl, A Modern Course in Statistical Physics �Univer-

sity of Texas Press, Austin, TX, 1980�.
�31� T. B. Benjamin, J. Fluid Mech. 2, 554 �1957�.
�32� S. J. Weinstein and K. J. Ruschak, Annu. Rev. Fluid Mech. 36,

29 �2004�.
�33� E. Pitts and J. Greiller, J. Fluid Mech. 11, 33 �1961�.
�34� E. I. Parau, J. M. Vanden-Broeck, and M. J. Cooker, J. Fluid

Mech. 536, 99 �2005�.
�35� F. W. Pierson and S. Whitaker, Ind. Eng. Chem. Fundam. 16,

401 �1977�.

ALBA, KHAYAT, AND PANDHER PHYSICAL REVIEW E 77, 056304 �2008�

056304-16


