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Lagrangian particle statistics in turbulent flows from a simple vortex model
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The statistics of Lagrangian particles in turbulent flows is considered in the framework of a simple vortex
model. Here, the turbulent velocity field is represented by a temporal sequence of Burgers vortices of different
circulation, strain, and orientation. Based on suitable assumptions about the vortices’ statistical properties, the
statistics of the velocity increments is derived. In particular, the origin and nature of small-scale intermittency
in this model is investigated both numerically and analytically. We critically compare our results to experi-

mental studies.
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I. INTRODUCTION

Our understanding of the spatiotemporal properties of tur-
bulent flows is still fragmentary [1-3]. In recent years, how-
ever, significant progress could be achieved by focusing on
the dynamics of Lagrangian particles (see, e.g., Ref. [4], and
references therein). Especially laboratory experiments have
given useful insight to important Lagrangian statistical prop-
erties. For example, the statistics of Lagrangian velocity in-
crements [5,6] and those of the turbulent acceleration of a
tracer particle [7,5] have been obtained experimentally.
Moreover, direct numerical simulations on large-scale com-
puters have been performed [8] which allow to study particle
trajectories and their statistical properties from yet another
point of view. While all results obtained from laboratory and
computer experiments seem to be consistent so far, the un-
derlying physical mechanisms are still subject to discussion.
In particular, beyond phenomenological approaches such as
the multifractal model [9], it has not yet been possible to
arrive at a theoretical derivation of the single particle veloc-
ity increment distribution for a fully developed turbulent
flow from first principles.

There are hints, though, that certain turbulent structures
are largely responsible for the statistical properties of La-
grangian particles. It has been shown by direct numerical
simulations [10,11] and by thorough experimental investiga-
tions [12] that the turbulent field contains elongated vortex
filaments which can be interpreted as Burgers vortices. The
latter are well-known solutions of the Navier-Stokes equa-
tion [13]. In fact, these vortices have been called the sinews
of turbulence by Moffatt and co-workers [14]. Hatakeyama
and Kambe recently modeled turbulent fields by a random
arrangement of such Burgers vortices [15]. Interestingly,
through this procedure they were able to reproduce the mul-
tifractal scaling behavior of the longitudinal structure func-
tions.

In the present paper, we shall employ a similar approach.
We will construct a minimal model that reproduces one of
the central Lagrangian observations, namely, the transition
from Gaussian velocity increment probability density func-
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tions to fat-tail probability density functions (PDFs). We fo-
cus on the most simple formulation of the model. However,
parameters arising in this model are chosen in accordance
with available information gained from experiments and nu-
merical calculations. To be more precise, we will consider
the Lagrangian statistics of a tracer particle in a turbulent
velocity field which is modeled by a temporal sequence of
Burgers vortices of different circulation, strain, and orienta-
tion. Such a model is motivated by the fact that Navier-
Stokes turbulence is known to create strong vortex filaments
which tend to dominate the time evolution of Lagrangian
particles. This view is supported, e.g., by the recent work of
Biferale and co-workers [8] who detect so-called “vortex
trapping events” of tracer particles in their direct numerical
simulations. Hence we are led to consider the path of a La-
grangian particle in the field of a single Burgers vortex. After
a certain lifetime 77, this vortex decays and is replaced by
another vortex which differs in circulation I', strain-
parameter a, and orientation. Then, the process starts anew.
Making suitable assumptions about the vortices’ statistical
properties, we will be able to determine the statistics of the
velocity increments in the framework of our model this way.
In particular, we will be able to investigate the origin and
nature of small-scale intermittency (i.e., within the dissipa-
tive range) numerically and partly analytically within the
present model. For the case of single vortex filament an ana-
lytical formula will be derived. Furthermore a numerical
implementation of the physically motivated model will be
presented.

The remainder of the present article is structured as fol-
lows. Starting from the exact solution of a particle trajectory
in a Burgers vortex, we will investigate the functional struc-
ture of the PDF of the velocity increment in Sec. II. We will
present results of a Lagrangian particle evolving through a
temporal sequence of trapping events in Sec. III. There, es-
pecially the evolution of the PDFs of the velocity increments
is considered. In Sec. IV the results are compared to experi-
mental results and discussed.

II. LAGRANGIAN PARTICLE IN A SINGLE BURGERS
VORTEX

The velocity field of a single Burgers vortex with circula-
tion I' in a strain field uy(x,7)=[-5x,—-5y,az] is given by

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.77.056301

WILCZEK, JENKO, AND FRIEDRICH

r
u(x, ) =ugy(x,r)+e, X e,—[1- e‘“’z/(‘“’)], (1)
2r

where v denotes the kinematic viscosity of the fluid, I' de-
notes the circulation of the vortex, and r=yx>+y% e, and e,
denote the unit vectors in the z and radial directions, respec-
tively. Switching now to the Lagrangian frame, the evolution
of a Lagrangian particle starting from an initial position x is
determined by

dx

o) =[G ]exiey - (2)
d’X
—2 %o0) =[=Vple.t) + vhu(e.)lexie, 0, 3)

which means that for the velocity X of a tracer particle one
has to evaluate the velocity field u at the position of the
tracer particle X. The acceleration acting on the particle then
is given by negative gradient of the pressure p and viscous
contributions at the position of the tracer particle. Due to the
axial symmetry of the underlying Eulerian velocity field, we
seek for solutions of the form

x(1) =r(eLo(t)] +z(t)e,, 4)

so that r(z), ¢(t), and z(¢) have to obey the following set of
differential equations:

F=- Er, (5)
o= %M(P(r), (6)
Z=az, (7)

with uq,:#[l—e‘“’z/(‘“’)]. The solutions for two of these

components obviously read

2(1) = zge", (8)

(1) = rge™ . 9)

So the z position of the particle increases exponentially in
time. Since we want to focus on the importance of the oscil-
latory motion around the axis of the vortex, we have to study
the case of low straining, i.e., the factor ar has to be small
compared to the circulation I'. Plugging the solution for r(z)
into the differential equation for the azimuthal component
one obtains

at.

QD(I) — r eat(l _ e—a/(4v)r367
-

). (10)

The solution of this differential equation is thereby reduced
to an integration. However this integral cannot be solved
explicitly, and hence we want to restrict our following calcu-
lations to the limiting cases where the particle is far away
from the vortex’s axis or near the core. For the farfield case
the point-vortex approximation holds, leading to an angular
velocity of
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The angular velocity of the particle decays such as rl% leading

to a differential rotation. In case of low straining, that is a is
nearly zero, the exponential can be approximated by unity in
lowest order. In this approximation the solution is

(1) = t=w(l,r)t. (12)

2
27y,

The second limiting case is where the particle is near the
viscous core of the vortex. In this case we can expand the
exponential in Eq. (10) into a series. The first-order approxi-
mation then is

o) = SF—“ (13)
avV

which leads to

e(t) = 8F—at: o, a)r. (14)

This means that near the viscous core of the vortex the mo-
tion is given by a rigid body rotation determined by the
parameters a, I', and v. In order to clarify the functional
structure of the following results for the velocity increment
distribution we will first calculate the simple case, where
only one vortex is involved.

Statistical observations on turbulence often focus on the
velocity increments v,(7) of a single Cartesian component
with a time lag 7 (see, for example, Ref. [6]) and on the
turbulent acceleration [16]. For the case of small 7 the evo-
Iution of a particle in a turbulent flow is dominated by the
nearest vortex filament. So the statistics for small 7 can be
related to the dynamical equations of a single vortex.

Hence we have to write down the discussed solution in
Cartesian coordinates. The x component of the position of
the Lagrangian particle is given by

x(1) = rge™ " cos (t). (15)
Intermittency in the velocity signal is often said to be caused
by the strong accelerations of a vortex filament [17]. These
accelerations originate from the oscillation of the particle
round the axis of the vortex [18]. We now neglect the radial
transport of the particle in order to focus on these rotational
accelerations. This approximation holds whenever the prod-
uct at is small compared to the vorticity determined by I'. As
we want to focus on the impact of strong vortex filaments on
the statistics this is a reasonable approximation. Neglecting
the straining the x component of the velocity reads

u(t) = - row sin wt, (16)
with w being the oscillation frequency given by the two lim-

iting cases discussed above. This leads to a simple equation
for the velocity increments
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v (1) =u(t+ 7) —u,t) = - roow[sino(r + 7) - sinwr].
(17)

Some simple trigonometric relations turn this expression to

v (1) =-2ryw sinﬂ sin(wt + ) = A(D)sin(wt + ),

(18)

with a phase s which depends on the initial conditions. Note
that the velocity increments oscillate similar to the velocity
components themselves, being modulated by an amplitude
which depends on the parameters of the vortex as well as on
the time lag 7. The next aim is to deduce the corresponding
probability density function. Instead of taking a time aver-
age, we average over the phase a=wt+ ¢, which can be as-
sumed to be uniformly distributed

l 2
flo,) = —f dad(v, - A sina)
2w,

1 (> 1 . U,
=— da— 68| a—arcsin—|.  (19)
27), |A cosal A

Noting that the violation of v, <A leads to imaginary values
of the probability, the solution reads

1 1
f(vx)=Re<—) =Re< )
A2 - v? 77\/4r§w25in2(°’77) —v?

(20)

The dependence on the parameters I and a is absorbed into
the frequency w. In order to obtain our result we have to
average over the vorticity parameter I, the strain parameter a
and the initial position of the particle r,, respectively. Let
f(I), g(a), and h(ry) be the corresponding distributions of
the parameters. (This notation implies statistical indepen-
dence, a restriction, which does not have to be made.) The
probability distribution of the velocity increments is then
given by

8
=
=

(a) (b)

-0.400
-0.800
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f(F)g(a)h(rO)dFdarodr0> (1)
77\/4r(2)w2 sin?(%) - v? '

p(v,) = Re(

X

This expression explicitly reveals the dependence of the
probability density functions on the distribution of the vor-
ticity parameter I'. The structure of the functional form of the
PDF shows that the shape of the PDF is given by a superpo-
sition of functions of the form 1/yA?—x? weighted by factors
from the physical parameter distributions. The complex in-
terplay of the parameter distribution then leads to the fat-tail
PDF’s, as observed in the sections presented below.

III. LAGRANGIAN PARTICLE IN A SEQUENCE OF
VORTICES

As discussed above, we model the evolution of a La-
grangian particle in a turbulent flow by a temporal sequence
of randomly oriented coherent structures. In particular, a par-
ticle is exposed to the velocity field of a single vortex for a
given lifetime 7). In our model 7; is given by the typical
lifetime of an eddy in the dissipative range. According to
Ref. [8], this lifetime is of the order of 107, [7,=(e/v)"?
denotes the Kolmogorov time scale determined by the energy
dissipation and the kinematic viscosity]. In real turbulent
flows, viscosity, or vortex merging processes then force this
vortex to decay. This is crudely modeled by simply turning
the vortex off. Subsequently another vortex is switched on at
a certain distance. This distance is given by the typical spa-
tial density of strong vortex filaments in a turbulent flow
(see, for example, Ref. [3], Chap. 7.3). The orientation of the
vortex’s axis in the three-dimensional space is chosen ran-
domly. As a result the statistics become isotropic.

In order to render the model physically sound, some prop-
erties of turbulent flows have to be taken into account. In the
following we will express all dependent parameters in terms
of the energy dissipation € and the kinematic viscosity v, for
which we choose typical values motivated by experiments
(see, for example, Ref. [12]). In addition special interest has
to be put on the statistical properties of the strain-parameter
a and the circulation I'. A hint on the distribution of I' is
given by the authors of Ref. [10], who measured the distri-
bution of the strengths of the vortices directly from numeri-
cal simulations. In our model this is taken into account by
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FIG. 1. Trajectory of a Lagrangian particle. 7 is given in multiples of 7,.
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modeling the distribution of I with a log-normal distribution.
By this choice we have extreme-valued vortex events with a
nonvanishing probability. However, also low-valued vortices
are modeled frequently. This accounts to the fact that a La-
grangian particle does not encounter one intense vortex after
another, but also runs through periods of low vorticity.
Also the strain parameter a is chosen randomly. This
means, that in our model vortices of different radii appear, as
the strain parameter a directly affects the radius of the Bur-
gers vortex. However, this distribution cannot be equally dis-
tributed as we want to model small-scale vortices. Therefore
a peaked distribution is needed. The expectation value of this
distribution is related to the typical size of the smallest vor-
tex filaments. We choose this distribution to be Gaussian
with standard deviation o,=1. This choice is somewhat ar-
bitrary, but it was ensured that the numerical results vary
only little over a wide range of possible values of o,. The
expectation value of the distribution can be derived from the
definition of the radius of the Burgers vortex. This typical
scale is defined as rB=(4;V)”2. If we demand rg to be of the
order of 10% [7 denotes the Kolmogorov length 7
=(1°/€)"*], a value which conforms to the findings of Ref.
[12], the expectation value of the strain-parameter a is given
as a=— )” 2= Note that by this relation a connection
between typlcal scnales of the velocity field of the Burgers
vortex and physical properties of the flow is established.
Moreover, the straining is thereby related to the Kolmogorov
time scale 7,. A typical value of the circulation has to be
determined in the same manner. We start with the well-
known relation for the Reynolds number on the dissipative

scale of the flow Rediss=%” ~1. The typical velocity u,, can
be approximated by the velocity field of the Burgers vortex
on the scale 7,

1 Tan
= = ——(1—e a7y~ =T 22
w= == = 22)

This yields I'=%7(e2)!2=200mv, which determines a typical
value for I'. The distribution of T'" is assumed to be log-
normal according to the observations of Ref. [10]. The
choice of the typical Value for I' determines the Reynolds
number in our model, RF— =200

We note in passing that we have checked the results for
different distribution functions of a and I". Our results are
quite robust against the particular choice of the function.
However, the choice of the log-normal distribution is physi-
cally motivated and leads to the best results. Now all prop-
erties of the model are specified and we are able to perform
a numerical simulation.

Figure 1 shows a typical particle path. It reveals that the
path is composed of a sequence of vortex trapping events,
each of them characterized by a different circulation T'.
Events with a strong circulation can easily be identified by
their rapid oscillation of the x component, whereas events
with small values of I" do not cause the particle to perform a
complete oscillation. The events with a low value of I' there-
fore account to periods, where the particle is not trapped in a
strong vortex, whereas periods with a high value of I' ac-
count for the latter.
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FIG. 2. Logarithmic plot of the PDFs of the velocity increments.
The transition from fat-tail PDFs to more Gaussian ones is
evident. From upper to lower curve: time lags
7€{(0.98,1.97,3.94,7.87,15.74)7,}. The PDFs are normalized to
o=1 and shifted vertically.

The switching between vortices renders the velocities dis-
continuously. This discontinuity can be eliminated using a
low-pass filter. A low-pass filtering of the velocity signal
with a Butterworth filter was performed and the resulting
statistics was compared to the unfiltered one. It was ensured
that this effect has no significant impact on the statistics.

One of the central results of our model is depicted in Fig.
2 which shows the probability distribution of the velocity
increments. These exhibit a similar behavior to the velocity
increment distributions observed in experiments or direct nu-
merical simulation; we will compare the results to experi-
mentally obtained ones in Sec. IV. For small time lags 7 the
PDFs show fat tails, whereas a nearly Gaussian shape arises
for large time lags 7. The physical explanation is straightfor-
ward; while the functional form for the short time lags is
almost solely determined by a single vortex, the transition to
a more Gaussian functional form results from an increasing
statistical independence as more vortices are involved. The
transition from one functional form to the other is character-
ized in more detail by the kurtosis, which is shown in Fig. 3.
This figure clearly indicates the transition from a highly in-

20
18
16

K(7)

<vx(f) >

FIG. 3. Kurtosis K(T)—
tiples of 7, The inset shows a log plot of K(7). The kurtosis shows
an almost exponentlal decay.

-3 for p(v,), 7is given in mul-

056301-4



LAGRANGIAN PARTICLE STATISTICS IN TURBULENT...

0.8 E |
O
06 L ! ! L L 4
. 01 2 3 4 5
L)
O 04 r T 1
0.2 t ]
0 |
0 2 4 6 8 10 12

T

FIG. 4. Autocorrelation function of the velocity u,, 71is given in
multiples of 7,. The inset shows a log-plot of the vertically shifted
autocorrelation function.

termittent distribution to a more Gaussian one.

Since the subsequent trapping events are statistically in-
dependent, the velocity signal has to decorrelate as a func-
tion of the time delay 7. We define the velocity autocorrela-
tion function as

_ (u(t+ ()
(u)

Figure 4 confirms this view; the correlation decreases almost
exponentially. The slight anticorrelations might tribute to the
events with strong circulations, where the particle is able to
perform one or more complete oscillation. The velocity sig-
nal decorrelates after a time of 7= 107,7, which is the lifetime
of the vortices. A second effect which cannot be clearly sepa-
rated is dephasing. As the particle moves inward it constantly
alters its angular velocity. It can be shown easily that this
also causes the autocorrelation function to decrease.

C(7 (23)

IV. DISCUSSION

At this point, we would like to comment on similarities
and differences with experimental results. We take the results
presented in Refs. [6] and [7] as a reference. Comparing the
velocity increment distributions, our model reproduces the
transition from a Gaussian for large time lags to a fat-tail
PDF for small time lags. Our model produces extreme events
as large as twenty standard deviations from the mean value
in good agreement with the experimental results presented in
Ref. [6]. Although the shape of the PDFs is comparable to
the experimental results, slight deviations are visible. In our
model, the PDFs exhibit a more pronounced cusp for vanish-
ing velocity increments; the experimentally obtained PDFs
turn out to be a bit smoother in this region. This difference
may result from the fact that our particle path is truly deter-
ministic within one vortex and randomness is only added by
choosing a subsequent vortex with random properties. In a
real turbulent flow, however, not only the velocity field of the
nearest vortex filament is relevant, but also velocity fluctua-
tions from the overall field. One probably could account for
this by adding a random noise to the trajectories, which is
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FIG. 5. (a) Comparison of the velocity increment PDF for
7=0.987, with the fit of the acceleration presented in Ref. [7].
(b) Comparison of the velocity increment PDF for 7=15.747, with
a Gaussian.

small compared to the amplitude of the velocity signal. This
would smooth out the cusp for vanishing velocity incre-
ments, but leave the overall characteristics of the PDF more
or less untouched. As our objective is not to deliver a perfect
fit to experimental or numerical results, but to construct a
most simple model reproducing the observed transition of
the velocity increment PDFs, we did not incorporate this
effect. As the PDF of the velocity increments on the smallest
time scales can be compared to the acceleration PDF, Fig. 5
shows a comparison with a stretched exponential fit pre-
sented in Ref. [7]. The PDF of our velocity increments turns
out to be not as stretched as the one presented in Ref. [7],
however, the overall functional form compares reasonably
well. For large time lags, the experimental results suggest a
relaxation of the velocity increment PDF to a Gaussian. This
comparison also is made in Fig. 5. Although there is a rea-
sonably good agreement for small values of v,, slight devia-
tions become apparent for larger values. This is related to the
fact that the stationary distribution of the velocity in the
model is not perfectly Gaussian.

A second limitation of the present model concerns the
proper modeling of inertial range properties. Comparing the
evolution of the kurtosis of the velocity increment distribu-
tion obtained from our model with the experimental results
in Refs. [5,6], deviations are apparent as the experimental
results do not suggest an exponential decay of the kurtosis.
This leads to the conclusion that our model does not account
for inertial range physics properly. This is not very surpris-
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ing, as only the small scale vortices of the turbulent flow are
modeled and influences of the larger scales are neglected.
However, in the classical picture of the energy cascade, the
interaction of all scales contributes to the inertial range, and
hence this cannot be accounted for in the present model.
More statistically speaking, the present model cannot ac-
count for the complex multipoint properties (in a spatial and
temporal sense) which are necessary to describe a turbulent
flow completely. Our model reproduces the characteristic de-
cay of the autocorrelation functions quite well, even the an-
ticorrelations observed in experiments. In our model the an-
ticorrelations can be interpreted physically.

V. SUMMARY

To conclude, we modeled the particle evolution in a tur-
bulent flow as a temporal sequence of Burgers vortices. First
calculating the path of a Lagrangian particle in an isolated
vortex, we derived the functional form of the velocity incre-
ment PDF. This calculation revealed the dependence of the
structure of the velocity increment distribution on the physi-
cal parameters of the vortex filament such as strain, circula-
tion, etc. A numerical implementation of the model was used
to investigate some typical Lagrangian properties of turbu-
lent flows. To this end we had to take into account a set of
physical parameters for which we incorporated numerical or
experimental data whenever possible. As a central Lagrang-
ian observable we focused on the velocity increment distri-
bution finding that our model qualitatively resembles the ve-
locity increment statistics in real turbulent flows. A further
investigation of the corresponding kurtosis clearly indicated
intermittent characteristics. As is apparent from the exponen-
tial decay of the kurtosis, our model lacks correct inertial
range properties. This is consistent with the setup of our
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model, as by the present approach we model intermittency in
the dissipative scales of turbulence.

Additionally, the velocity autocorrelation function was in-
vestigated, revealing an almost exponential decrease and
even slight anticorrelations. Consistent with the framework
of the model is the fact that the autocorrelation function van-
ishes for times longer than the lifetime of a single vortex.

The physical interpretation of the observed results is quite
straightforward. A Lagrangian particle encountering subse-
quent trapping events shows fat-tail velocity increment dis-
tributions accountable to a proper statistical ensemble of
Burgers vortices. For small time lags the fat-tail statistics
originate from the superposition of the dynamics in a single
vortex. The transition to a Gaussian behavior is caused by an
increasing mixing of two subsequent vortex trapping events
which are statistically independent. This observation is sup-
ported by the functional form of the velocity autocorrelation
function.

This model qualitatively reproduces some of the typical
Lagrangian statistics. It is important to note that this is
achieved by a temporal sequence of exact solutions of the
Navier-Stokes equation. This is in contrast to many other
models, which apply stochastic equations for the particle
evolution. Modeling the velocity field by genuine solutions
of the Navier-Stokes equations, our model exhibits realistic
looking trajectories. Due to the simplicity of the model, our
results can be interpreted in physical terms and shed light on
the connection between dynamical aspects in turbulent flows
and corresponding statistical properties.
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