PHYSICAL REVIEW E 77, 056215 (2008)
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We propose a method of analysis of dynamical networks based on a recent measure of Granger causality
between time series, based on kernel methods. The generalization of kernel-Granger causality to the multivari-
ate case, here presented, shares the following features with the bivariate measures: (i) the nonlinearity of the
regression model can be controlled by choosing the kernel function and (ii) the problem of false causalities,
arising as the complexity of the model increases, is addressed by a selection strategy of the eigenvectors of a
reduced Gram matrix whose range represents the additional features due to the second time series. Moreover,
there is no a priori assumption that the network must be a directed acyclic graph. We apply the proposed
approach to a network of chaotic maps and to a simulated genetic regulatory network: it is shown that the
underlying topology of the network can be reconstructed from time series of node’s dynamics, provided that a
sufficient number of samples is available. Considering a linear dynamical network, built by preferential attach-
ment scheme, we show that for limited data use of the bivariate Granger causality is a better choice than
methods using L1 minimization. Finally we consider real expression data from HeLa cells, 94 genes and 48
time points. The analysis of static correlations between genes reveals two modules corresponding to well-
known transcription factors; Granger analysis puts in evidence 19 causal relationships, all involving genes

related to tumor development.
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I. INTRODUCTION

Dynamical networks [1] model physical and biological
behavior in many applications; examples range from net-
works of neurons [2], Josephson junctions arrays [3] to ge-
netic networks [4], protein interaction nets [5], and metabolic
networks [6]. Synchronization in dynamical networks is in-
fluenced by the topology of the network [7]. A great need
exists for the development of effective methods of inferring
network structure from time series data; a method for detect-
ing the topology of dynamical networks, based on chaotic
synchronization, has been proposed in [8]; a recent approach
deals with the case of a low number of samples and proposed
methods rooted on L1 minimization [9].

Granger causality has become the method of choice to
determine whether and how two time series exert causal
influences on each other [10]. This approach is based on
prediction: if the prediction error of the first time series is
reduced by including measurements from the second one in
the linear regression model, then the second time series is
said to have a causal influence on the first one. This frame
has been used in many fields of science, including neural
systems [11], reo-chaos [12], and cardiovascular variability
[13]. The estimation of linear Granger causality from Fourier
and wavelet transforms of time series data has been recently
addressed [14].
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Kernel algorithms work by embedding data into a Hilbert
space, and searching for linear relations in that space [15].
The embedding is performed implicitly, by specifying the
inner product between pairs of points [16]. We have recently
exploited the properties of kernels to provide nonlinear mea-
sures of bivariate Granger causality [17]. We reformulated
linear Granger causality and introduced a statistical proce-
dure to handle overfitting [18] in the linear case. Our formu-
lation was then generalized to the nonlinear case by means of
the kernel trick [16], thus obtaining a method with the fol-
lowing two main features: (i) the nonlinearity of the regres-
sion model can be controlled by choosing the kernel func-
tion; (ii) the problem of false causalities, which arises as the
complexity of the model increases, is addressed by a selec-
tion strategy of the eigenvectors of a reduced Gram matrix
whose range represents the additional features due to the
second time series.

In this paper we describe in detail the kernel-Granger ap-
proach and address use of Granger causality to estimate,
from multivariate time series data, the topology and the
drive-response relationships of a dynamical network. To this
aim, we generalize our method in [17] to the case of multi-
variate data.

The paper is organized as follows. In the next section we
describe the kernel-Granger causality method in the bivariate
case, adding some details to the presentation in [17]. In Sec.
IIT we generalize the method to process multivariate time
series data, and show that the proposed method can discern
whether an interaction is direct or mediated by a third time
series. The case of dynamical networks is described in Sec.
IV: we analyze a system of interacting chaotic maps and a
model of gene regulatory networks. In Sec. V we consider
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systems with sparse connectivity and limited data, and com-
pare the bivariate Granger approach with a multivariate
method based on L1 minimization; then we analyze a real
data set, gene expressions of HeLa cells. Section VI summa-
rizes our conclusions.

II. BIVARIATE GRANGER CAUSALITY

In this section we review the kernel method for Granger
causality proposed in [17]. Let us start with the linear case.

A. Linear Granger causality

Suppose to model the temporal dynamics of a stationary
time series {£,},=;__n.» Dy an autoregressive model of order
m?

gn = 2 A]é‘:n—] + En’
Jj=1

and by a bivariate autoregressive model which takes into
account also a simultaneously recorded time series

{7711}n:1,‘,N+m,
m m
gn = 2 AJ, gn—j + 2 B]nn—] + El,i
j=1 j=1

The coefficients of the models are calculated by standard
least squares optimization; m is usually chosen according to
Akaike criterion [19] or embedding techniques from the
theory of nonlinear dynamical systems [20].

The concept of Granger causality is [10] 7% Granger
causes ¢ if the variance of residuals E’ is significantly
smaller than the variance of residuals E, as it happens when
coefficients B; are jointly significantly different from zero.
This can be tested by performing an F-test or Levene’s test
for the equality of variances [21]. An index measuring the
strength of the causal interaction is then defined as

(E”)

(%)’
where (-) means averaging over n (note that (E)=(E’)=0).
Exchanging the roles of the two time series, one may equally
test causality in the opposite direction, i.e., to check whether

& Granger causes 7).
We use the following shorthand notations:

Xi= (fh 7§i+m—1)T’

o=1

(1)

Yi=(n, ... ,77i+m—1)T’

and x;=¢§;,,, for i=1,...,N. We treat these quantities as N
realizations of the stochastic variables X, Y, and x. Let us
denote X the m X N matrix having vectors X; as columns, and
Z the 2m X N matrix having vectors Z;=(X, ,¥,;)T as col-
umns. The values of x are organized in a vector X
=(x;,...,xy) . In full generality we assume that each com-
ponent of X and Y has zero mean, and that vector x has zero
mean and is normalized, i.e., x 'x=1.
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Now, for each i=1,...,N, we define
m
Xi= 2 Aj§i+m—j7
j=1

m

m
X' = 2 A,,' Eivm-j+ 2 B Wi
=1 j=1

The vectors i:(gl,... ,x?v)T and ")Z’:(;l’, ,x?v’)T are the
estimated values by linear regression, in the two cases. It is
easy to show that X and X’ have the following geometrical
interpretation. Let HC R" be the range of the N X N matrix
K=XTX. Then X is the projection of x on H. In other words,
calling vy, ..., vy, the (orthonormal) eigenvectors of K with
nonvanishing eigenvalue and

the projector on the space H, we have X=Px. Let us define
y=x-Px. Analogously X'=P’x, P’ being the projector on
the 2m-dimensional space H' CR", equal to the range of the
matrix K'=ZTZ. Moreover, it is easy to show that

X -%'%
S=——"—". 2
1-X'% ?
Now note that HC H'. Therefore we may decompose H' as
follows: H'=H & H+, where H* is the space of all vectors of
H' orthogonal to all vectors of H. H* corresponds to the
additional features due to the inclusion of {#} variables. Call-

ing P' the projector on H, we can write

_ Pty

5 .
1-X'%

3)
Now we note that H* is the range of the matrix
K=K -K'P-P(K'-K'P)=K' -PK' - K'P + PK'P.

Indeed, for any ue R, we have I~(u=V—PV, where v
=K'(I-P)ueH’, and Kue H*. It follows that H* is
spanned by the set of the eigenvectors, with nonvanishing

eigenvalue, of K. Calling t, ...
have

,tm these eigenvectors, we

o=2r}, “

where r; is the Pearson’s correlation coefficient of y and t;
(since the overall sign of t; is arbitrary, we can assume that r;
is positive). Let r; be the probability that r; is due to chance,
obtained by Student’s ¢ test. Since we are dealing with mul-
tiple comparison, we use the Bonferroni correction to select
the eigenvectors t;,, correlated with y, with expected fraction
of false positive g (equal to 0.05). Therefore we calculate a
causality index by summing, in Eq. (4), only over the {r;/}
such that 7;; <g/m, thus obtaining a filtered linear Granger
causality index,
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Sp=210 (5)

It is assumed that 6 measures the causality 7— &, without
further statistical test. We conclude this section noting that,
in this frame, static correlations are neglected.

B. Kernel-Granger causality

In this section we describe the generalization of linear
Granger causality to the nonlinear case, using methods from
the theory of reproducing kernel Hilbert spaces (RKHS)
[16]. Given a kernel function K, with spectral representation
KX, X") =2\, ,X),(X") (see Mercer’s theorem [15]), we
consider H, the range of the NXN Gram matrix K with
elements K(X;,X;). In order to make the mean of all variables
¢,(X) zero, we replace K—K-PK-KP,+P,KP,, where
P, is the projector onto the one-dimensional subspace
spanned by the vector such that each component is equal to
the unity [16]; in the following we assume that this operation
has been performed on each Gram matrix. As in the linear
case, we calculate X, the projection of x onto H. Due to the
spectral representation of K, X coincides with the linear re-
gression of x in the feature space spanned by V\,¢,, the
eigenfunctions of K; the regression is nonlinear in the origi-
nal variables.

While using both X and Y to predict x, we evaluate the
Gram matrix K’ with elements Kj;=K(Z;,Z;). The regression
values now form the vector X’ equal to the projection of x on
H', the range of K’. Before evaluating the filtered causality
index, as in the linear case, we note that not all kernels may
be used to evaluate Granger causality. Indeed if Y is statisti-
cally independent of X and x, then X" and X should coincide
in the limit N — cc. This property, invariance of the risk mini-
mizer when statistically independent variables are added to
the set of input variables, is satisfied only by suitable kernels,
as discussed in [22]. In the following we consider two pos-
sible choices, which fulfill the invariance requirement.

1. Inhomogeneous polynomial kernel

The inhomogeneous polynomial (IP) kernel of integer or-
der p is

! Ty
K,(X.X')=(1+XTX")".

In this case the eigenfunctions are made of all the monomi-
als, in the input variables, up to the pth degree. The dimen-
sion of the space H is m;=1/B(p+1,m+1)—1, where B is
the beta function, and p=1 corresponds to the linear regres-
sion. The dimension of space H' is m,=1/B(p+1,2m+1)
—1. As in the linear case, we note that HC H' and decom-

pose H'=H& H*. Subsequently we calculate K=K’'-PK’

—-K'P+PK'P; the dimension of the range of K is msy=m,
—m,. Along the same lines as those described in the linear
case, we construct the kernel-Granger causality taking into

account only the eigenvectors of K which pass the Bonfer-
roni test,

s=2r, (6)
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the sum being only over the eigenvectors of K with prob-
ablllty i < q/m3

2. Gaussian kernel

The Gaussian kernel reads

_IT_I
(XX)@'XU’ -

207

and depends on the width . o controls the complexity of the
model: the dimension of the range of the Gram matrix de-
creases as o increases. As in previous cases, we may con-
sider H, the range of the Gram matrix K, and H', the range
of K’, but in this case the condition HC H' would not nec-
essarily hold; therefore some differences in the approach
must be undertaken. We call L the m,-dimensional span of
the eigenvectors of K whose eigenvalue is not smaller than
MM\ Where N, 1s the largest eigenvalue of K and u is a
small number (we use 107%). We evaluate X=Px, where P is
the projector on L. After evaluating the Gram matrix K’, the
following matrix is considered:

K (X,X') :exp(—

my
K* =2 pww,, (8)
i=1

where {w} are the eigenvectors of K’, and the sum is over
the eigenvalues {p;} not smaller than u times the largest ei-

genvalue of K’. Then we evaluate K=K*-PK*-K*P
+PK*P, and denote P! the projector onto the

ms-dimensional range of K. Note that the condition my=m,
+m5 may not be strictly satisfied in this case (however in our
experiments we find that the violation of this relation is al-
ways very small, if any). The kernel Granger causality index
for the Gaussian kernel is then constructed as in the previous
case, see Eq. (6).

III. MULTIVARIATE KERNEL CAUSALITY

Let {&(a),}u=1. Nem> a=1,...,M, be M simultaneously re-
corded time series. In order to put in evidence the drive-
response pattern in this system, one may evaluate the bivari-
ate Granger causality, described in the previous sections,
between every pair of time series. It is recommended, how-
ever, to treat the data set as a whole, thus generalizing kernel
Granger causality to the multivariate case, as follows. We
denote

X(C)i = (f(C)h ’f(C)Hm—l)T,

forc=1,...,M and i=1,...,N. In order to evaluate the cau-
sality {&(a)} —{&(b)}, we define, for i=1,...,N,

Zi=(x()/], ... X/, ... x0T,
containing all the input variables, and
X=X XG0T,

containing all the input variables but those related to
{é(a)}. Gram matrices K and K’ are then evaluated: K;;
=K(X;,X;) and Kl.'j:K(Z,-,ZJ-). The target vector is now
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1 1’N7 FIG. 1. The causal relationships between all
9’”6\9\* pairs of maps, in the example of three logistic
Xak 05 0.5 maps described in the text, using multivariate
Granger causality (empty circles) and bivariate
0® ® @ ® 0 Granger causality (stars). Here m=1 and the IP
2 3 4 5 2 3 4 5 . . .
kernel, with various values of p, is used.
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X=(&D) 11y - »ED)yim) |- Along the same lines as in the
bivariate case, for IP kernel or the Gaussian one, we then
calculate the causality index as in Eq. (6): it is denoted
Sk(a— b) and measures the strength of causality a — b, tak-
ing into account all the available variables. Repeating these
steps for all @ and b, the causality pattern in the data set is
evaluated. Note that the threshold for the Bonferroni’s cor-
rection, in the multivariate case, must be lowered by the
number of pairs M(M—1)/2.

As an example, we consider the following system of three
logistic maps [23]:

x1,=0.8(1- axi,_l) +0.2(1 - ax%y,_l) +57 4,
Xy, =1- axé’t_l +57,,
x3,=0.8(1 - ax_%’t_l) +0.2(1 - ax%’,_l) +85T34 9)

here a=1.8, s=0.01, and 7’s are unit variance Gaussian noise
terms. The causal relationships implemented in these equa-
tions are 2— 1 and 1 — 3. Analyzing segments of length N
=1000, we evaluate both the multivariate causality, as de-
scribed in Sec. IV, and the bivariate causality for all pairs of
maps. We use the IP kernel with various values of p; the
results are displayed in Fig. 1. It is well known [11] that
performing pairwise evaluation for multivariate data has the
drawback that one cannot discern whether the influence be-
tween two time series is direct or is mediated by other time
series. This is what happens in the present example. Both the
multivariate and the bivariate analysis reveal the influences
2—1 and 1—3. On the other hand, the bivariate analysis
reveals also the influence 2— 3, which is actually mediated
by 1: the multivariate analysis recognizes 2— 3 as nonsig-
nificant.

IV. ANALYSIS OF DYNAMICAL NETWORKS

In this section we simulate two dynamical networks and
apply the multivariate Granger analysis to estimate the topol-
ogy structure of systems from time series data.

A. Network of chaotic maps

Let us consider a coupled map lattice of n nodes, with
equations, for i=1,...,n,

n n
Xt = (1 - 2 Cij)(l - axiz,f_1) + 2 Cij(l - asz‘,t—l) + 5T
j=1 j=1
(10)

where a, s, and 7’s are the same as in Eq. (9), and c;; repre-
sents the coupling j—i. We fix n=34 and construct cou-
plings as follows. We consider the well-known Zachary data
set [24], an undirected network of 34 nodes. We assign a
direction to each link, with equal probability, and set c;;
equal to 0.05, for each link of the directed graph thus ob-
tained, and zero otherwise. The network is displayed in Fig.
2: here the goal is to estimate this directed network from the
measurements of time series on nodes.

The multivariate Granger analysis, described in the previ-
ous section, perfectly recovers the underlying network using
the TP kernel with p=2, m=1, and N=10000. Note that
while evaluating &5(j— i), for all i and j, 39 270 Pearson’s
coefficients r are calculated. Their distribution is represented
in Fig. 3: there is a strong peak at r=0 (corresponding to
projections that are discarded), and a very low number of
projections with a rather large value of r, up to about r
=0.6. It is interesting to describe the results in terms of a
threshold for correlations. Given a threshold value r;,, we
select the correlation coefficients whose value is greater than
ry,- We then calculate the corresponding causality indexes
SK(j—1i), and construct the directed network whose links
correspond to nonvanishing elements of 5§0 —1i). In Fig. 4
(top) we plot the total number of links of the reconstructed
network, as a function of the threshold r,,: the curve shows a
plateau, around r,,=0.1, corresponding to a directed network
which is stable against variations of r;,. At the plateau 428
projections are selected, which coincide with those selected
by means of Bonferroni’s test. In Fig. 4 (bottom) we plot the
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number of errors (the sum of the number of links that exist in
the true network and are not recovered, plus the number of
links that exist only in the recovered network) versus the
threshold r,,: the plateau leads to perfect reconstruction of
the original network. We stress that a large number of
samples is needed to recover the underlying network: in the
typical case we find that the network is perfectly recon-
structed if N=5000, while if N is further lowered some er-
rors in the reconstructed network appear. Moreover, it is im-
portant to observe that, although all couplings c;; have the
same magnitude, the causality strengths 5§(j—>i) depend on
the link, as it is shown in Fig. 5. Granger causality is a
measure of the information being transferred from one time
series to another, and it should not be identified with cou-
plings.

B. Genetic regulatory network

In this section we consider time series from a model of
genetic regulatory network made of genes linked by
weighted connections (inhibitory or excitatory) [25]. The ex-
pression levels of all genes, organized in a vector g, evolve
as follows:

9000

8000 4

7000 ]

6000 J

5000 b

4000 J

3000 1

number of entries

2000 b

1000 J

0 . . . I .
0 0.1 0.2 0.3 0.4 0.5

r

FIG. 3. The distribution of the 39 270 r values calculated while
evaluating the causality indexes of the coupled map lattice (see the
text).
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FIG. 2. The directed network of 34 nodes ob-
tained assigning randomly a direction to links of
the Zachary network.

g =g +A(g-TH+X, (11)

where A is a connectivity strength matrix corresponding to
the network, 7=50, I is the identity matrix, and 3, is a vector
of random variables uniform in [-10,10]. The values of g
are restricted by floor and ceiling function to range in
[0,100]: this constraint provides the nonlinear character of
the model. As the simulation runs, multivariate data are
sampled every ¢, time steps. Moreover, the continuous data
values are discretized into n, categories (with equal bin
sizes). In [25] dynamic Bayesian network (DBN) models
[26] were trained to data of length N to recover the structure
of matrix A: the values #,=5, n.=3, and N=2000 were found
to lead to the best reconstruction of genetic networks by
DBN.

The genetic network we consider here is an example from
[25] and consists of ten genes with connections described in
Fig. 6: there are two independent regulatory pathways, one
of which includes a large feedback structure. In Fig. 7 the

150

100 - J

50 J

number of links

0 0.1 0.2 0.3 0.4 0.5 0.6
th

150

50

number of errors

0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 4. (Top) Concerning the coupled map lattice, the horizontal
axis represents the threshold for the values of r; the plot shows the
number of links of the directed network constructed from the pro-
jections whose Pearson’s coefficient exceeds the threshold. (Bot-
tom) The total number of errors, in the reconstructed network, is
plotted versus the threshold r,,. At large r,, the errors are due only
to missing links, whereas at small r,, the errors are due only to links
that do not exist in the true network and are recovered.
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FIG. 5. Concerning the coupled map lattice, the causality in-
dexes (‘)‘f(/ — 1), for all pairs of maps, are represented in a gray
scale.

typical curve of expression for a gene in the network is rep-
resented (top); the distribution of expressions, for the same
gene, is bimodal (bottom). We simulate 100 times the system
equations, starting from different initial conditions, and
sample time series of length N=2000, #,=5, and n.=3. The
typical recovered network by DBN, on this example, corre-
sponds to one missing link (from node 7 to 10) [25]. The
linear multivariate Granger approach, with m=2, leads to
perfect reconstruction of the network in 90 cases out of the
100; we obtain similar results on all the examples presented
in [25]. Using IP (with p>1) and Gaussian kernels we ob-
tain similar performances as the ones from the linear kernel.

It is interesting to stress that the possibility that one has to
reconstruct the true genetic network depends on the sampling
rate. In Fig. 8 we plot the mean number of errors (over 100

FIG. 6. The genetic regulatory network analyzed in the text.
Numbers next to links specify regulation strength; arrows: excita-
tory; flat heads: inhibitory.
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FIG. 7. Top: the typical curve of expression of a gene in the
simulated regulatory network. Bottom: the distribution of expres-
sions for the same gene.

realizations) in the reconstructed network as a function of f,
for the linear kernel and Gaussian kernel: the performance
degrades as t, moves far from 5.

Let us now discuss the case of large f,: all Granger cau-
salities are recognized as nonsignificant. On the other hand,
at large t,, we find significant static linear correlations be-
tween time series of all pairs of genes belonging to the same
pathway. In other words, referring to Fig. 6, the linear corre-
lations of times series from every pair of genes extracted
from {1,2,3,4,8,9} is significant, as well as the linear cor-
relation for every pair extracted from {5,6,7,10}; consis-
tently the linear correlation, for pairs of genes from different
pathways, is not significant. We conclude that, at large 7,

25 b

<error>
o

0.5F ]

FIG. 8. Concerning the genetic regulatory network, the mean
number of errors (over 100 realization of the system of length N
=2000) obtained using the linear IP kernel (p=1, empty circles) and
Gaussian kernel (stars), is plotted versus the sampling time 7,. In the
Gaussian case, =50 is used. The level of discretization is n,.=3
and m=2.
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Granger causality analysis is not effective, as it neglects
static correlations. On the other hand, the analysis of static
correlations may put in evidence groups of genes belonging
to the same regulatory pathway.

V. SPARSELY CONNECTED DYNAMICAL
NETWORKS AND LIMITED DATA

The Granger causality approach for dynamical networks
here presented requires a large amount of data samples to
provide trustable answers. However, there are situations (fre-
quent in bioinformatics) where the number of samples is
smaller than the number of variables (genes): in these situa-
tions the multivariate Granger approach is unfeasible. Under
the assumption of sparse connectivity, it has been proposed
to replace least squares methodology with a multivariate ap-
proach using minimization with respect to L1 norm [9]. Here
we show that there are situations where, even in presence of
sparse connectivity and limited data, use of bivariate Granger
causality is a better choice with respect to L1 minimization.
Indeed, in these cases, the statistical robustness of the esti-
mation of information flow between pairs of time series may
still be good, with the drawback that some causality links,
found by the bivariate approach, may not be direct but me-
diated.

A. Dynamical network by preferential attachment

We construct a network of 100 nodes and 100 links using
the preferential attachment procedure [27]; we give ran-
domly a direction to each link, with 1/2 probabilities, thus
obtaining a directed network. Let us denote d(i) the number
of nodes from which a link pointing to i starts. We evolve a
linear system on this network, with equations

0.8
Xi = aXi_+ zi <m>xj,t—l + Ty (12)

The sum is over nodes such that j—i is a link of the net-
work; 7's are unit variance Gaussianly distributed noise
terms; a; is one, if d(i)=0, and 0.2 otherwise. After a tran-
sient, we sample n, consecutive time points, with ng
=20,30,40,50,60. The L1 approach we use is the following.
For each i=1,...,100, we find the vector ¢ with minimum
L1 norm, among all those satisfying

100
Xit+1 = 2 CiXjts (13)

j=1
t=1,...,n,—1. The interaction j— i is considered significant

if the absolute value of c; exceeds a threshold, fixed so that
the total number of false positive connections is five. Subse-
quently we apply the bivariate linear Granger approach, de-
scribed in Sec. IT A, for each pair of nodes: also for Grang-
er’s approach we fix a threshold for the correlation
coefficients r, see Eq. (4), so that the total number of false
positive connections is five. In Fig. 9 we depict the number
of true positive connections found by the two approaches, as
a function of n,. It is clear that here the bivariate Granger
approach outperforms L1 minimization.
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0 . . . . .
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FIG. 9. The true positive connections found by the bivariate
Granger approach (stars) and by the multivariate L1 minimization
(empty circles) on the preferential attachment dynamical network.
The error bar represents one standard deviation, evaluated over 50
realizations. Here the number of false positive connections is al-
ways set equal to 5, however the result of the comparison between
the two methods is robust and does not depend on this choice.

B. HeLa gene expression regulatory network

HeLa is the most famous cell culture line to date [28].
These are cells isolated from a human uterine cervical carci-
noma in 1951 and used in biomedical research especially to
culture viruses. While the patient ultimately died of her can-
cer eight months after the operation, her cells have lived on,
still surviving in laboratories today. HeLa cells have some-
how acquired cellular immortality, in that the normal mecha-
nisms of programmed cell death after a certain number of
divisions have somehow been switched off. We apply our
approach to the HeLa cell gene expression data of [29]. Data
corresponds to 94 genes and 48 time points, with an hour
interval separating two successive readings (the HeLa cell
cycle lasts 16 hours). The 94 genes were selected, from the
full data set described in [30], on the basis of the association
with cell cycle regulation and tumor development.

First of all, we perform the analysis of the static pairwise
correlations between time series: 800 pairs of genes are sig-
nificantly correlated. Drawing a link for each correlated pair
leads to an undirected network depicted in Fig. 10: it is clear
that there are two modules, and symbols in Fig. 10 corre-
sponds to the partition by the method of module identifica-
tion described in [31]. The first module is made of 23 genes
and corresponds to the regulatory network of the transcrip-
tional factor NFkB [33]; it contains several well known ac-
tivators and targets of NFkB [34], such as, e.g., A20,
ICAM-1, IL-6, VCAM-1, IkappaBa, JunB, MCP-1, FGF2,
Cyclin. The second module, 62 genes, appears to be orches-
trated by transcriptional factors p53 and STAT3. Note, how-
ever, that the two modules are not independent, as they form
a highly related network. The proto-oncongene c-myc ap-
pears to be central between the two modules: it has 12 sig-
nificant static correlations with both modules. After the dis-
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FIG. 10. The undirected network obtained drawing a link be-
tween all pairs of significantly correlated genes of the HeL.a data set
(9 genes are not represented here as they are not correlated with any
other gene; hence the number of nodes is 85). Squares and circles
corresponds to the partition in two modules performed by the
method described in [31]. The large square corresponds to the tran-
scriptional factor NFkB.

cussion in Sec. IV B, we assume that the modular structure
depicted in Fig. 10 is the result of regulatory mechanisms
acting on time scales much smaller than the sampling time.

Next, in order to detect causalities acting on the time scale
of the sampling time, we apply bivariate Granger causality
analysis. For all pairs (i,/), we use the linear IP kernel ver-
sion (p=1, m=1) of our approach and evaluate the Pearson
correlation coefficient r, Eq. (4), for the causality i — . Due
to the small number of samples, we do not use ¢ test to
evaluate the probability 7 corresponding to r: we generate a
set of surrogates by permuting the temporal indices of the ith
times series while keeping fixed those of the jth time series.
The probability 7 is identified with the fraction of times that
an higher coefficient is obtained over 3 X 10° random shuf-
flings of time indices of the ith time series. Moreover, we use
the false discovery rate (FDR) method [32] instead of Bon-
ferroni’s correction. FDR works in the following way: the
94 X 93=8742 Pearson coefficients are ordered, {r,}, accord-
ing to their increasing, values, and a parameter ¢, which
controls the fraction of false positive, is set to 0.05. The
index €' is identified as the largest such that for all { =€’ we
have 7, = €q/8742. Pearson coefficients r, are accepted for
€=¢{'. This procedure selects 19 causal relationships, out of
8742; they are listed in Table I. IkappaBa is the most abun-
dant inhibitory protein for NFkB [35]: our approach detects
the significant causality IkappaBa — NFkB. We find that
NFkB is also casually related to IAP, an antiapoptotic gene,
and B99 (a direct target for transcriptional activation by p53:
here no significant interaction between B99 and p53 has been
detected). Three causality relationships involve Bcl-xL, the
dominant regulator of apoptosis (active cell suicide) and
TSP1, a peptide shown in some tumor systems to be linked
with angiogenesis. Notably Table I also contains fibroblast
growth factors, FGF7 and FGFR4, the tumor necrosis factor
Killer/DRS5, the myeloid tumor suppressor gene PKIG, the
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TABLE 1. Causalities for the HeLa gene network (Pearson’s
coefficients are displayed in the parentheses).

TPD52L — TNF-a (0.6166)
TSP1 — Bcl-XL (0.5935)
TSP1 — c-myc (0.5905)
IRF-2 — BRCAL1 (0.5669)
c-myc — FGFR4 (0.5653)
R2 — c-myc (0.5642)
PKIG . TSP1 (0.5475)
IAP - NFkB (0.5457)
NFkB R B99 (0.5416)
Bel-XL — OCT4 (0.5354)
OCT4 — VCAM-1 (0.5329)
VCAM-1 — TPD52L (0.5315)
Killer/DR5 — c-myc (0.5313)
A20 — Bcl-XL (0.5284)
Cyclin El — E2F-1 (0.5249)
PKIG — ICAM-1 (0.5243)
IkappaBa — NFkB (0.5156)
TPD52L . MASPIN (0.5128)
FGF7 — MCP-1 (0.5107)

tumor protein TPD52-L and Cyclin E1, a gene which is over-
expressed in many tumors. In [29] data have been analyzed
with the sparse vector autoregressive model, a multivariate
L1 approach which depends on a regularization parameter,
\, fixed by cross validation. Only one causality relationship,
out of the 19 in Table I, was revealed also in [29]:
A20—Bcl-XL.

VI. DISCUSSION

Our method of analysis of dynamical networks is based
on a recent measure of Granger causality between time se-
ries, rooted on kernel methods, whose magnitude depends on
the amount of flow of information from one series to another.
By definition of Granger causality, our method allows analy-
sis of networks containing cycles. First we have demon-
strated the effectiveness of the method on a network of cha-
otic maps with links obtained assigning a direction to the
edges of the well-known Zachary data set, using a nonlinear
kernel: perfect reconstruction of the directed network is
achieved provided that a sufficient number of samples is
available.

Second, we studied a simulated genetic regulatory net-
work. The results from our method were better than those
from DBN approach. However our performance was strongly
dependent on the sampling time, as it occurred also using
DBN method. In this example, use of IP kernel, with (p
>2), or Gaussian kernels did not lead to improvement in the
performance with respect to the linear kernel: this means that
these kernel are not suitable to model the nonlinear con-
straint connected to the fact that expressions are confined in
[0,100]. Further work will be devoted to the search for ker-
nels capable to capture this kind of nonlinearity: for a given
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application one should choose the proper kernel out of the
many possible classes [16].

Then we considered the case of sparse connectivity and
limited data. Using an example consisting in a linear dy-
namical network on a graph grown by preferential attach-
ment, we have shown that there are instances where the mul-
tivariate Granger approach is unfeasible, but the application
of bivariate Granger analysis, to every pair of time series,
leads to better results than those from a method based on L1
minimization. Finally we have analyzed a real data set of
temporal gene expression samples from HeLa cells. The
static correlation analysis between time series, which is the
result of regulation mechanisms with time scales faster than
the sampling rate, revealed the presence of two modules. Use
of bivariate Granger causality has put in evidence 19 causal-
ity relationships acting on the time scale of one hour, all
involving genes playing some role in processes related to
tumor development. Our result on HeLa data has very little
overlap with those from the output of a method based on
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multivariate L1 minimization, but this is not surprising, as
we observed the same fact also on the linear dynamical
model of Sec. V, where the true connectivity was known. We
remark that currently available data size and data quality
make the reconstruction of gene networks from gene expres-
sion data a challenge.

Detecting cause-effects influences between components of
a complex system is an active multidisciplinary area of re-
search in these years. The kernel approach here presented,
provides a statistically robust tool to assess drive-response
relationships in many fields of science.
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