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Predicting the synchronization time in coupled-map networks
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An analytical expression for the synchronization time in coupled-map networks is given. By means of the
expression, the synchronization time for any given network can be predicted accurately. Furthermore, for
networks in which the distributions of nontrivial eigenvalues of coupling matrices have some unique charac-
teristics, analytical results for the minimal synchronization time are given.
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I. INTRODUCTION

Synchronization occurs ubiquitously and performs impor-
tant roles in natural as well as artificial systems [1]. In the
brain, synchronization of neural activity has been shown to
exist between different columns and hemispheres and under-
lies information processing and learning roles [2]. Based on
the synchronization of chaotic lasers, secure communications
have been realized both in the laboratory and over commer-
cial fiber-optic channels [3]. To understand these diverse syn-
chronization phenomena, theoretical studies have considered
various node dynamics (e.g., excitable, periodic, and chaotic)
and network topologies (e.g., regular, random, small world,
scale-free, and modular) [4]. For completely regular (such as
all-to-all, nearest-neighbor, long-range) [5] or completely
random (such as Erdds-Rényi) [6] coupled-map networks,
some analytical results have been given. However, it is rela-
tively difficult to give analytical results for more complex
networks (such as small world, scale-free, and modular) [7].

When studying the synchronization in coupled-map net-
works, one important point is to find the time needed for the
networks to become synchronized: the synchronization time.
It reflects not only whether the networks can synchronize,
but also how fast the synchronization is. Normally, the syn-
chronization time is obtained through direct numerical simu-
lations, while in this paper we give an analytical expression
for it. By means of this expression, we can predict the syn-
chronization time for any given network. In Sec. II, the the-
oretical analysis for a general coupled-map network and
some necessary definitions are given. In Sec. IIl, a directed
random network is studied as an illustration to verify the
theoretical analysis. For two classes of networks in which the
distributions of nontrivial eigenvalues of coupling matrices
have some unique characteristics, the analytical and numeri-
cal results of the minimal synchronization time are given in
Sec. IV. In Sec. V, nonreciprocity effects on the synchroni-
zation are studied. Finally, a discussion and conclusions are
given in Sec. VL.
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II. THEORETICAL ANALYSIS

The dynamics of a general network of N coupled identical
maps is described by

N
x(t+1) =Fx,(n] + €2 C;H{F[x,(1)]}, (1)

j=1
where i=1,...,N, x(t+1)=F[x(¢)] is an m-dimensional map,

€ is the global coupling strength, C=(C;;) is the coupling
matrix, C;;=A;;/k; for j#i and C;=—1, where k; is the in-
degree of node i and A;; is an element of the adjacency
matrix A, and H is the coupling function. Since the rows of
C have zero sum, the network permits a synchronization
manifold x,(7)=x,(r)="-- =xy(r) =s(¢), where s(¢) is the syn-
chronous state with s(¢+1)=F[s(?)].

The stability of the synchronous state can be determined
by letting x;(r)=s(r)+ &x;(t) and linearizing Eq. (1) around
s(z). This leads to

N

Sx(t+1) = F'[s(018x,(1) + €2 CyH'{F[s() [}’ [s()15x,(0),
j=1

2)

where F’ and H' are the Jacobian matrices of the corre-
sponding vector functions. Diagonalizing C yields a set of
eigenvalues {\;,i=1,...,N}, whose real parts are nonposi-
tive. We sort the eigenvalues as O=\F'=\J"=... = \}¢&!
and denote the corresponding normalized eigenvectors by
e;,e,,...,ey. The denser the distribution of the nontrivial
eigenvalues is, the stronger is the synchronizability of the
network, ie., both the eigenratio )\jf,’al/)\rfa' and
max{|\ 25" |} are simultaneously smaller [8]. The trans-
form dy=0""6x, where O is a matrix whose columns are the
set of normalized eigenvectors, leads to the block-diagonally
decoupled form &8y;(r+1)=1+e\H'{F[s(2)[})F'[s(2)]8y;(1).
The synchronization is stable if
lim,_.(1/6)In[| 8y, (1)|/|8y;(0)|1< 0 for any i €{2, ...,N}. Di-
rect  calculation  gives  lim,_.(1/7)ln TI'_{|F'[s(7)]|
+lim,_.(1/0)In TT'Z{ |1+ eN;H'{F[s(7)]}| <0, where the
first term is the largest Lyapunov exponent of a single
map: A(0). Replacing e\; by a+iB, we get the master
stability function (MSF) [9] Ala+ip)
=A(0)+lim,_..(1/0)In II'Z{ |1+ (a+iB)H'{F[s(D]}| <0. To
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FIG. 1. (Color online) MSF for the logistic map with u=4
[A(0)=In 2]. The black solid line denotes where A=0.

be concrete, we choose F(x)=ux(1—-x) (the logistic map)
and H(x)=x; then we get

Ala+iB)=A0)+In|]1 + a+iB| <O, (3)

which is equivalent to \(1+a)?+B2<e 9. Here, ¢ MO
=0.5 for u=4 [A(0)=In 2]. Figure 1 shows the MSF, where
at the point (a, 8)=(-1,0), A — —o. It should be noted that,
if the coupling function H is nonlinear, H'{F[s(¢)]} will de-
pend on the value of s(¢) through F[s(#)] and it is then diffi-
cult to obtain an explicit expression for the MSF just like Eq.
3).

In numerical simulations, synchronization can be defined
as the synchronization error Async(t)zﬁ2ﬁ1|xj(t)—<x(t)>|
= 8, where (x(t)):%,Ejyzlxj(t) and & is the synchronization
accuracy. The synchronization time Ty,, defined as the av-
erage time required for the network to become synchronized,
i.e., Agyne(t) <& for t>T,, can be used to characterize the
synchronizability of the network. If the network is unsyn-
chronizable, Ty, — . Otherwise, the synchronization error
can be expressed as

1
Agyne(r) = E[Asym(o)e“f"z)f + Aye(0)e M)

+ ot Async(o)eA(E}\N)l]
N

= A(sync)(o)(z eA(E}\j)t)/(N_ 1)
j=2

(exact expression) with A(eN;)<0, V jE€{2,...,N}. Be-
cause the terms in the exact expression of Ay,.(¢) with more
negative A quickly approach zero as ¢ increases, at last only
the term with the least negative A dominates. Therefore, the
synchronization error can be simplified to Ag,(7)
=Ayync(0) et (approximate expression). By setting

N1
=06 [here A™*=max{A(e\))}], we get

A Ty

Async(o) N—1
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FIG. 2. (Color online) (a) Time series of Ay, and two kinds of
fitting for a directed random network with e=1.0. (b) Analytical
prediction and numerical data for Ty, versus e. Each numerical
data point is the result of averaging over ten random initial condi-
tions. Left inset shows each value of Ay,.(0) (black dots) and its
average value (Ay,0(0))=0.246 11=0.25 (red solid line) for 1000
realizations. Right inset shows the statistical distribution of
Agync(0). Here, N=30, p=0.25, and 6=107"°.

1
T,

syne = — Amax[— In 6—In(N~-1)+1In Ay, (0)]. (4
Defining the speed of synchronization as v=—A™", we have
Ty~ 1/v, ie., the network with higher v synchronizes
faster than that with the lower one.

III. ILLUSTRATION

To verify the theoretical analysis given above, we study a
directed random network with N=30 and connection prob-
ability p=0.25 as an illustration; each initial value of x is
randomly selected in [0,1]. The nontrivial eigenvalues of C
are all in the negative region of the MSF. First, we fix €
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=1.0 and calculate the time series of Ay, numerically; then
fit it with the exact and approximate expressions given
above, respectively [see Fig. 2(a)]. We find that these two
expressions fit Ay, very well after some time, while for the
first several steps the former fits better than the latter [see the
inset of Fig. 2(a)]. Second, for different €, we calculate the
corresponding Ty, analytically and numerically and then
draw them together [see Fig. 2(b)]. We find that they match
each other very well. Here, A,,.(0)=0.25 in Eq. (4), because
Ayne(0) is around 0.25 with the highest probability, as shown
in the right inset of Fig. 2(b) for the uniform distribution in
[0,1] of x(0). When N is larger, the statistical distribution of
Aync(0) becomes more sharply peaked around 0.25. An in-
teresting phenomenon should be noted: there exists an opti-
mal value of €, €°P', at which the network synchronizes with
the minimal value of Ty, Ty here (P, 730)
=(0.94,36.0) [see Fig. 2(b)]. A similar phenomenon has also
been found in a coupled-map lattice consisting of a chain of
chaotic logistic maps exhibiting power law interactions [10].
In conclusion, by means of Eq. (4), we can get Ty,  analyti-
cally without resorting to direct numerical simulations.

IV. TWO CLASSES OF NETWORKS

For some networks, in which the distributions of non-
trivial eigenvalues of C have some unique characteristics, we
can give the analytical results for 7( . (i) For some bidirec-
tional networks, if they are sufficiently random, the spectra
of the C’s tend to the semicircle law for large N with
arbitrary ~expected degree _[11]. This means that
N=-1-2/\VK, Ay=-1+2/VK, where K is the average de-
gree, which is found to provide a good approximation under
the condition min{k;}> 1, regardless of the degree distribu-
tion, e.g., for bidirectional K-regular random networks, bidi-
rectional random networks with connection probability
p=K/(N-1), and bidirectional scale-free networks with
d=K/2 [12]. (ii) For some unidirectional networks, e.g., uni-
directional K-regular random networks and unidirectional
random networks with connection probability p=K/(N-1),
with sufficiently large N, the distribution of nontrivial eigen-
values resembles a disk in the complex plane that is centered
at —1 and has a radius rgyr=(z—v)"? which can be de-
duced by random matrix theory (RMT) [13]. It follows that
N;E{~1+rj(cos O;+isin )}  for  j=2,...,N;  here
r;€[0,rgmr] and 6,€[0,27]. We numerically calculate
A™* defined above in the (e-K) parameter space for two
classes of networks. From the insets of Figs. 3(a) and 3(b)
we find that €P'=1, i.e., where A™* is most negative.
Setting e€=¢€°", for the bidirectional networks, we get
Ama"=A(O)+1n%—<. For wu=4 [A(0)=In2], only when

K> E}iﬂmmmul: 16 is A™*<(0. In addition, from Eq. (4)
in 1
we get Ty, =~ —m[—ln 6—In(N-1)+In Async(O)],

while, for the unidirectional networks, we get A™*
=A(O)-@-ln(%— 1%)”2 ~ A(O)+ln§—< for N> 1. Here, only when
K>K™! (=4 is A™*<0. Similarly, from Eq. (4) we

unidirectional

get 7O ~_m[—m S-In(N-1)+In A,,,(0)]. Fig-

sync
ures 3(a) and 3(b) show both the analytical predictions (the

curves) and the numerical results (the symbols) for T‘:;‘r'fc for
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FIG. 3. (Color online) Analytical prediction and numerical data
for 7:‘;‘& versus K for two classes of networks: the bidirectional (a)
and unidirectional (b) networks. Each numerical data point is the
result of averaging over ten random initial conditions. Insets: A™*
in (e-K) parameter space, and the black solid line denotes where

A™x=(). Here, N=1000 and 5=10"'°.

different values of K; they match each other very well. Based
on the results given above, we conclude that, for these two
classes of networks, T:‘;;‘C depends only on the average in-
degree K: Ty, decreases with increasing K, while the net-
work size N and detailed network structure have almost no
effect on it. This phenomenon is reminiscent of the results of
pulse-coupled leaky integrate-and-fire neurons interacting on
asymmetric random networks [13] and an array of chaotic

logistic maps coupled with random delay times [14].

V. NONRECIPROCITY EFFECTS

The networks discussed above are either purely bidirec-
tional or purely unidirectional. What will happens if the net-
works are in between? To answer this question, we put for-
ward a rewiring scheme with which a general network can be
transformed from purely bidirectional to purely unidirec-
tional continuously while the in-degree of each node in the
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FIG. 4. (Color online) Distributions of eigenvalues of coupling
matrices for several values of r. Top: K-regular random networks.
Bottom: Random networks with connection probability
p=K/(N-1). Here, red solid lines denote the RMT predictions, and
N=1000, K=10.

original network is conserved during the transformation.
First, we generate a purely bidirectional network with a
given degree distribution. Second, we select one connection
in the original network randomly and break it with probabil-
ity p"i, Third, we select two other nodes randomly, which
have no connection to either node of the broken connection,
and connect them to the two nodes of the broken connection.
Finally, we repeat the aforementioned procedure until each
connection in the original network has been chosen just one
time. We define r=1- pre‘”ire, which is just the so-called reci-
procity in network terminology, defined as the ratio of the
number of connections pointing in both directions to the total
number of connections [15]. Therefore, by increasing the
value of p™"i in [0,1] continuously, we can study the non-
reciprocity effects on the synchronization systematically.

A. K-regular random networks and random networks
with connection probability p=K/(N-1)

We apply the rewiring scheme to K-regular random net-
works and calculate the eigenvalues of the coupling matrices
numerically. The distribution of nontrivial eigenvalues as
shown in the up row of Fig. 4 is reminiscent of the general-
ized circle law of RMT for Gaussian asymmetric random
matrices [16]. Following the spirit of Ref. [13], we extend
the generalized circle law to sparse matrices (K<N-1) and
deduce the analytical boundary of nontrivial eigenvalues for
different values of r when N—oe. To directly compare the
nontrivial eigenvalues of coupling matrices, which have
average eigenvalue (\)=y2 LSV \;=—1, to those of the
Gaussian ensemble, we transform Ch ;;=Cjj+ &y, shifting the
average eigenvalue to (\/)=0. Here &; denotes the
Kronecker delta, ;=1 if i=j and §;=0 otherw1se For the

variance of C’ we obtain (C >_sz EN ’2 1{”1( o-zc,

and (C] gﬂ} zjv =X c,]c]',—rﬁ—ro%,, here (c?
=( NzEfv 12 C! )2 HO when N— oo, Therefore, we get
rrmr=N" 20'cr == 1 e., all the nontrivial eigenvalues are dis-

tributed umformly in an ellipse gml+-2_V§MT, here

a=1+r and b=1-r. It should be noted that, even for random
networks constructed by choosing every connection with
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FIG. 5. (Color online) 71';2‘0 versus r for several values of K.
Inset: K™ versus r. Here, N=1000 and §=1071°.

probability p=K/(N—-1), we get good predictions if K is re-
placed by <K):—EN \k; (see the bottom row of Fig. 4). It
shows that the RMT predictions match the numerical results
very well.

Based on the results given above, when e=¢€'=1,
A™*=A(0)+In[ (1 +r)$—(]. Therefore, from Eq. (4) we get

1n 1
Tf}l/nc 1
A(0) + ln{(l + r)\'_l/_(J
X[=In 6=In(N—1) +1n Ay,.(0)]. (5)

Equation (5) comprises the purely bidirectional case (r=1)
and the purely unidirectional case (r=0) discussed above.
Figure 5 shows the relation between T‘;;fc and r for several
values of K. With decreasing r, T‘:‘m decreases logarithmi-
cally. If the network is synchromzable A™ should be nega-
tive, i.e., A(0)+In[(1+r)= L =]<0. We get K>[4(1+7r)%] for
u=4 [A(0)=In2]; here [] denotes the integral part:
Kn;:ir;rectlonal_ 16 for r=1; :E:]dlrecuonal_4 for r=0 ]LlSt as in the
results given in Sec. IV. The relation between K™" and r is
shown in the inset of Fig. 5. K™ decreases nearly as the
square of r, but noncontinuously, with decreasing r from 16
to 4. Based on the results given above, we conclude that

synchronization is enhanced by the nonreciprocity.

B. Small-world and scale-free networks

Up to now we have studied networks in which each node
has fully uniform (K-regular random networks) or almost
uniform [random networks with connection probability
p=K/(N-1)] in-degrees. Applying the rewiring scheme to
other structured networks, e.g., small-world [17] and scale-
free [12] networks, we find that the enhancement effect of
the nonreciprocity exists, too. As shown in Fig. 6, the distri-
bution of the nontrivial eigenvalues becomes denser with
decreasing r. Furthermore, the enhancement is more obvious
for small-world networks than for scale-free networks when
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FIG. 6. (Color online) Distributions of eigenvalues of coupling
matrices for several values of r. Top: Small-world networks. Bot-
tom: Scale-free networks. Here, red solid lines are identical to those
of Fig. 4 just for comparison, and N=1000, K=10.

r is relatively large, e.g., from 1.0 through 0.75 to 0.5 (see
Fig. 6). When r=0.0, the nontrivial eigenvalue distribution
for small-world networks is almost identical to those of the
two random networks discussed above. For scale-free net-
works, the nontrivial eigenvalues distribute more sparsely
than those of the other three networks (see the rightmost
column of Fig. 6). We explain it as follows: the in-degree
dispersions of the former three networks are almost
identical and very small, while for scale-free networks, the
dispersion of in-degrees is larger because of the power law
characteristic. Using RMT, we have rgyr=N"?0(, and
oo =(CH= w2 P =yl k. where  Cli=Aylk,
while S =S LK) = e
(ki+hot k) (E+p++ ) =N, we  get 3N oo
SEZI%. Therefore, if each node has almost the same in-

Since
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degree as the average in-degree of the whole network, o
will be small, i.e., rgyr Will be small.

VI. DISCUSSION AND CONCLUSION

The method for predicting the synchronization time given
above is valid only for diagonalizable networks. Although
synchronizability is optimal in some nondiagonalizable net-
works, as discussed in Ref. [18], the synchronization time
increases when these networks become larger [19]. In this
case, Eq. (4) is not valid any more. Furthermore, while the
rewiring scheme is applied to a network to change the reci-
procity, the average path length of the network is also
changed: with decreasing value of r, the average path length
decreases, too. This may explain the enhancement effect by
nonreciprocity found in Sec. V.

In conclusion, we give an analytical expression for the
synchronization time in coupled-map networks. By means of
this expression, we can accurately predict the synchroniza-
tion time for any given network. For networks in which the
distributions of nontrivial eigenvalues of coupling matrices
have some unique characteristics, the analytical results for
the minimal synchronization time are given. Our work may
provide fresh insight into the control of the speed of synchro-
nization in engineering, as for secure communications [20].
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