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The static and dynamic critical properties of the ferromagnetic q-state Potts models on a square lattice with
q=2 and 3 are numerically studied via the nonequilibrium relaxation method. The relaxation behavior of both
the order parameter and energy as well as that of the second moments are investigated, from which static and
dynamic critical exponents can be obtained. We find that the static exponents thus obtained from the relaxation
of the order parameter and energy together with the second moments of the order parameter exhibit a close
agreement with the exact exponents, especially for the case of the q=2 �Ising� model, when care is taken in the
choice of the initial states for the relaxation of the second moments. As for the case of q=3, the estimates for
the static exponents become less accurate, but still exhibit reasonable agreement with the exactly known static
exponents. The dynamic critical exponent for the q=2 �Ising� model is estimated from the relaxation of the
second moments of the order parameter with mixed initial conditions to give z�q=2��2.1668�19�.
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I. INTRODUCTION

The so-called nonequilibrium relaxation �NER� method
�1,2� deals with the nonequilibrium critical relaxation of a
statistical model instantaneously brought to its critical tem-
perature from its nonequilibrium initial state, typically a fully
ordered state. A unique feature about the NER method is that
it allows one to determine the equilibrium critical properties
of statistical systems from their nonequilibrium relaxation
kinetics. Therefore, together with the method �3,4� using
short-time critical dynamic properties �5,6� �see Sec. III D�,
the NER method has been an interesting and valuable tool to
study the statistical systems whose critical properties are un-
known.

With recent advances in computing power, it seems
worthwhile to reinvestigate in more depth the potentials or
limitations of the NER method in terms of numerical accu-
racies in static and dynamic exponents. In this work we
chose the ferromagnetic q-state Potts model �7� on a square
lattice �with q=2 and 3� as a testbed for the NER method. It
appears to us that in applying the NER method, the energy
relaxation itself has been overlooked in evaluating the criti-
cal exponents: previous works �8,9� employed mainly the
second moments involving the energy, ignoring the relax-
ation of the energy itself. In this work we utilized the critical
energy relaxation as well as that of the order parameter for
evaluating the critical exponents. Due to better self-
averaging of these single-moment quantities, higher accuracy
is expected for the estimates of the exponents. Since for the
ferromagnetic q-state Potts model the critical temperature
and energy are exactly known for general values of q and the
static critical exponents are exactly known for q�4 �7,10�,
our work can be considered as a calibrational study of the
NER method as to how accurate estimates for the critical
exponents can be given via the NER method.

We find that by combining the relaxation of the two first-
moment quantities—i.e., order parameter and energy—one
can obtain the ratio of the equilibrium critical exponents,

through which the nature of the phase transition, or, equiva-
lently, the universality class, may be determined regardless
of our knowledge of the exact value of the dynamic exponent
z. By incorporating the time dependence of the second mo-
ment of the order parameter �starting from either disordered
or ordered initial states�, the dynamic exponent can be inde-
pendently obtained. This can be combined with the relax-
ation of the first-moment quantities to give the two indepen-
dent static exponents. We here find that the second moment
of the order parameter obtained with disordered initial state
gives the static exponents with higher accuracy. An alterna-
tive way of obtaining static exponents is to employ the sec-
ond moments involving energy fluctuations. However, the
energy fluctuation appears to be influenced by strong loga-
rithmic corrections in the case of q=2, which makes it diffi-
cult to estimate the exponents with high accuracy.

The present work is motivated by our interest in applying
the NER method to the statistical systems whose critical
properties are not completely understood. We are particularly
interested in clarifying the long-standing controversy on the
critical properties of the fully frustrated XY �FFXY� model
�11� on a square lattice �12� and the antiferromagnetic XY
model �13� �or the antiferromagnetic clock model �14,15�� on
a triangular lattice. Even though there exist previous studies
�9,16–18� from a nonequilibrium dynamics perspective on
this problem, we hope to undertake more careful studies of
the FFXY model by applying the NER method with the strat-
egy presented in this work.

II. MODEL AND SIMULATION METHOD

In the ferromagnetic q-state Potts model on a square lat-
tice each spin �i can take one of q possible values �i
=1,2 , . . . ,q, and the spin interaction is defined by the Hamil-
tonian
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H = − J�
�ij�

���i,� j�, �i = 1,2, . . . ,q , �1�

where ��a ,b� is the Kronecker delta function and �ij� de-
notes the nearest-neighbor spin pair. J��0� is the interaction
strength.

The model is known to exhibit a continuous phase transi-
tion for q�4 and discontinuous ones for q�4 in two dimen-
sions �7�. For q=2, the Potts model is equivalent to the Ising
model since ���i ,� j�= �1+SiSj� /2 with Si= �1. It is remark-
able that though the model is not exactly solvable except for
q=2, the critical temperature Tc and energy Ec are exactly
known for general q in some two dimensional lattices. For
the square lattice they are given by �7�

kBTc =
J

ln�1 + 	q�
, Ec = − J
1 +

1
	q

� , �2�

where kB is the Boltzmann constant. Here and after we
set kB=1 and J=1. Hence Tc=1.134 59. . . and Ec
=−1.707 11. . . for q=2 and Tc=0.994 97. . . and Ec
=−1.577 35 for q=3. The exact static critical exponents
are given in Table I.

We will be interested in characterizing the time evolution
of the system instantaneously “heated” to Tc from a fully
ordered initial state. The system then proceeds toward the
equilibrium via Monte Carlo kinetics with the Metropolis
algorithm for the flip of a randomly selected spin. Since we
are interested in the long-time dynamics of the system in the
thermodynamic limit, we take the system size large enough
so that the simulation can appropriately mimic the nonequi-
librium relaxation of the infinitely large system within the
simulation time window. This is similar to the case of phase-
ordering kinetics �19� in which the equilibration time is prac-
tically infinite due to large system size, making the time
evolution ever in nonequilibrium. We use the square lattice
with linear size L=600. The maximum simulation time is
tmax=104 Monte Carlo steps �MCS�. The presented results
are averages over 20 000 samples. Compared to existing dy-
namic studies �4,20–25� on the present model, our work has
employed a larger lattice size with one or two decades longer
Monte Carlo steps of simulations. Within the simulation time
window, we have checked that there is no finite-size effect on
our simulation results.

III. MEASUREMENTS AND DISCUSSIONS

We first define the local order parameter mi�t� and local
energy ei�t� for the model and their respective sums M�t�
and E�t� as

mi�t� �
1

�q − 1�
�q�„�i�t�,�i�0�… − 1� ,

ei�t� � −
1

2�
j

�i�

�„�i�t�,� j�t�… ,

M�t� � �
i

mi�t�, E�t� � �
i

ei�t� , �3�

where � j
�i� denotes the sum over the nearest sites of site i.

We have set �i�0�=1 in most of the present simulations. In
the NER method, the determination of the critical exponents
involves the cumulants of M�t� and E�t�. The order param-
eter M�t� and the energy density E�t� are given by M�t�
��M�t�� /N and E�t���E�t�� /N, respectively, where N
is the total number of spins and the angular brackets �¯�
denote an average over different realizations of the time
evolution.

A. Locating the critical temperature and energy

The NER method provides us with an efficient tool to
determine Tc with high accuracy. If the temperature T is
above or below Tc, then the order parameter would relax
�stretched� exponentially in time to its equilibrium value
which is zero for T�Tc or nonzero for T�Tc in the continu-
ous transition as in the present model. The relaxation time
scale 	 depends on how close T is to the critical temperature
Tc. Approaching Tc, 	 exhibits a power-law divergence. Be-
low Tc, the order parameter M�t� relaxes toward the nonva-
nishing equilibrium value. Since only at Tc does the order
parameter exhibit a power-law relaxation, Tc can be located
as the temperature at which the order-parameter relaxation
gives the best straight line in a log-log plot of M�t� versus t.
A more accurate location of Tc naturally requires a longer
simulation time.

Since Tc is exactly known for the present model, we can
provide a test example as to how the order-parameter relax-
ation can be used to narrow down the critical temperature, as
shown in Fig. 1�a� �q=2� and Fig. 1�b� �q=3�. Figure 1�a�
shows the relaxation of the Ising �q=2� order parameter for

TABLE I. The measured dynamic and static critical exponents.

z 1 /
 � �=2� /
 �d=2� =2−
d

q=2 Present work 2.1668�19��zMM� 0.9984�25� 0.12527�51� 0.2501�16� −0.0032�50�
Short-time dynamics 2.155�3� 1.03�2� 0.1165 0.240�15� 0.058�38�

Exact 1 1 /8=0.125 1 /4=0.25 0

q=3 Present work 2.1735�40� �zMM,disordered� 1.213�6� 0.1080�20� 0.2618�83� 0.350�22�
Short-time dynamics 2.196�8� 1.24�3� 0.1085 0.269�7� 0.387�40�

Exact 6 /5=1.2 1 /9=0.1111 4 /15=0.2666 1 /3=0.3333
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various temperatures near Tc. M�t� shows strong upward and
downward curvatures at T=1.13 and at T=1.14, respectively.
So the critical temperature should be in the range 1.13�Tc
�1.14. We find in this way that the temperature range can be
readily narrowed down to �T=4�10−4 within the present
simulation time �tmax=104 MCS�. That is, we have 1.1342
�Tc�1.1350. Higher accuracy would be achieved with a
longer simulation time. In the same manner, for q=3, Tc can
be easily located within the range �T=5�10−4 as demon-
strated in Fig. 1�b�.

In contrast to the case of the present system, the exact
value of the critical energy is not known for many other
systems. For such cases, using an ansatz of the critical en-
ergy relaxation at Tc, one can determine Ec by tuning the
value of E� such that E�−E�t� versus t gives the best straight
line at long times in the log-log plot. Figure 2 shows such an
example for the present system. In our simulation time win-
dow, one could readily narrow down Ec within the range
�E�10−3.

B. Relaxations of the first moments

We first measure the relaxation of the order parameter
M�t� and the energy density E�t�. When the system is instan-
taneously brought to Tc starting from a fully ordered state,
both quantities exhibit power-law relaxations toward their
equilibrium values �8,26,27�. For a better analysis of the re-
laxation behavior and estimation of the critical exponents,
we included correction terms to the leading-order scaling be-
havior in the following form �see the Appendix for a deriva-
tion of the leading-order critical relaxation�:

M�t�  t−�/z

1 +
cM

t�M
+

cM�

t�M�
+

cM�

t�M�
+ ¯� ,

Ec − E�t�  t−�
d−1�/z

1 +
cE

t�E
+

cE�

t�E�
+

cE�

t�E�
+ ¯� , �4�

where z is the dynamic exponent, � and 
 the static expo-
nents, and d the spatial dimension �d=2 in the present case�.
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FIG. 1. The relaxations of the order parameter M�t� for �a� q
=2 and for �b� q=3 at temperatures near Tc ��a� T=1.130, 1.1323,
1.1342, 1.13459�Tc�, 1.135, 1.137, and 1.14 and �b� T=0.993,
0.994, 0.9945, 0.99497�Tc�, 0.9955, 0.996, and 0.997�. The critical
temperature can be determined as the temperature at which M�t�
exhibits a critical relaxation �represented by a dashed line� through
a change from an upward curvature to a downward curvature.
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FIG. 2. The relaxations of the energy difference �E�−E�t�� in a
log-log plot for �a� q=2 and �b� q=3 with various test values of E�

��a� E�=−1.704, −1.705, −1.706, −1.70711�Ec�, −1.708, −1.709,
and −1.710 and �b� E�=−1.571, −1.573, −1.575, −1.57735�Ec�,
−1.579, −1.581, and −1.583�. By tuning E� such that E�−E�t� ex-
hibits the best power-law relaxation, one can determine both Ec and
−�
d−1� /z
. For each figure, the dashed line represents the relax-
ation with the exact critical energy Ec.
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In �4�, cM, cM� , cM� and cE, cE� , cE� are constants, and �M, �E,
etc., are the exponents of the correction-to-scaling terms.
Simulation results for the relaxations of M�t� and Ec−E�t�

are shown, respectively, in Figs. 3�a� and 3�b�.
It is easy to see that the general form of Eq. �4� with all

the correction exponents kept independent is not appropriate
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FIG. 3. �a� The critical relaxation of the order parameter M�t� and �b� the critical relaxation of the energy difference �Ec−E�t��. In �a� and
�b� dot-dashed lines are curves obtained from FIT3A with optimal fits. Shown in �c� and �d� are plots of MA�t��M�t�A0t�/z
 �solid square�
together with the fitting function �solid line� for q=2 and q=3, respectively. Here A0

−1t−�/z
 represents the asymptotic scaling obtained from
the fitting. Shown in �e� and �f� are the plots of EA�t���Ec−E�t��B0t�
d−1�/z
 vs t �solid square� together with the fitting function �solid line�
for q=2 and q=3, respectively. Here B0

−1t−�
/d−1�/z
 represents the asymptotic scaling obtained from the fitting.
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for fitting. For example, if we put all the correction expo-
nents equal to one another, then we can generate the same
function with many different combinations of the coefficients
provided that the sums of the coefficients are the same. This
will cause the fitting procedure with a general initial guess to
fail to converge to unique stable values for the values of
exponents and other coefficients. Therefore, we should im-
pose some constraints on the correction exponents to achieve
a stable fit. One of the schemes we tried is to let the first
correction exponent be a free fitting parameter, but the nth
correction exponent is constrained to be equal to the first
correction exponent plus �n−1�. That is, we put �M� =�M +1
and �M� =�M +2, etc. �which we call FITnA, where n refers to
the number of correction terms�. We also tried a scheme
where the first correction exponent is a free-fitting parameter,
but the nth correction exponents are constrained to be equal
to n times the first correction exponent. That is, we put �M�
=2�M and �M� =3�M, etc. �which we call FITnC�. A special
scheme of correction is to assume an analytic form for the
correction terms where the correction exponents are all con-
strained to integer values �which we call FITnB�. The cases
of �M =1 in FITnA and FITnC reduce to the scheme of
FITnB. The special case of fitting with a simple power law
without correction terms will be referred to as FIT0.

First consider the case of q=2. In this case, we incorpo-
rated up to third correction terms �i.e., FIT3A, FIT3C, and
FIT3B� in our fit. In the cases of FIT3A and FIT3C, for
reasonable convergence of the fitting procedure and estima-
tion of the error bars, we tuned the value of the coefficients
of the highest-order correction terms �i.e., cM� and cE��. These
values of cM� and cE� were tuned �chosen� such that the result-
ing fit function shows good agreement with the data. For
some finite range of these coefficient values �cM� ranging
from 0.0 to 0.1�, the quality of the fit is found to be accept-
able. The median of the values of the exponents was chosen
as the representative value of the exponent, and the range of
the values can be used to estimate the error bars. As for the
relaxation of the magnetization, we found that, as the value
of cM� was varied, the value of the dominant relaxation expo-
nent � /z
 showed only a small variation. We also found that,
in terms of the value of the dominant exponent � /z
 and the
first correction exponents, the two schemes of FIT3A and
FIT3C gave almost the same results �see Table II�. If we take
the median of the fitted values from this analysis as the most
probable value of � /z
, we get

�

z

= 0.057722�42� for q = 2. �5�

Now the corresponding value of the first correction exponent
�M from the above fit exhibits a monotonic increase from
0.91 to 1.06 �FIT3C� and also from 0.90 to 1.07 �FIT3A� as
the value of cM� increases from 0.0 to 0.1 �Table II�. Taking
the median of the combined range �from 0.90 to 1.07� we
may take the representative value of �M as �M �0.985�85�.
This may indicate that the exact value of the first correction
exponent is equal to 1. Incidentally we also tried to fit the
data with analytic corrections in which the first correction
exponent is set to be equal to 1, the second correction expo-

nent to 2, etc. We found that the fitting quality was excellent
with essentially the same dominant exponent as the represen-
tative value given above.

As for the relaxation of the excess energy, we also applied
the above fitting schemes. However, in this case of excess
energy, we had to directly tune the value of the first correc-
tion exponent in order to obtain a reasonable fit to the data.
We found that the best fit could be obtained in the range of
the value of �E between 0.90 and 1.05 �see Table III� which
again is in reasonable agreement with the case of the mag-
netization relaxation �Fig. 3�b��. The values of the fitted re-
laxation exponents are


d − 1

z

= 0.46227�71� for q = 2. �6�

Now we turn to the relaxation dynamics of the q=3
model. As for the magnetization relaxation, we tuned the
value of the coefficient cM� or cE� of the highest-order correc-
tion terms. We find that both schemes FIT3A and FIT3C give
approximately the same results for values of the relaxation
exponent � /z
 �Table IV�. Combining the results of FIT3A
and FIT3C we obtain the values of the exponent as

�

z

= 0.06020�17� for q = 3. �7�

Correspondingly the value of the first correction exponent �M
ranges between 0.65 and 0.98. As for the relaxation of the

TABLE II. The dominant exponents and the first correction ex-
ponents for the relaxation of magnetization, obtained from the two
fitting procedures FIT3A and FIT3C for the case of q=2. zM de-
notes the value of the dynamic exponent derived from the value of
the second column for � /z
 using the exact values of the static
exponents for � and 
. cM� represents the chosen values of the co-
efficients of the highest-order correction terms for fits. For compari-
son, we also added �the last line� the result of a fit with FIT3B
where the first correction exponent �M is set equal to unity.

cM� � /
z �M zM

FIT3A 0.0 0.0576815 0.8956 2.16707

0.01 0.0576911 0.9165 2.16671

0.02 0.0577003 0.9366 2.16637

0.03 0.0577094 0.9559 2.16603

0.04 0.0577181 0.9745 2.16570

0.05 0.0577266 0.9924 2.16538

0.07 0.0577427 1.0265 2.16478

0.1 0.0577652 1.0738 2.16393

FIT3C 0.0 0.05768 0.907 2.1671

0.01 0.057689 0.9264 2.16679

0.02 0.057699 0.9442 2.16642

0.03 0.057708 0.9612 2.16606

0.04 0.057717 0.9774 2.16573

0.06 0.0577338 1.0078 2.16511

0.08 0.0577494 1.0363 2.16453

0.1 0.0577642 1.0633 2.16397

FIT3B 0.07834 0.05769 1.0 �fixed� 2.16675
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excess energy, we also applied the above fitting schemes. We
found that the best fit could be obtained in the range of the
value of �E between 0.6 and 0.74 which exhibits a narrower
range for the correction exponent compared with the case of
magnetization relaxation. The value of the fitted relaxation
exponent for excess energy is �Table V�


d − 1

z

= 0.3626�40� for q = 3. �8�

Figures 3�c� and 3�d� show the time dependence of MA�t�
�M�t�A0t�/z
 for q=2 and q=3, respectively, together with

the fitting functions. Here A0
−1t−�/z
 represents the asymptotic

scaling obtained from the fitting. Also, Figs. 3�e� and 3�f�
show the time dependence of EA�t���Ec−E�t��B0t�
d−1�/z


with the fitted values of the exponents for q=2 and q=3,
respectively, together with the fitting functions, demonstrat-
ing the asymptotic nature of the scaling behaviors. Here
B0

−1t−�
/d−1�/z
 represents the asymptotic scaling obtained from
the fitting.

Note that the value of � /z
 is particularly small. This
implies that the order parameter relaxes much more slowly
than the energy does: even after four decades of relaxation
time, the order parameter relaxed only half of its initial
value. This is another reason why the statistics is better for
the order parameter relaxation than for the energy relaxation.
The above values of � /z
 for both q=2 and 3 can be com-
pared with the results obtained from the short-time dynamics
on both square �4,21� and triangular �25� lattices.

Since � /z
 and �
d−1� /z
 contain the common factor
1 /z
 which involves the dynamic critical exponent z, taking
the ratio of the former to the latter eliminates the exponent z,
yielding � / �
d−1� which involves only the two static expo-
nents. Then the numerical values of the ratio � / �
d−1� ob-
tained from the above fit can be compared with the corre-
sponding exact values as

�


d − 1
= 0.1249�4� ,


 �


d − 1
�

exact
=

1

8
= 0.125 for q = 2,

�


d − 1
= 0.1660�23� ,


 �


d − 1
�

exact
=

1

6
= 0.16667 for q = 3. �9�

We see that for both cases of q=2 and q=3, the values of
� / �
d−1� are quite close to the exact theoretical values.

TABLE III. The dominant exponents and the first correction
exponents for the energy relaxation, obtained from the two fitting
procedures FIT3A and FIT3C for the case of q=2. Note that zE

denotes the value of the dynamic exponent derived from the value
of the second column for �
d−1� /
z using the exact value of the
static exponents for 
. Here the exponent �E’s represent the chosen
values of the first correction exponents for fitting.

�E �
d−1� /
z cE� zE

FIT3A 0.90 0.46201 0.2028 2.1645

0.95 0.46227 0.47124 2.1632

1.0 0.46253 0.76616 2.1620

FIT3C 0.93 0.462169 0.26146 2.1637

0.95 0.462265 0.40190 2.1633

0.96 0.462315 0.47326 2.1630

0.97 0.462367 0.54537 2.1628

1.0 0.462530 0.766162 2.1620

TABLE IV. The dominant exponents and the first correction
exponents for the relaxation of magnetization, obtained from the
two fitting procedures FIT3A and FIT3C for the case of q=3. cM�
represents the chosen values of the coefficients of the highest-order
correction terms for fits. Also shown in the last two lines are the
results of fits using FIT3B and FIT0 �with no correction terms�,
respectively.

cM� � /
z �M zM

FIT3A 0.03 0.0600345 0.6415 2.2209

0.06 0.0601009 0.7063 2.2185

0.07 0.0601192 0.7260 2.2178

0.08 0.0601374 0.7451 2.2171

0.09 0.060154 0.7634 2.2165

0.10 0.060170 0.7811 2.2159

0.12 0.0601995 0.8149 2.2149

0.15 0.060241 0.8630 2.2133

FIT3C 0.06 0.060141 0.7713 2.2170

0.09 0.060183 0.8139 2.2155

0.10 0.0601959 0.8274 2.2150

0.12 0.0602175 0.8524 2.2142

0.15 0.060249 0.88845 2.2130

FIT3B 0.244 0.0603559 1.0 �fixed� 2.2091

FIT0 - 0.06058 - 2.2010

TABLE V. The dominant exponents and the first correction ex-
ponents for the energy relaxation, obtained from the two fitting
procedures FIT3A and FIT3C for the case of q=3. Here the expo-
nents �E represent the chosen values of the first correction expo-
nents for fits.

�E �
d−1� /
z cE� zE

FIT3A 0.55 0.36008 0.3898 2.2218

0.60 0.36142 0.6459 2.2135

0.61 0.36167 0.6997 2.2119

0.62 0.36192 0.7544 2.21045

0.63 0.36216 0.8099 2.20899

0.64 0.36239 0.8664 2.20756

FIT3C 0.70 0.36298 0.7896 2.20397

0.72 0.36336 0.9676 2.20165

0.73 0.36356 1.057 2.2005

0.74 0.36375 1.1464 2.1993
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Elimination of the dynamic exponent z in the above ratio
is an important feature that may be used to distinguish the
universality class of systems whose critical properties are not
known. Prominent examples of such systems are the two-
dimensional FFXY models �12�. We point out that as is done
here, measuring the relaxations of the chirality order param-
eter and the energy for such systems one can determine
whether the chirality transition in that system belongs to the
Ising or the three-state Potts universality class, or to another
universality class, without knowing all the static exponents
separately.

One can obtain an estimate for z from the fitted exponents
for the relaxation of magnetization and energy as given
above by making use of the fact that the static exponents are
exactly known in the case of q=2 and q=3. This is perhaps
one of the easiest ways of obtaining z for systems whose
static critical properties are exactly known �28,29�. If we use
the magnetization relaxation, the values for z derived from
the values of the relaxation exponents in �5�–�8� �assuming
the exact theoretical values of the static exponents� are given
by

zM = 2.1656�16�, zE = 2.1632�33� for q = 2,

zM = 2.2150�62�, zE = 2.2064�110� for q = 3. �10�

Here values of the exponents are the median values in the
optimal fitting regime, while the error bars are estimated
from the maximum dispersion of the fitted values. The values
of z in �10� are in good accord with other estimates �30�.

C. Relaxations of the second moments

The above procedures of obtaining z of course cannot be
carried out for systems with unknown critical properties. It is
thus desirable to provide ways of independently measuring
the dynamic exponent. We present below one systematic way
of doing it by considering the second moments of the order
parameter, CMM�t�, which exhibits a leading-order scaling
behavior in time �8� as �see the Appendix�

CMM�t� � N��M2�t�� − �M�t��2�  t�d−2�/
�/z. �11�

Note that �11� is valid for disordered initial states as well.
The dynamic exponent z can be isolated if one considers a
time-dependent second moment fMM�t� defined as

fMM�t� �
CMM�t�

M2�t�
 td/z, �12�

which is obtained using the leading-order behavior for M�t�
given in �4�. One usually measures fMM�t� in two ways: one
measures fMM�t� for fully ordered initial states, or one can
first measure CMM�t� for disordered initial states and then
divide it by M2�t� measured for the fully ordered initial
states. The latter way is therefore using the two different
types of initial conditions. We denote the former result by
fMM,ordered�t� and the latter one by fMM,mixed�t�. An alterna-
tive way �4� of obtaining z using the short-time critical dy-
namics is described in the next section.

Shown in Figs. 4�a� and 4�b� are fMM�t� for q=2 and q
=3, respectively. Here, we apply similar methods of analysis

as in the previous section—that is, fMM�t� td/z�1
+cMM / t�MM+¯�. We found that for the case q=2 �using
both FIT2A and FIT2C� fMM,ordered�t� and fMM,mixed�t� give
�Tables VI and VII�
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FIG. 4. The order-parameter cumulant fMM�t� vs t in a log-log

plot for q=2 �a� and q=3 �b�. �c� fMM,A�t�� fMM�t�C0t−d/z vs t in
the case of mixed initial states for q=2 �solid square� together with
the fitting function �solid line�. Here C0

−1td/z represents the
asymptotic scaling obtained from the fitting. Dotted lines are the
straight lines indicating the asymptotic power-law behavior.
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zordered = 2.1545�52�, zmixed = 2.1668�19� for q = 2.

�13�

We see that there exists a small but non-negligible discrep-
ancy between the exponents zmixed and zordered. We also note
in particular that zmixed is very close to zM obtained from the
relaxation of the magnetization in �5� �assuming the exact
values of the static exponents�. Figure 4�c� shows the time
dependence of the quantity fMM,A�t�� fMM�t�C0t−d/z for the
case of mixed initial states �for q=2� together with the fitting
function, where C0

−1td/z represents the asymptotic scaling ob-
tained from one of the best fits.

In the case of q=3, zordered and zmixed exhibit a larger
discrepancy:

zordered = 2.1334�35�, zmixed = 2.1735�40� for q = 3.

�14�

As first pointed out by Zheng �4�, this difference between the
two estimates is not due to the statistical error of the data.
This difference is also observed in triangular lattices �25�.
More severe disagreement between zordered and zmixed was

reported for the Baxter-Wu model �32,33�: zordered=2.07�1�
�34� and zmixed=2.294�6� �35�. We suspect that the underly-
ing reason for this discrepancy is that the time scale at which
the scaling behavior sets in may be much longer for
fMM,ordered�t� than that for fMM,mixed�t� as q gets larger,
which may be due to the nature of the broken symmetry of
the initial states related to the higher degeneracy of the
ground states for larger q. It is thus expected that the stronger
discrepancy will be observed for the four-state Potts model
as well �36,37�.

Static exponents � and �

The values of dynamic critical exponents obtained from
second moments of the order parameter can now be com-
bined with the relations of exponents obtained from the re-
laxation of the first moments of the order parameter and en-
ergy to give the static exponents such as 
 and �. Since it
appears that the value of zmixed �especially for q=2� is more
consistent with the results of magnetization and energy re-
laxation, we substituted zmixed for the dynamic exponents in
the relaxation of magnetization and energy. For example, in
the case of q=2, substituting the value of zmixed
=2.1668�19� in �13� for z in the relations �5� and �6� gives
1 /
=0.9984�25� and �=0.12527�51�. These values yield
close estimates to the exact exponents: 1 /
=1 and �=1 /8
=0.125.

As for q=3, when the value of zmixed=2.1735�40� in �14�
is substituted for z in the relations �7� and �8� we obtain
1 /
=1.212�16� and �=0.1080�20�, which appears to exhibit
approximate agreement with the exact values 1 /
=6 /5
=1.2 and �=1 /9=0.1111. But this is definitely less accurate
than the case of q=2. If we use zordered instead of zmixed, then
we obtain even less accurate results for the static exponents,
which is naturally expected from the discrepancy of the
value of zordered from z obtained from the relaxation of the
order parameter or energy assuming the exact static expo-
nents. One thus should be cautious in determining z from
second and higher moments of the order parameter for sys-
tems with unknown critical properties.

We have so far followed the procedure of using the relax-
ations of the order parameter, the energy, and the second
moment of the order parameter. An alternative way �8,9� of
obtaining the exponent 
 is to use the second-order moments
involving energy fluctuations, fME�t� or fEE�t�, which exhibit
the leading-order scaling behaviors as �8� �see the Appendix�

fME�t� � N� �M�t�E�t�� − �M�t���E�t��
�M�t���E�t�� �  t1/z
,

fEE�t� � N� �E2�t�� − �E�t��2

�E�t��2 �  t/z
. �15�

For q=2, we first obtain the leading-order exponent 1 /z

=0.4624�29� by using FIT3A �Fig. 5�a��. However, we are
unable to extract the exponent �2−
d� /z
 from fEE�t� since it
exhibits a strong curvature with the local slope decreasing in
time, as shown in Fig. 5�b�. This may indicate that the expo-
nent �2−d
� eventually vanishes in the long-time limit, im-
plying 
=1. We suspect that this strong curvature in the log-

TABLE VI. The dominant exponents and the first correction
exponents for the relaxation of the second moment of magnetization
with random initial states, obtained from the two fitting procedures
FIT3A and FIT3C for the case of q=2. Here, the fitting is mostly
done up to second corrections. cMM� is the chosen values of the
coefficients of the highest-order correction terms for fits.

�MM cMM� d /z zMM

FIT3A 1.35 0.0 0.92323 2.16631

1.3 0.0 0.92311 2.16659

1.25 0.0 0.92298 2.16689

1.20 0.0 0.92285 2.16720

1.15 0.0 0.92271 2.16753

1.0 0.6923 0.92314 2.16652

1.0 0.0 0.92224 2.16863

FIT3C 1.34595 0.0 0.92335 2.16603

TABLE VII. The dominant exponents and the first correction
exponents for the relaxation of the second moment of magnetization
with ordered initial states, obtained from the two fitting procedures
FIT2A and FIT0 for the case of q=2. The column for cMM� lists the
chosen values of the coefficients of the second correction terms for
fits.

�MM cMM� d /z zMM

FIT2A 0.8317 0.15 0.927756 2.15574

0.8471 0.09 0.927876 2.15546

0.8545 0.06 0.927933 2.15533

0.8618 0.03 0.927988 2.15520

0.8689 0.0 0.928042 2.15507

0.8713 �0.01 0.92806 2.15503

FIT0 - - 0.92819 2.15473
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log plot of fEE�t� may correspond to a logarithmic correction.
Figure 5�c� shows such a fit with fEE�t��ln t�� with �
�0.80. From the value of the above exponent 1 /z

=0.4624�29� we obtain 1 /
=1.0019�72� using zmixed
=2.1668�19�. This estimate compares quite well with that
obtained from M�t�, E�t�, and fMM�t�.

For q=3, in contrast to the Ising �q=2� case, both mo-
ments fME�t� and fEE�t� exhibit asymptotic power-law behav-
ior. The average slopes obtained from Figs. 5�a� and 5�b� are
given by 1 /z
=0.5515�61� and �2−
d� /z
=0.1911�72�.
These values yield the static and dynamic exponents 1 /

=1.210�58� and z=2.193�129�. It is interesting to see that
this dynamic exponent is larger than zmixed=2.173�2� given
in �14� and is rather closer to those given in �10�. However,
one should also note that the error bars are much larger in
this case.

One can therefore conclude that for the present system
using the relaxation of the order parameter and the energy
combined with the value of zmixed yields better estimates for
static exponents than using the second-order moments in-
volving the energy fluctuations. From this point of view, the
moments fME�t� and fEE�t� may be used to check the consis-
tency of the results obtained using the energy relaxation it-
self.

D. Short-time critical dynamics

At this point, for comparison, it is worthwhile to briefly
describe the method using the short-time critical dynamics
which offers an alternative way of determining the static and
dynamic exponents. More details can be found in �4�. When
quenched to Tc from the initial disordered state, but with
sufficiently small “magnetization” M0, the system exhibits a
nonequilibrium scaling regime in which the order parameter
typically shows an anomalous power-law increase as �5�

M�t�  M0t� �16�

before eventually relaxing toward its equilibrium value,
where the exponent � is a new nonequilibrium critical expo-
nent. Though it typically takes a positive value, it becomes
negative for some systems such as the tricritical system �38�,
the Ashkin-Teller model �39�, the Blume-Capel model �40�,
the four-state Potts model �41�, and the Baxter-Wu �BW�
model �34,35,42�. The time scale 	M associated with the
power-law increase depends upon the magnitude of the ini-
tial magnetization as 	M M0

−z/x0 where the scaling dimen-
sion x0 is related to the other exponents as x0=�z+�
.

In practice, � was obtained by linearly extrapolating the
effective exponents �ef f �for finite M0� vs M0 to M0=0. Al-
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FIG. 5. The second-order moments fME�t� �a� and fEE�t� �b� vs t in a log-log plot for q=2 and q=3. �c� fEE�t� vs ln t in a log-log plot for
q=2. This plot shows a logarithmic time dependence of fEE�t��ln t�� with ��0.80 for the long-time region �t�100 �MCS��.
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ternative way of obtaining � was first proposed by Huse �6�.
Using a scaling ansatz for the nonequilibrium structure factor
of the two-dimensional kinetic Ising model, Huse has shown
that the autocorrelation function of the global order-
parameter M�t� with random initial conditions exhibits a
power-law behavior

AM�t� =
1

N
�M�t�M�0��  t�. �17�

Huse has also shown that the spin autocorrelation function
A�t� exhibits a critical decay in time as

A�t� �
q

q − 1

1

N��
i
����i�0�,�i�t�� −

1

q��  t−� � t−d/z+�.

�18�

Tomé and Oliveira �43� have proved that �18� holds for equi-
librium as well as nonequilibrium systems �i.e., without de-
tailed balance� possessing the global up-down symmetry.
Later on, Tomé �44� showed that the validity of �18� is ex-
tended to systems with other symmetries. It is much more
convenient to measure � by measuring the autocorrelation
AM�t� since one is free from cumbersome preparation of the
initial states with very small magnetization and an extrapo-
lation procedure to vanishing initial magnetization.

The new nonequilibrium exponent � has been obtained as
follows. For q=2, �=0.191�1� �heat bath� and �=0.197�1�
�Metropolis� using �16� �4,23–25� and �=0.19 using �17� �6�.
In addition, Grassberger �45� also measured the exponent �
as �=0.191�3� using a damage-spreading method. Likewise,
for q=3, the exponent � takes the following values: �
=0.075�3� �heat bath� and �=0.070�2� �Metropolis� using
�16� �4,23–25� and �=0.072�1� using �17� �41�. The expo-
nent � was also measured using �17� as �=0.093�4� �46� for
a nonequilibrium cellular automaton model with C3v symme-
try which belongs to the three-state Potts universality class
�47�. In addition, there exists measured value of � for q=4
using both �16� and �17�, which are given, respectively, by
�=−0.0471�33� and �=−0.0429�11� �41�. It is an interesting
fact that the four-state Potts model and the BW model, which
belong to the same static universality class, do not share the
same nonequilibrium exponent �: �=−0.185�2� �42� or
−0.186�2� �35� for the BW model. It would be interesting as
well to clarify the question as to whether this nonuniversal
dynamic behavior is extended to the case of z in both sys-
tems.

Independent measurements of the exponents � and � us-
ing �17� and �18� provide an alternative way �4,20,23� of
obtaining z through the relation z=d / ��+��. The measured
values of � and hence z are given by �=0.737�1� and z
=2.155�3� for q=2 and �=0.836�2� and z=2.196�8� for q
=3 �4�. As for the BW model, �=1.188�10� and z
=1.994�24� �42� were obtained using the continuous-time
Monte Carlo algorithm. One disadvantage of this method is
that the rather large value of � induces strong fluctuations in
its measurement, which is the main source of the error for the
estimate of z.

With z in hand, one can use �11� with disordered initial
states to obtain the ratio � /
, or equivalently, the exponent

��2� /
 �for d=2�. In order to determine � and 
 sepa-
rately, one can use the following scaling ansatz for the order
parameter near and below Tc:

M�t,�� = t−�/z
F�t1/z
�� , �19�

where F is the scaling function and � is the reduced tempera-
ture defined as ���Tc−T� /Tc. Equation �19� reduces to �4�
for �=0. Then one can give an estimate for 1 /
 using

�

��
ln M��t,����=0 = t1/z

 d

dx
ln F�x��

�=0
. �20�

This method gives 1 /
=1.03�2� �square lattice� �4� and
1 /
=1.027�6� �triangular lattice� �25� for q=2 and 1 /

=1.24�3� �square lattice� �4,21� and 1 /
=1.223�8� �triangu-
lar lattice� �25� for q=3. But involving the difference of the
order parameter at several close temperatures near Tc may
cause considerable error in the estimate of the exponent 
.
Our method �presented in Sec. III C� utilizing the energy
relaxation can provide an alternative and better way of esti-
mating the exponent 
 without using �20�.

IV. SUMMARY AND CONCLUDING REMARKS

Through Monte Carlo simulations we have investigated
the nonequilibrium critical dynamics of the ferromagnetic
q-state Potts model on a square lattice. The primary purpose
of the present work was to evaluate the accuracy of the es-
timates the NER method can provide for both static and dy-
namic exponents of statistical systems. The ferromagnetic
Potts model is an ideal test system for that purpose since the
static critical properties of the model are exactly known.

In contrast to other nonequilibrium approaches, we uti-
lized both the order parameter and energy relaxation. The
ratio of the power-law exponents of the order parameter and
the energy involves solely the static exponents. In order to
separately measure the two independent static exponents,
one first measures the dynamic exponent z by considering the
order-parameter moments starting from either random or
fully ordered initial states. It is found that in the present
model, when the fully ordered initial states are employed, the
time scale associated with the asymptotic scaling for which
the relaxation of the second moments of the order parameter
sets in seems to be much longer for higher q than that for the
disordered initial states and may exceed the present simula-
tion time window. As a result, the slopes obtained from the
second moments of the order parameter may differ. One thus
has to be very careful in obtaining the dynamic exponent z
from the time-dependent moments for the order parameter.
Once z is determined, the two independent exponents 
 and
� can be determined from the relaxation of the energy and
the order parameter, respectively.

The present work has demonstrated that, in the case of the
q=2 �Ising� model, this method can provide accurate esti-
mates for the static and dynamic exponents provided that, as
mentioned above, special care is taken in the choice of the
initial states for the estimation of the dynamic exponent z.
For example, the dynamic exponent zmixed obtained from the
relaxation of the second moment of the order parameter with
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disordered initial states is more consistent with the relaxation
of the order parameter and excess energy when exact values
of the static exponents are assumed. In the case of the q=3
Potts model, even though the static exponents obtained with
the same methods are less accurate than in the case of q=2,
they still show reasonable agreement with the exact known
values of the static exponents.

The fact that the dynamic exponent z does not appear in
the ratio of the power-law exponents of the order parameter
and energy may be used to clarify the nature of the phase
transition whose critical properties are under debate. An out-
standing example is the phase transition associated with the
chirality order in the FFXY models. The relaxations of the
order parameter and energy are expected to become slower
for frustrated systems. Hence the above ratio can be mea-
sured with higher accuracy. We therefore tend to believe that
once the critical temperature is accurately determined, the
critical relaxations of the order parameter and energy for the
chirality phase transition can tell whether the phase transition
belongs to the Ising universality class or to the three-state
Potts class, or else to an entirely different universality class.
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APPENDIX: CRITICAL RELAXATIONS OF MOMENTS
OF THE ORDER PARAMETER AND ENERGY

The critical relaxations of the order parameter and energy
and their higher moments can be obtained from the following
scaling behavior of the nonequilibrium generating function
��� ,h , t� which reduces to the equilibrium free energy den-
sity in the limit t→�:

���,h,t� = b−d�̃��byT,hbyh,tb−z� = t−d/z�̃��tyT/z,htyh/z,1� ,

�A1�

where b is the scaling factor, ���Tc−T� /Tc the reduced tem-
perature difference, and h the external �magnetic� field
coupled to the order parameter. The above result was first
derived by Suzuki �48�. In �A1�, yT and yh are the scaling
dimensions associated, respectively, with temperature and
external field, which are given by yT=1 /
 and yh=d−� /
.
The relaxation of the order parameter M�t� at Tc is obtained

by differentiating the generating function ��� ,h , t� with re-
spect to the magnetic field h:

M�t� = 
 ��

�h
�

�=h=0
 t�yh−d�/z = t−�/z
. �A2�

Likewise, the energy relaxation is obtained from the deriva-
tive of the generating function with respect to the reduced
temperature �:

�E�t� − Ec� = 
 ��

��
�

�=h=0
 t�yT−d�/z = t−�
d−1�/
z = t−�1−�/z
,

�A3�

where the hyperscaling relation 2−=
d was used in the last
equality. Equations �A2� and �A3� give the leading order part
of �4�.

The second-order moment of the order parameter is ac-
cordingly obtained by differentiating twice ��� ,h , t� with re-
spect to h:

���M�t��2� = �M2�t�� − M2�t� = 
 �2�

�h2�
�=h=0

 t�2yh−d�/z

= t�d−2�/
�/z. �A4�

Equation �A4� gives �11�.
Likewise, the second-order moment of the energy is given

by

���E�t��2� = 
 �2�

��2 �
�=h=0

 t�2yT−d�/z = t�2−
d�/z
 = t/z
.

�A5�

Equation �A5� gives the last member of �15�.
Finally, the cross moment of the order parameter and en-

ergy is given by

��M�t��E�t�� = 
 �2�

�� � h
�

�=h=0
 t�yT+yh−d�/z = t�1−��/z
.

�A6�

Dividing ��M�t��E�t�� by M�t� gives

��M�t��E�t��
M�t�

 t1/z
. �A7�

Equation �A7� yields the first member of �15�.
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