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We report numerical evidence of elastic turbulence phenomenology in a two-dimensional periodic Kolmog-
orov flow. By direct numerical simulations of the Oldroyd-B viscoelastic model at very small Reynolds
numbers, we find that above the elastic instability threshold the flow develops an elastic turbulent regime. We
observe that both the turbulent drag and the Lyapunov exponent increase with the Weissenberg number,
indicating the presence of a disordered, turbulentlike mixing flow. The energy spectrum develops a power-law
scaling range with an exponent close to the experimental and theoretical expectations.
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One of the most remarkable effects of highly viscous
polymer solutions that has been recently observed in experi-
ments is the development of an “elastic turbulence” regime
in the limit of strong elasticity �1�. The flow of polymer
solution in this regime displays irregularities typical of tur-
bulent flows �broad range of active scales and growth of flow
resistance� even at low velocity and high viscosity, i.e., in the
limit of vanishing Reynolds number. As a consequence of
turbulent motion at small scales, elastic turbulence has been
proposed as an efficient technique for mixing in very low
Reynolds flows, such as in microchannel flows �2–4�. De-
spite its great technological interest, elastic turbulence is still
only partially understood from a theoretical point of view.
Recent theoretical predictions are based on simplified ver-
sions of viscoelastic models and on the analogy with magne-
tohydrodynamics �MHD� equations �5,6�.

In this Rapid Communication, we investigate the phenom-
enology of elastic turbulence in direct numerical simulation
of polymer solutions in two-dimensional Kolmogorov shear
flow. Our main objective is to show that usual viscoelastic
models and very simplified geometry without boundaries are
able to capture, in the limit of vanishing Reynolds numbers,
the main phenomenology of elastic turbulence, i.e., irregular
temporal behavior and spatially disordered flow. Despite the
important geometrical differences, our numerical results are
in remarkable agreement with experimental observations of
elastic turbulence: this suggests the possibility of understand-
ing elastic turbulence on the basis of known viscoelastic
models.

To describe the dynamics of dilute polymer solutions, we
adopt the well known linear Oldroyd-B model �7�,

�tu + �u · ��u = − �p + ��u +
2��

�
� · � + f , �1�

�t� + �u · ��� = ��u�T · � + � · ��u� − 2
�� − 1�

�
, �2�

where u is the incompressible velocity field and the symmet-
ric positive definite matrix � represents the normalized con-

formation tensor of polymer molecules, and 1 is the unit
tensor. The solvent viscosity is denoted by �, and � is the
zero-shear contribution of polymers to the total solution vis-
cosity �t=��1+�� and is proportional to the polymer concen-
tration. In the absence of flow, u=0, polymers relax to the
equilibrium configuration and �=1. The trace tr � is there-
fore a measure of polymer elongation.

The simplest geometrical setup that will prove useful to
study the elastic turbulence regime for viscoelastic flows is
the periodic Kolmogorov flow in two dimensions �8�. With
the forcing f= (F cos�y /L� ,0), the system of equations �1�
and �2� has a laminar Kolmogorov fixed point given by

u = „U0 cos�y/L�,0… ,

� =�1 + �2 U0
2

2L2 sin2�y/L� − �
U0

2L
sin�y/L�

− �
U0

2L
sin�y/L� 1 � �3�

with F= ��U0�1+��� /L2 �9�. The laminar flow fixes a char-
acteristic scale L, velocity U0, and time T=L /U0. In terms of
these variables, we define the Reynolds number as Re=

U0L

�t

and the Weissenberg number as Wi=
�U0

L . The ratio of these
numbers defines the elasticity of the flow El=Wi /Re.

It is well known that the Kolmogorov flow displays insta-
bility with respect to large-scale perturbations, i.e., with
wavelength much larger than L. In the Newtonian case, the
instability arises at Rec=�2 �10�. At small Reynolds num-
bers, the presence of polymers can change the stability dia-
gram of laminar flows �11,12� or can induce elastic instabili-
ties that are not present in Newtonian fluids �9,13–15�, even
in the case of periodic flows �16�. In this respect, the Kol-
mogorov flow is no exception, and recent analytical and nu-
merical investigations have offered the complete instability
diagram in the Re-Wi plane �9�. For the purpose of the
present work, we just have to recall that linear stability
analysis shows that for sufficiently large values of elasticity,
the Kolmogorov flow displays purely elastic instabilities,
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even at vanishing Reynolds number �see Fig. 1 of �9��. We
remark that the fact that the basic flow has rectilinear stream-
lines does not exclude the onset of the elastic instability �17�.
Above the elastic instability, the flow can develop a disor-
dered secondary flow that persists in the limit of vanishing
Reynolds number and eventually leads to the elastic turbu-
lence regime �18�.

The equations of motion �1� and �2� are integrated by
means of a pseudospectral method implemented on a two-
dimensional grid of size L0=2� with periodic boundary con-
ditions at resolution up to 10242. Numerical integrations of
viscoelastic models are limited by Hadamard instabilities as-
sociated with the loss of positiveness of the conformation
tensor �19�. These instabilities are particularly important at
high elasticity and limit the possibility of investigating the
elastic turbulent regime by direct implementation of equa-
tions �1� and �2�. To overcome this problem, we have imple-
mented an algorithm based on a Cholesky decomposition of
the conformation matrix that ensures symmetry and positive
definiteness �20�. While this allows us to safely reach high
elasticity, it has a cost in terms of limited resolution and large
computing time.

One of the main features of the transition to a turbulent
regime is the growth of the flow resistance to external forc-
ing. This can be quantified as the power needed to maintain
a given mean velocity in the turbulent flow. The power in-
jection in Eq. �1� is P= �f ·u	, which, for the laminar flow �3�,
becomes Plam=U0

2��1+�� / �2L2�. A remarkable feature of the
Kolmogorov flow is that even in the turbulent regime, the
mean velocity and conformation tensor are accurately de-
scribed by sinusoidal profiles �21�: �ux	=U cos�y /L�,
��xy	=−� sin�y /L� with different amplitudes with respect to
the laminar fixed point. Therefore, the reduced average
power injection for the turbulent flow is simply

r =
P

Plam
=

FL2

��1 + ��U
. �4�

Figure 1 shows the behavior of the power injection as a

function of the Weissenberg number Wi=�U /L, which
shows a transition to a turbulentlike regime for Wi	15.

Because the Reynolds number in Fig. 1 is always small,
and therefore the inertial term in Eq. �1� is negligible, it is
natural to ask which is the source of turbulent fluctuations.
The momentum budget, in stationary conditions, reads

�y
r = �y�
� + 
p� + fx, �5�

where 
r= �uxuy	 is the usual Reynolds stress, 
�=��y�ux	 is
the viscous stress, and 
p=2���−1��xy	 is the stress induced
by polymers. The numerical observation that also the Rey-
nolds stress is well described by a monochromatic profile,
�uxuy	=U2 sin�y /L�, allows us to write the momentum bud-
get for the amplitudes as FL=U2+�U /L+ �2�� /���. The in-
set of Fig. 1 shows the different contributions �normalized
with the total stress� as a function of Wi. In the laminar
regime �Wi→0�, U2=0, and from Eq. �3� one has

p /
�=�. Above the transition to elastic turbulence, the
polymer stress starts growing and reaches a value larger than
viscous stress at the maximum Weissenberg number. The
contribution of the Reynolds stress always remains smaller
than 10−2, confirming the irrelevance of inertial terms. This
is the hallmark of elastic turbulence where elastic stress has
the role played by the Reynolds stress in purely hydrody-
namic turbulence.

In order to get more insight into the elastic turbulence
flow, in Fig. 2 we show two snapshots of the two-
dimensional vorticity field at two different Wi. The first
snapshot is taken at Wi=21.3, slightly above the elastic in-
stability threshold. The flow in this regime is still not turbu-
lent and a secondary flow in the form of thin filaments is
clearly observable. These small-scale filaments, moving
along the x direction, are elastic waves, reminiscent of the
Alfven waves propagating in the presence of a large-scale
magnetic field in plasma. Indeed, the possibility of observing
elastic waves in polymer solution was theoretically predicted
within a simplified uniaxial elastic model �6� that has strong
formal analogies with MHD equations, but they were never
observed before.

At higher values of elasticity, the vorticity pattern be-
comes progressively more irregular with chaotic motion of
filaments. At Wi=31, we observe a highly irregular pattern
in which the underlying basic flow is hardly distinguishable.
This is the regime of elastic turbulence in which the flow
develops active modes at all the scales. Figure 3 shows the
power spectrum of velocity fluctuations averaged over sev-
eral configurations such as the one shown in Fig. 2. A power-
law behavior E�k�
k−� is clearly observable with a spectral
exponent � larger than 3. Again, this is in agreement with
what was observed in laboratory experiments �1,22� and with
the theoretical predictions based on the uniaxial model �6�.

One of the most promising applications of elastic turbu-
lence is efficient mixing at very low Reynolds number . This
is an issue of paramount importance in many industrial prob-
lems, namely in microfluidic applications. Indeed, laboratory
experiments in curvilinear channels have demonstrated that
very viscous polymer solutions in the elastic turbulence re-
gime are very efficient for small-scale mixing �2�. Mixing
efficiency of polymer solutions has been studied in various
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FIG. 1. Mean power injection normalized with its laminar value
r= P / Plam as a function of Wi=�U /L for a set of simulations with
�=0.769, �=0.3, L=1 /4, and �=4. The elasticity is El=64 and the
maximum Reynolds number Re=Wi /El is Re=0.48. Inset: ampli-
tude of the Reynolds stress 
r ���, polymer stress 
p �+�, and
viscous stress 
� �*� nondimensionalized by the total stress ampli-
tude FL.
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setups, including microchannels �3� and two-dimensional
magnetically driven flows �4�. Because in the elastic turbu-
lent regime the flow is smooth �i.e., the energy spectrum is
steeper than k−3�, a suitable characterization of mixing is
given in terms of Lagrangian Lyapunov exponent 
 �23�.
This is defined as the mean rate of separation of two infini-
tesimally close particles transported by the flow and, in the
present case, is related to the polymer stretching rate �24�.

Figure 4 shows the behavior of the Lyapunov exponent
rescaled with the polymer relaxation time �=4 as a function
of Wi. We observe that, above the transition at Wi
10, 

grows and reaches a values �1 /� for Wi	31. Again, this
result is comparable with experimental results in a swirling
flow �25�, but here mixing is even more efficient as the
Lyapunov exponent at given Wi is larger than in the experi-
ment.

In the inset of Fig. 4, we plot the Cramer function G���,
which is defined from the probability density functions of
finite-time Lyapunov exponents Pt����exp�−tG���� �23�.
As is evident, by increasing Wi, not only does the degree of
mean chaoticity increase, but also the fluctuations become
larger. In particular, the distribution of � becomes asymmet-
ric with a larger relative probability of positive fluctuations.
It is remarkable that the same qualitative behavior is ob-
served in the case of high-Reynolds Newtonian turbulence,
where the distribution of Lyapunov fluctuations becomes
more asymmetric with increasing Re. This suggests that in
elastic turbulence, elasticity �i.e., Wi� plays a similar role to
nonlinearity �i.e., Re� in ordinary hydrodynamic turbulence.

Finally, we have investigated the dependence of polymer
statistics on the Weissenberg number. In Fig. 5, we show the
average squared polymer elongation �tr �	 integrated over
the flow volume and the amplitude of cross stress �. At small
Wi, these follow the laminar behavior, i.e., 2+Wi2 /4 and
Wi /2, respectively. At the onset of elastic turbulence, the
cross polymer stress � grows much faster than linearly in
Wi, as already shown in Fig. 1. Also the squared polymer
elongation in elastic turbulence grows slightly faster that its
laminar value and at large Wi the ratio �tr�	 /� appears to

FIG. 2. �Color online� Snapshot of vorticity field at Wi=21.3
�top� and Wi=31 �bottom�. The flow is forced with a Kolmogorov
forcing fx=F cos�y /L� with L= 1

4 . Black �white� corresponds to
negative �positive� vorticity.
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FIG. 3. Velocity fluctuation spectra at Wi=21.3 �squares� and
Wi=31 �circles�. The line represents the power-law behavior k−3.8.
In the inset, the compensated spectra are shown.
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FIG. 4. Lagrangian Lyapunov exponent rescaled with polymer
relaxation time � as a function of the Weissenberg number. Inset:
Cramer function for three different Weissenberg numbers: Wi
=18.4 �solid line�, Wi=24.2 �dashed line�, and Wi=31 �dotted line�.

TWO-DIMENSIONAL ELASTIC TURBULENCE PHYSICAL REVIEW E 77, 055306�R� �2008�

RAPID COMMUNICATIONS

055306-3



become constant. The probability density function of tr�
shows elongations up to 15 times the average elongation
with a distribution that, for strong elongations, becomes in-
dependent of Wi.

Summarizing, we have shown that elastic turbulence can
be successfully reproduced numerically with the aid of a
widely known viscoelastic model of polymer solutions �the
Oldroyd-B model� and a simple geometrical setup �the two-
dimensional Kolmogorov flow�. Most observed features have
a strong qualitative resemblance with experimental results.
Quantitative differences exist, however, and may be traced
back to the two-dimensional or to the boundaryless nature of
our toy flow, or both. In our opinion, this represents a moti-
vation for focusing our attention on statistical aspects rather
than fluid-mechanical ones �26�. The surprising result is pre-
cisely that, notwithstanding the blatant differences, most sta-
tistical features are very similar. Such findings indeed pave
the way for a theoretical understanding of elastic turbulence
based on extremely simplified fluid models.
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FIG. 5. Average polymer elongation �tr�	 �circles� and polymer
stress amplitude � �squares� as a function of Wi. Lines represent the
laminar behaviors 2+Wi2 /4 �continuous� and Wi /2 �dotted�. In the
inset, the probability density functions of tr� for Wi=18.4 �open
circles� and Wi=31 �filled circles� are shown.
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