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Dynamics, correlation scaling, and synchronization behavior in rings of delay-coupled oscillators
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We study the dynamics of unidirectionally delay-coupled nonlinear oscillators. Cascading them within a ring
of fixed total propagation delay, we demonstrate simple scaling behavior of correlation properties. In fact, the
correlation properties of a ring with N elements can be deduced from the autocorrelation of the single delayed
feedback system. Coupling a ring element to a chain of unidirectionally coupled identical oscillators, we
achieve complete synchronization between elements of chain and ring, evidencing generalized synchronization

among the other elements, even if uncorrelated.
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Coupled nonlinear oscillators are a paradigm in science.
The study of their collective dynamical behavior has proven
to be successful to describe and understand properties of
complex systems in general, including synchronization and
resonance phenomena [1-4]. In this paper, we focus on the
chaotic dynamics induced by coupling several dynamical el-
ements with a fixed time delay. Delayed coupling is of par-
ticular interest as it is common in nature and technology. It
was found that delayed coupling can induce both instabilities
and synchronization in, e.g., physiological and biological
systems [5] and in laser systems [6].

To understand the properties of complex networks of
delay-coupled oscillators, it is important to understand the
dynamics of basic building blocks such as rings and chains.
Rings of self-sustained chaotic oscillators have been studied
in the context of death by delay [7] and synchronization
[8,9]. Complementary, it has been recently shown that delay
and coupling induce complex chaotic behavior in otherwise
stable oscillators [6,10-13]. Our aim in this paper is to
understand the complex dynamics generated in a ring of uni-
directionally coupled oscillators that are stable when un-
coupled. Specifically, we address the possibility of explain-
ing this emergent dynamics of many elements in terms of a
few elements. To this end, we look for scaling laws of cor-
relation and spectral properties. We anticipate that the spec-
tral and synchronization properties of N elements can be un-
derstood and predicted by those of a single element subject
to self-feedback.

As depicted in Fig. 1(c), we consider a unidirectional ring
configuration consisting of an arbitrary number N of identi-
cal nonlinear oscillators (semiconductor lasers or Ikeda os-
cillators) evenly spaced with a coupling time delay 7/N. In
the special case of N=1 and N=2, the ring configuration is
reduced to an oscillator subject to delayed self-feedback and
two mutually delay-coupled identical oscillators, respec-
tively, as depicted in Figs. 1(a) and 1(b). Both semiconductor
lasers with delayed self-feedback [14] and mutually delay-
coupled lasers [6] have been widely studied. In the follow-
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ing, we address how the dynamics of these two systems com-
pares and how the complex dynamics emerges as N is further
increased. Finally, we will couple the chaotic output of the
ring to a chain of oscillators and demonstrate that identical
synchronization between elements of both systems can be
achieved.

For the first part of this study, we have chosen semicon-
ductor lasers (SLs) as nonlinear oscillators. SLs have proven
to be attractive for studying delay-coupled nonlinear oscilla-
tors. They can be well controlled and established models
exist. SLs subject to delayed feedback generate chaotic dy-
namics with intensity pulsations on subnanosecond time
scales [15]. Delays do not only occur generically by optical
feedback, they also occur when coupling SLs to each other
even for short propagation distances.

The model equations for the complex slowly varying en-
velope of the electric field and carrier number inside the
cavity describing a single mode SL with optical injection
from another SL in the ring are
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FIG. 1. (Color online) (a) Oscillator with delayed feedback. (b)
Two bidirectionally delay-coupled oscillators. (¢) A ring configura-
tion of N unidirectionally delay-coupled oscillators which can op-
tionally be coupled to a chain of oscillators.
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FIG. 2. Time traces (left panel), power spectra (middle panel), and normalized intensity autocorrelation functions (AC, right panel) of the
emission of one laser for different values of N. (a)-(c) correspond to a SL with delayed optical feedback, (d)-(f) to two bidirectionally
coupled SLs, (g)—(i) to 4 SLs in a ring configuration, and (j)—(I) to 100 SL in a ring configuration.

laser, k=40 ns™! is the coupling coefficient, and 7=1 ns is
the roundtrip time in the ring, =5 is the linewidth enhance-
ment factor, representing the major nonlinearity, g=1.5
X 1078 ps~! is the differential gain parameter, s=5X 1077 is
the gain saturation coefficient, 7,,=2 ps is the photon life-
time, 7,=2 ns is the carrier lifetime, and 7,=1.5X 10% is the
carrier number at transparency. We fix the pump current to
I1=1.51,,, where the lasers are stable without coupling, exhib-
iting a relaxation oscillation frequency of 4.2 GHz. For mod-
erate coupling strengths, they operate in the chaotic coher-
ence collapse regime. The indexing of the lasers is as defined
in Fig. 1, while to close the ring Ey=Ej.

As an example, we present in Fig. 2 numerical results for
one SL with delayed optical feedback (N=1), two bidirec-
tionally coupled SLs (N=2), N=4 and N=100. While the
time traces (left panel) show no apparent change in the dy-
namical behavior when the number of SLs is increased, the
power spectra (middle panel) and normalized intensity auto-
correlation functions (right panel) show evidence of clear
changes.

Figure 2(b) shows the power spectrum of one SL with
delayed optical feedback. Besides a broadband component
the spectrum exhibits discrete frequency peaks related to ex-
ternal cavity modes. Comparing the spectrum in Fig. 2(b)
with the power spectrum of bidirectionally coupled SLs de-
picted in Fig. 2(e), it is striking that the peaks become less
defined, while the broadband envelope appears unaffected. In
Fig. 2(h), we find that this trend continues for N=4, with
completely disappearing peaks for high values of N, as
shown in Fig. 2(k). The corresponding normalized intensity
autocorrelation functions (ACs) shed more light on this ap-
parent dampening of the compound cavity peaks. The AC for
N=1 in Fig. 2(c) exhibits, besides the peak around =0, sev-
eral echoes separated by about the total delay time 7. These
longer time correlations decrease when N increases. Also
note that the shape and amplitude of the peak around =0
does not appear to change when N is increased. In accor-
dance with the symmetry of the system, all elements in the
ring show identical power spectra and ACs regardless of the

fact that these elements can be uncorrelated among each
other. The relation between the AC and the power spectra is
given via the Wiener-Khintchine theorem. The underlying
spectral shape apparent in Fig. 2(k) is the Fourier transform
of the correlation peak around 7=0 present in the AC for a
ring of any N. For N sufficiently large and when the lasers
operate in the coherence collapse regime, the injected field
acts as a spontaneous emission noise source yielding the
broadband spectrum as the corresponding nonlinear response
of the SL [16].

To gain more insight into the AC properties, we now fo-
cus on the AC around 7=7. This region compares the corre-
lation between the emitted signal of a laser and the returned
signal to this element after it has traveled along the ring. The
correlation structure consists of a clearly defined peak and a
modulation around it. We have studied the dependence of the
peak height on the number of lasers. This is shown in Fig.
3(a) (dashed gray line and squares), where an almost expo-
nential decay is observed except for the change in slope
(kink) around N=35. The kink can be explained as follows.
When the light passes through one of the lasers a latency
time appears which slightly increases the total effective
roundtrip time in the ring. Since an integer number of relax-
ation oscillation periods shows locking to the roundtrip time,
when the latter increases the number of locked relaxation
oscillation periods can also increase leading to the kink. This
kink disappears when plotting the corresponding local
maxima of the envelope of the AC (AC,,,,) in Fig. 3(a) (in
black crosses). The scaling of the envelope is well described
by an exponential decay. A fit (in solid black line) yields a
scaling factor 8=0.4. The exponential scaling suggests that
the effect of the number of elements on the AC can be de-
scribed by a simple cascading of the effect of one nonlinear
element, meaning that the first AC peak for a ring of N ele-
ments is simply given by exp(—fB) times the AC for N—1
elements. Whether it is possible to associate the exponential
scaling to the Kolmogorov-Sinai entropy of the delay dy-
namics is the subject of future studies.

In the following, we compare the correlation properties as

055202-2



DYNAMICS, CORRELATION SCALING, AND ...

MEERRTIT

PR |

FIG. 3. AC peak (gray squares) and its envelope (black crosses)
around the delay time vs the number of elements in the ring for (a)
semiconductor lasers and (b) Ikeda oscillators. An exponential fit,
aexp[-B(N-1)], has been calculated of the envelope (solid black
lines). Black circles indicate the maximum of the envelope of the
AC peak at t=M 7 (t=MT) of one laser (Ikeda) with delayed feed-
back. The gray dashed lines are guides to the eyes.

shown in Fig. 2 for different N. We have analyzed the heights
of the correlation peaks and find that the peak around =27
in the case of one SL with delayed feedback [Fig. 2(c)] is
exactly reproduced around #=7 in the AC of two bidirection-
ally coupled lasers [Fig. 2(f)]. In both cases, the signals have
passed twice through a nonlinear element. Also, the peak
around =27 in Fig. 2(f) is reproduced in Fig. 2(i) at =7 and
can also be found in Fig. 2(c) at t=47. We have verified that
any correlation peak of one SL with delayed feedback at 7
=M is reproduced in the AC of a ring with N=M lasers at
t=7. In Fig. 3(a), we also show the Mth maxima of the
envelope of the AC peak of the delayed-feedback system
(black circles). We find that they perfectly coincide with the
maxima of the envelope of the AC peak at =7 of a ring with
N=M SLs (black crosses). In general, we find that the shape
and position of a correlation peak is defined by the number
of passes through a nonlinear element. In fact, we can ex-
actly reconstruct the AC of a ring of N elements by selecting
the corresponding peaks in the AC of one SL with delayed
feedback.

Our results indicate that cascading nonlinear elements in a
ring decreases the correlation properties of the output in a
predictable way, but does not change certain properties of the
chaotic dynamics. We assume that in accordance with the
conjecture of LeBerre the role of the delay accumulated in
the ring is to determine the maximum dimension of the cha-
otic attractor [17]. As the total delay in our system is not (or
only slightly) changed, the chaotic dynamics seems not to
change its dimension.

To verify whether these results have more general validity
and similarly hold for other types of nonlinear oscillator el-
ements, we have extended our calculations to Ikeda oscilla-
tors. We consider the following model equation:
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FIG. 4. Maximum value of the cross correlation (CC,,,) be-
tween the sender (SL N/2) and the transmitter (SL 0) (black
squares) and between the sender and receiver (SL N/2') (gray
circles) vs the number N. The solid black line is an exponential fit
using @ exp[—B(N-1)]. The gray line is a guide to the eyes.
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with ¢’ being a dimensionless time, 7 the round trip time of
the ring, # the coupling strength, and 6 the coupling phase.
We choose =5 and T=50. We find a similar reduction of
the peaks in the ACs and in the power spectra for a ring of N
Ikeda oscillators as for the case with SLs. Figure 3(b) shows
the envelope of the AC peak around 7' =T (black crosses).
The scaling follows an exponential decay with a scaling fac-
tor $=0.16. Again, we have compared the Mth peaks of the
delayed feedback AC with the AC peak at t=7 for a ring of N
Ikedas. In correspondence to the SL case, we find them to
perfectly coincide with each other when N=M, as depicted
in Fig. 3(b) (black circles and crosses). This indicates that the
observed exponential correlation scaling and the changes in
the spectra and AC might be a general property of delay-
coupled oscillators, at least if we are working in a regime
where the AC has decayed within one delay time and no
multistability of chaotic attractors exists.

We can still infer more from the dynamics of this complex
system. When N is an even number, the system under study
can also be understood as two dynamical elements (oscillator
0 and N/2) which are delay coupled to each other in a non-
linear way through an array of N/2-1 oscillators. When
computing the cross-correlation function of the elements O
and N/2, we find that it is strongly affected by the number of
nonlinear elements in between. We show in Fig. 4 (with
squares), the maximum value of the cross correlation (CC)
between laser 0 and N/2 as the number of elements in the
ring of SLs is increased. When the nonlinearity of the cou-
pling becomes stronger by increasing N, the CC decreases
exponentially with a scaling factor 8=0.2. For N> 10, the
two oscillators do not exhibit linear correlations within the
statistical accuracy of 1072, Furthermore, performing a mu-
tual information analysis we do not find indications of such
nonlinear correlations within the same statistical accuracy.

In the following, we extend the ring configuration by at-
taching a chain of N/2 oscillators to one of the ring elements
[dashed box in Fig. 1(c)]. One may notice that—by exploit-
ing the symmetry properties of this configuration—oscillator
1 and 1’, 2 and 2’ and N/2 and N/2' possess an identically
synchronized solution, respectively [11]. The cross correla-
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tion between the emitted signal of oscillator N/2 and the
signal emitted by oscillator N/2’ is found to be 1 for any N,
as shown in Fig. 4 (with circles), indicating that they identi-
cally synchronize. Thus, the synchronized solution is stable
as in Ref. [18]. This synchronization is mediated through the
coupling signal emitted by oscillator 0. The coupling signal
is uncorrelated to the two other signals, nevertheless they
share a similar power spectrum. The identical synchroniza-
tion of the elements N/2 and N/2' necessarily implies that
the coupling signal is generally synchronized to the original
one, although an explicit relation cannot be identified. Gen-
eralized synchronization means that a function H must exist
such that lim,_..H[x/(?),x;(t)]=0. Here, the relation is de-
fined by the cascade of nonlinear elements.

In conclusion, we have shown that the delay in a ring
configuration of dynamical elements induces chaotic dynam-
ics. When the number of elements is increased, we find that
the individual correlation and spectral properties of the ele-
ments lose the fingerprint of the round trip time in a predict-
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able way by demonstrating that the correlation properties of
a ring with any number of elements can be deduced from the
correlation of one single oscillator with delayed feedback,
where the autocorrelation decays exponentially. The dynam-
ics generated by the ring of many elements is particularly
suited as a chaotic carrier in chaos communication schemes,
because it offers both a broadband chaotic spectrum and the
possibility that the delay cannot be recovered from its spec-
tral and correlation properties. Finally, we have also shown
that we can identically synchronize this chaotic dynamics
through an uncorrelated mediating signal, promising interest-
ing options for encrypted information exchange [19,20].
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