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Actin filament networks enable the cytoskeleton to adjust to internal and external forcing. These dynamic
networks can adapt to changes by dynamically adjusting their cross-links. Here, we model actin filaments as
cross-linked elastic fibers of finite dimensions, with the cross-links being approximately 1 �m apart, and
employ a full three-dimensional model to study their elastic properties by computer simulations. The results
show compelling evidence that dense actin networks are characterized by �a� strain hardening without entropic
elasticity, �b� avalanches of cross-link slippage leading to strain softening in the case of breakable cross-links,
and �c� spontaneous formation of stress fibers in the case of dynamic cross-link formation and destruction.
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I. INTRODUCTION

Biological cells have an amazing capacity to change their
shape and to adjust to a variety of external conditions. The
dynamical structural organization associated with these pro-
cesses is believed to be facilitated by a meshlike structure
formed of protein filaments, active and passive cross-linkers,
and a chemical network that is able to control the amount of
cross-linking and filament lengths �1�. In cells, that dynami-
cal structure is the cytoskeleton. The fact that cellular re-
sponse is controlled by a meshlike structure with a dynamic
cross-link density makes it extraordinarily different from
conventional human-engineered elastic networks.

Actin filaments constitute one of the major components of
the cytoskeleton. From a mechanistic point of view, actin
networks stiffen and rigidify cells, thus helping them to resist
deformations. These networks exhibit complex physical
properties such as viscoelasticity �2–5�, and they also render
a variety of biological functions possible, including the ac-
tion of motor proteins and self-organization �6�. Cellular mo-
tion is largely related to the mechanical properties of the
cytoskeleton �1,7–9�, cell division involves changes in the
network cross-links, and cytoskeletal actin networks transmit
intra- and intercellular signals by their �visco�elastic re-
sponse �5,10�.

The above aspects have motivated a number of recent
experimental and theoretical studies on semiflexible poly-
mers and their networks �3,4,10–17�. Another class of mod-
els based on prestressed filaments has also been proposed
�18�. Perhaps surprisingly, quantitative understanding of the
elastic properties of actin networks is still in its infancy. Sig-
nificant deviations from predictions of single-filament-based
models �11�, which have been successful in modeling sys-
tems with low levels of cross-linking, have been observed in
experiments with moderately and highly cross-linked actin
networks �3,4�. This and the fact that nonlinear response of
cross-linked semiflexible filaments is nonuniversal and can
be tuned by many parameters �3�, necessitates a need for

modeling actin filament networks from different points of
view.

Nonlinearity and nonaffinity are incorporated into models
for two-dimensional cross-linked semiflexible polymer net-
works by using serial connection of springs between cross-
linking points to incorporate two stretching modes and a
bending mode, with three different moduli �19�. Here we
follow a different approach and use a full three-dimensional
model of cross-linked elastic beams to address two problems
inherent in actin networks: �1� their connectivity and their
dense nature, and �2� the dynamic nature of cytoskeleton
networks. In nature, the cross-linker itself is dynamic, with a
characteristic on-off time scale. This feature is not included
in the model described here. However, the density of cross-
links may change due to extra- and intracellular changes af-
fecting the connectivity and rheological properties �2,5� of
the network. We allow for this dynamical change of network
topology by incorporating a maximum and minimum value
of the cross-linker length, for breaking and making the cross-
links, respectively. Recently, Gardel et al. �16� showed how
changes in the density of cross-links and actin concentration
affect the elastic modulus of the system. Interestingly, they
also discussed the possibility of a new elastic regime where
no general mechanism for strain hardening can be
identified—they suggested that in that regime the properties
of the filaments control the behavior. As will be discussed
later, our findings render some support to this idea and they
provide a physical mechanism to rationalize strain hardening
for dense networks. Since the typical mesh size of the cy-
toskeletal network is about 100 nm �20�, it is reasonable to
consider segments of actin, having a typical persistence
length of about 15 �m, as stiff elastic rods �21�.

As for the dynamical nature of these networks, microrhe-
ology experiments indicate strong changes in the local struc-
ture of the cytoskeleton upon application of oscillatory shear
�22�. These structural changes may be due to the action of
motors as well as passive cross-linkers. Since changes in
geometry in response to an externally imposed strain are an
important feature of the cytoskeleton, it is crucial to account
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for these aspects. For example, it has been pointed out that
nonaffine network rearrangements can lead to strain stiffen-
ing in two-dimensional cross-linked actin networks �23�. It
has also been pointed out that action of motors can change
the tension on the fibers and hence contribute to an overall
increase in stiffness of the network. Such an increase in stiff-
ness has been observed in actin networks, permanently cross-
linked by biotin and neutravidin, in the presence of the mo-
lecular motors myosin and ATP �24�.

II. MODELS AND METHODS

Here, we introduce a full three-dimensional �3D� compu-
tational model which allows a systematic increase in com-
plexity to address the physical mechanisms behind the above
issues. Changes in geometry and the dynamic nature of the
networks are taken into account. The model consists of stiff
fibers randomly located and oriented in 3D with springs as
cross-links at locations where two fibers intersect. In our
model, we increase complexity in the following sequence.
�1� First we include only passive cross-links which are
formed at zero imposed strain and cannot break or move.
This is essentially similar to the model introduced by Onck
et al. �23�, but now with beams of finite size. �2� We then
make the cross-links, which are first formed at zero imposed
strain, “semipassive,” by allowing them to break when
strained beyond the maximum length. �3� In the next level of
complexity, the dynamic cross-links are able to break, when
strained beyond a limit, and form, if two fibers come close
enough to each other during straining �notice that these
cross-links do not have a rate for spontaneous detachment,
i.e., detachment is purely strain driven�. We will now de-
scribe these models in some detail.

The model is based on a full description of a 3D elastic
network, and describes the cytoskeleton in terms of ran-
domly placed filaments linked together at their crossing
points. All filaments are considered to be identical and
straight under zero loading conditions. Individual filaments
have a finite length and width. The fiber density � is defined
as the average number of filaments in a volume of size L3,
where L is the length of an individual filament. Boundary
conditions were chosen such that the y and z directions are
free, while the ends of the mesh are clamped in the x direc-
tion. Strain is applied in the x direction. The mass of each
fiber is discretized by a set of points �of mass m� at equal
distances along the fiber. Each pair of mass points, belonging
to different fibers and closer than some threshold ��l�, are
linked with a spring. That is how cross-links are defined. The
mesh obtained through this deposition process is taken as the
intial configuration.

A segment, bounded by two mass points, can be deformed
either by different translational motion of the end points of
the segment or by rotation of the end points. In constructing
the stiffness matrix K we use the Euler-Bernoulli beam
theory, which takes into account stretching, bending, trans-
verse deformation, and torsional deformation of the seg-
ments �25�. The aspect ratios of all actin segments are larger
that 30, in which case shear deformation can be neglected.
The stiffness matrix �K� of a single segment is of size 12

�12, where the columns correspond to the three transla-
tional and three rotational degrees of freedom for the two end
points of the segment �26�. The stiffness matrix for a seg-
ment in a different orientation is constructed by a similarity
transformation. To construct the full stiffness matrix for the
mesh, the individual K’s are expanded �with zeros� to in-
clude all the degrees of freedom of the entire mesh and
added together. The K matrix is given as

�
� 0 0 0 0 0 − � 0 0 0 0 0

0 � 0 0 0 � 0 − � 0 0 0 �

0 0 � 0 − � 0 0 0 − � 0 − � 0

0 0 0 	 0 0 0 0 0 − 	 0 0

0 0 − � 0 
 0 0 0 � 0 � 0

0 � 0 0 0 
 0 − � 0 0 0 �

− � 0 0 0 0 0 � 0 0 0 0 0

0 − � 0 0 0 − � 0 � 0 0 0 − �

0 0 − � 0 � 0 0 0 � 0 � 0

0 0 0 − 	 0 0 0 0 0 	 0 0

0 0 − � 0 � 0 0 0 � 0 
 0

0 � 0 0 0 � 0 − � 0 0 0 


� ,

where �= EA
Ls

, �= 12EI
Ls

3 , �= 6EI
Ls

2 , 	=
GIr

Ls
, 
= 4EI

Ls
, �= 2EI

Ls
, E is

Young’s modulus, A is the cross-sectional area, and Ls is the
length of the filament segment. I is the moment of inertia
with respect to a cross-sectional symmetry axis �assumed to
be similar in at least two directions�. Ir is the moment of
inertia with respect to the center point of the cross section. It
is given by Ir=�0

rdA�r�2, where r is the radius of the beam
and dA� is the differential cross-sectional area of an element.
The torsion modulus is given by GIr /L, where G=E /2�1
+�� is the shear modulus with � being the Poisson ratio. All
lengths are measured in units of L, the length of a filament
thus being L=1. The thickness of the filament was chosen to
be w=0.003, mass m=1�10−4, damping c=1�10−4, and
Young’s modulus E=6�103. These parameters also set the
time scale of the simulations.

Global strain is applied by moving the opposite bound-
aries in the x direction by 
�x, where �x is a function of
time t. The equation of motion for the deformation field of
the mesh is a discrete version of Newton’s equation of mo-
tion with dissipation,

Mr�̈ + Cr�̇ + Kr� = 0� . �1�

Here, the term for viscous damping, C, is a diagonal matrix
containing the damping coefficients, and M describes the
inertia of the links. The column vector r� contains the position
vectors of all mass points. Since the time derivaties of r�
remain small at all times, we use the diagonal �or so-called
lumped mass and damping matrices� instead of the consistent
mass and damping matrices with off-diagonal elements; see,
e.g., Refs. �27,28�. A fairly similar approach has been used
by Ziebert and Aranson �29�.
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As the mass points move in discrete time steps according
to Eq. �1�, the segments deform and the network geometry
changes. It is quite obvious that in a fiber-mesh material,
constructed of slender fibers with a lot of empty space in
between, the fibers with originally random orientation will
begin to align themselves in the stretching direction as strain
increses. This implies that the stiffness matrix evolves in
time. Changes in the stiffness matrix imply that K is also a
function of r� and hence the equation of motion becomes
nonlinear through the third term in Eq. �1�, which becomes
�0

t K(r��t�)r��t�dt.
While the rotation and translation of the individual actin

segments can be large, the elastic deformations remain small.
Therefore, and for simplicity, we do not include nonlinear
higher-order terms in the calculation of the elastic deforma-
tion forces. The “geometrical stiffness,” which refers to non-
linear elasticity of beams related to, e.g., buckling, is ac-
counted for by dividing each actin fiber into 10–20 segments,
each modeled by an Euler-Bernoulli beam.

To model cross-links that can break, we chose �l=0.06 as
the threshold value for the linking distance. The members of
each pair of mass points belonging to different filaments
which are closer than �l are linked with a spring of stiffness
Kl=2�10−1. The equilibrium lengths of these springs were
set to �l0=0.04, implying that cross-links must be stretched
by 50% to reach the breaking threshold of �l=0.06. In the
case of fully dynamic cross-links, as the mesh deforms, new
pairs of mass points come within �l and new links are
formed.

III. RESULTS

A. Passive cross-links

We first consider the simplest case, namely, the model
with passive cross-links only. Snapshots of the original un-
strained mesh and the mesh strained 100% are shown in Fig.
1�a� together with the elastic energy as function of strain
�Ee���� in Fig. 1�b�. Figure 1�b� reveals that mesh deforma-

tion is almost reversible. There is only a small hysteresis as a
result of the viscotic damping of the mesh �see Eq. �1��. The
second derivative of the elastic energy curve with respect to
strain gives the stiffness of the mesh as function of strain,
Ym���, and is shown in Fig. 1�c�. This figure reveals signifi-
cant strain hardening of the mesh, similar to that seen by
Onck et al. �23�.

To resolve the origin of the strain dependence of stiffness,
we determined the fraction fs of the total elastic energy as-
sociated with stretching of the filaments �as opposed to other
types of deformation like transverse deformation or bend-
ing�; that is, the fraction of the total deformation energy of
the fibers associated with the change in length of the seg-
ments �13,15,30,31�. This ratio, known as the affine measure,
is shown as function of strain in Fig. 1�d�. At small times,
i.e., at small strain, the energy is due to the initial pulling of
the links. At this stage fs is about 15%. As strain increases to
100%, fs increases to over 95%. When the mesh is com-
pressed back toward zero strain, fs vanishes. The stiffness for
elongation of the fibers is given as Ew2 / l, while the trans-
verse deformation stiffness is Ew4 / l3. For slender fibers �i.e.,
w / l�1� this means that an increase in fs will result in strain
hardening, as can be seen from Fig. 1�c�.

B. Semipassive cross-links: Rupture avalanches

Let us now use the same mesh as above and change the
cross-links to semipassive ones, i.e., they can break. Figure
2�a� shows snapshots of the system. As expected, for small
strains, the elastic energy as a function of strain is identical
to the previous case of passive cross-links �Fig. 1�b��. Once
strain is increased and the links begin to break, the energy
drops as is seen in Fig. 2�b�. Figure 2�a� shows that the mesh
ruptures close to the clamped boundaries. This indicates that
clamping causes a slight increase of stresses close to the
boundary.

Rupture of the individual links is strongly correlated. The
strain distribution ���� between ruptures is roughly a power
law with an exponential cutoff in the distribution for large ��

(a)

(b)

(c) (d)

FIG. 1. �Color online� �a� Snapshots of a
mesh with passive cross-links at zero �left� and
100% strain �right�. �b� Elastic energy �Ee� of the
fibers for the mesh in �a� as a function of strain �.
�c� Second numerical derivative of the curve in
�b� with respect to � �Young’s modulus of the
mesh, Ym� as function of strain �. �d� Fraction of
elastic energy of the fibers related to fiber stretch-
ing �as opposed to torsion, bending, etc.� �fs� as a
function of strain �. fs is approximately 0.15 at
t=0.0 and vanishes after a full strain cycle.
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�Fig. 2�c��. Qualitatively, this is similar to ruptures in models
for earthquakes and paper and slow fracture in brittle mate-
rials �32–36�.

Next, we study the distribution of elastic energy stored in
the cross-links. For small strains, i.e., before any rupture
events occur, the energy distribution is very broad. The dis-
tribution function is a power law with an exponent close to
unity �Fig. 2�d�� over several orders of magnitude. Such a
distribution is maximally broad as it is marginally normaliz-
able. That means that there is no well-defined average energy
for a contact but the energy is very broadly distributed �37�.
A cross-link fracture may trigger fractures of other cross-
links, thus causing small avalanches. All fractures are irre-
versible for semipassive cross-links with the stiffness vanish-
ing when the mesh is completely broken.

C. Dynamic cross-links

Finally, we look at the case of fully dynamic cross-links.
The starting mesh, at time t=0, is the same as used in the
case of passive and semi-passive cases, but the links can now
break and reform. At time t=0, only a fraction of the links
are connected. When the mesh is strained, the fibers align in
the direction of the strain and move close to each other. This
leads to an increase in the number of cross-links as new ones
can form when two segments come closer than �l to each
other. For dynamic links, this causes the fibers to spontane-
ously form bunches in the direction of straining, similar to
the mechanical-stretch-induced stress fiber organization in
the presence of the GTPase � �38,39�. This is shown in Fig.
3�a�.
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FIG. 3. �Color online� �a� Snapshots of a
mesh with dynamic cross-links at �=0.0, 0.5, 1.0,
0.7. The first three snapshots are prior to the
stress maximum while the last is after maximum
strain is reached. �b� Elastic energy �Ee� of the
fibers for the mesh in �a� as a function of strain �
�full line�. Dashed line: curve from Fig. 1�b� for
comparison. �c� Number of cross-links as a func-
tion of �. The curves on the top in �b� and �c� are
obtained during destraining.
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FIG. 2. �Color online� �a� Snapshots of a
mesh with semipassive cross-links at zero strain
�left� and 100% strain. �b� Elastic energy �Ee� of
the fibers in mesh in �a� as a function of strain.
Dotted line: curve from Fig. 1�b� for comparison.
�c� Length distribution of the strain increase in-
tervals between adjacent link fractures for semi-
passive links n����. �d� Elastic energy distribu-
tion of the links for small strain �i.e., before any
link fractures�, n�El�. The distribution functions
are approximately power laws with n�El��El

−1

with cutoffs at small and large strains. Three dis-
tributions are displayed: �=3�10−9, 7.5�10−8,
3�10−7. As � increases, the cutoffs move to
larger energies.
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The mesh with dynamic cross-links has the highest initial
stiffness of all three cases studied. The formation of stress on
fibers is to a large extent irreversible and the stiffness in-
creases in the same manner as for passive cross-links �Fig.
3�b��.

Figure 3�c� shows that the number of links increases from
about 3500 at zero strain to about 20 000 at maximum strain.
As can be further seen in Fig. 3�c�, the number of links
continues to increase during destraining and the fiber bundles
do not decompose. That means that the tension in the fiber
bundle does not vanish during destraining. This indicates that
the equilibrium configuration for the mesh with dynamic
cross-links is a maximally dense compact packing of the
fibers. Once formed, the elastic energy in the bundle is not
enough to break the links. Making the breaking thresholds of
the cross-links dependent on fiber tension would alter this
behavior. This issue will be addressed in a separate study.

IV. COMPARISON WITH EXPERIMENTS

To be more quantitative, we have compared our model
simulations against the experimental results of Lieleg et al.
�4�. In their experiment they had a solution of actin filaments
and actin-binding protein called fascin. In other words, fas-
cin is the cross-linker. Lieleg et al. showed that when the
cross-linker concentration increases above a critical value,
the actin filaments self-organize to form a homogeneous net-

work, i.e., they saw a transition from an entangled solution to
what they call “a cross-linked bundle phase”; the network
was reported to consist of actin bundles as its structural unit,
which is very similar to our observations as seen in Fig. 3�a�.

We measured the elastic energy of the network, which
corresponds to the measurement of the stiffness by Lieleg et
al., since those quantities scale similarly. The molar ratio of
cross-linkers in the experiment corresponds to the average
number of cross-links per fiber in our simulations.

Figure 4 shows the elastic energy at small strain as a
function of the average number of cross-links per fiber for
systems of 250 and 750 filaments �r corresponds to the molar
ratio R of fascin in Ref. �4��. Above the transition, the elastic
energy scales as Ee��r−rc�1.5 which is the same scaling as
found by Lieleg et al. �see Fig. 2 in Ref. �4��. The crossover
can be seen as a percolation threshold.

In Fig. 5, we plot stress-strain curves for three different
values of the average number of cross-links per fiber, r
=1.78, 2.86, and 5.05. Figure 5�a� shows that the initial slope
is higher for larger r, corresponding to larger stiffness. As
strain is increased, the cross-links start to break, which leads
to reduced stiffness and to the sawtooth patterns seen in the
figure. The cross-links start to break earlier, i.e., at a smaller
strain, for a larger value of r. Figure 5�b� shows the strain at
which the first cross-links break as r is varied. The line cor-
responds to r−1, which is exactly the same scaling as ob-
served by Lieleg et al.

V. CONCLUSIONS

To summarize, we have studied actin filament networks
using three hierarchical models of increasing complexity:
passive, semipassive, and a dynamic network which is able
to adjust its cross-links dynamically. The networks show in-
creasingly complicated behavior. We find strain hardening
without entropic elasticity, avalanches of cross-link slippage
leading to strong strain softening in the case of breakable
cross-links, and spontaneous formation of stress-carrying fi-
ber bundles in the case of dynamic cross-links. Support for
our findings is given by the experiments of Rosenblatt et al.
�40�, who found that in human airway smooth muscle the
ratio between dynamic and passive may control the nature of
stiffening. To make a direct connection to experiments, we
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compared our simulations to the results of Lieleg et al. �4�
and found excellent agreement. They also report bundle for-
mation, which is exactly what we see in our simulations with
dynamic cross-linkers.

We would also like to mention the experiments by
Chaudhuri et al. �41�, which indicate that filament properties,
cross-link density, and the dynamic nature of cross-links play
a crucial role in controlling network stiffness, as both strain
hardening and subsequent softening is observed in dendritic
actin networks. They also point out the possibility of buck-
ling as the mechanism behind softening. It is possible that
cross-link density controls the selection between different

softening mechanisms. We are currently addressing those is-
sues in detail.
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