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The statistical mechanics of a noninteracting polymer chain in the limit of a large number of monomers is
considered when the total angular momentum L is fixed. The radius of gyration for a ring polymer in this
situation is derived exactly in closed form by functional integration techniques. Even when L=0 the radius of
gyration differs from that of a random walk by a prefactor of order unity. The dependence on L is discussed
qualitatively and the large-L limit can be understood by physical arguments, which can also be extended to
self-avoiding chains.
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I. INTRODUCTION

The statistical properties of polymers have been the sub-
ject of intensive research for many decades �1�. However,
these efforts have been almost entirely confined to polymers
in liquids or solids, while in contrast their properties in a
vacuum have received little attention. Until recently there
were not clear physical realizations of such situations, but
recent developments have changed this as will now be dis-
cussed briefly. Mass spectrometry techniques have been de-
veloped using lasers that desorb whole proteins into a
vacuum where their mass can be determined by measuring
the time of flight �2�. It might be possible to probe molecules
such as DNA using optical tweezers in a manner similar to
what is done routinely in solution �3�, and use this to probe
in detail the polymer’s dynamics. In such a case, there may
prove to be applications in determining the structure of bio-
molecular complexes. For example, DNA often has mol-
ecules bound to it, such as regulatory proteins, that are not
easily observable. Probing DNA in a vacuum might prove to
be more efficacious than in a solution because of the impor-
tance of inertial effects that we will see play a much more
important role than in a solvent. Finally, in the search for
long hydrocarbon molecules in interstellar media �4�, such
systems are now of experimental interest. Short chains in this
situation have been modeled �4� in order to compare experi-
mental spectroscopic frequency data with theory in order to
determine the chain’s structure. It is therefore useful to ex-
tend this to model longer chains, for the same purpose.

The author �5� recently considered such systems theoreti-
cally and by means of computer simulation, and the purpose
of this paper is to present an exact derivation for the radius of
gyration of a polymer in a vacuum with conserved angular
momentum. The solution requires periodic boundary condi-
tions for the chain, which means we are considering a ring
polymer �ring DNA being a potential experimental example�.
The qualitative features found persist for linear chains as
well, as has been confirmed by computer simulations �5�.

In reality, angular momentum conservation is weakly bro-
ken by interaction with thermal electromagnetic radiation �5�
but it is still important to understand the case of conservation
laws properly in order to understand these more complicated
effects. Also intrachain interactions are not considered; in
other words, this is the case of an “ideal” chain �1�. In stan-
dard treatments of statistical mechanics, angular momentum
conservation is mostly ignored as it is thought to have no

effect on the results obtained, for a large number of degrees
of freedom. Therefore what we will find is at first sight rather
surprising, that a polymer chain with conserved total energy
E, total linear momentum ptot=0, and total angular momen-
tum L has a radius of gyration that depends strongly on L, so
that even when L=0 the radius of gyration differs signifi-
cantly from that of an ideal chain without this restriction.
The somewhat counterintuitive nature of this effect makes it
worthwhile to prove it for an exactly solvable model, which
is the main point of this work.

We will show in Sec. II that the microcanonical formula-
tion of this problem, with all conservation laws enforced, can
be expressed in a canonical ensemble in the limit of large N,
after which it can be converted to a functional integral. This
can then be evaluated to obtain the radius of gyration as a
function of angular momentum L. We will analyze in Sec.
II A how this can be understood more physically in the limit
of large total angular momentum, and use this method to
derive the scaling behavior of a ring with excluded volume
interactions. In Sec. II B, we analyze the relation between the
temperature and total energy. In Sec. II C we calculate the
distribution of angular momentum in equilibrium. In the
derivation, we used a quadratic potential between neighbor-
ing monomers. In Sec. II D we show how the results found
should be universally true for a large class of models with
nonquadratic potentials. Finally, in Sec. III, we conclude
with a discussion of the importance of ergodicity in the dy-
namics and a brief comparison with numerical results.

II. DERIVATION OF MAIN RESULTS

The statistical mechanics of a classical system of N par-
ticles interacting via a general potential �, and with con-
served total energy, momentum, and angular momentum, has
been considered previously by Laliena �6�. He has shown
that the conservation of linear momentum does not affect
answers obtained in the microcanonical ensemble with con-
servation of angular momentum enforced �7�. So we will
write down the volume of phase space with L and energy E
kept constant,

W�E,L,N� = C� ��E − K − ����3��L − �
i

ri � pi�
���3��rc.m.��	

i=1

N

d3rid
3pi� �1�
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where the coordinates are 
ri� and momenta are 
pi�. C is a
constant that involves N and � and is of no consequence for
the purposes here. K is the kinetic energy �ipi

2 /2m, with m
the mass of each monomer, and here we are taking them all
to be equal. The center of mass rc.m. also must be conserved
and is set to 0. We use the Fourier representation of the �
functions to write this as

W�E,L,N� � �
C

d� e�E� e−��K+����3��L − �
i

ri � pi�
���3��rc.m.��	

i=1

N

d3rid
3pi� . �2�

As shown by Lax �8�, for most purposes, as discussed below,
the contour of integration can be deformed in the complex �
plane using the method of steepest descents. The three con-
ditions are �a� that a saddle point exists, �b� that an observ-
able not be of order exp�const�N�, and �c� that there be no
singularity in the observable in the neighborhood of the
saddle point. Conditions �b� and �c� are first obtained through
the canonical ensemble and then tested to see if they are
satisfied. Condition �a�, that a saddle point exists, is satisfied
because we can find a relationship between the energy and
the temperature. In the case of an athermal system, say of
rigid links, this would just be that E�1 /�, where � is the
value of � at the saddle point. Condition �b� is satisfied for
the quantity of interest here, the average radius of gyration.
Condition �c� is also satisfied because we will see that the
average radius of gyration is a smooth function of the tem-
perature for finite T=1 /�. Thus we can drop the integration
over � and replace � by the inverse temperature �, and con-
sider the partition function Z instead of the phase space vol-
ume integral �which is simply related to the entropy�:

Z��,L,N� �� d3k� eik·Le−��K+��exp�− ik · �
i

ri � pi�
���3��rc.m.��	

i=1

N

d3rid
3pi� . �3�

Integrating over the pi’s we obtain

Z��,L,N� �� d3k eik·L� e−1/2�k·I·ke−��	
i=1

N

d3ri

�� d3k eik·L	��,k� . �4�

Here I is the moment of inertia tensor for the particles,

I
� = m�
i=1

N

�ri
�ri

v�
� − ri

ri

�� , �5�

where 
 and � label the coordinates �1,2,3�, and the Einstein
summation convention has been used for �. In the last equal-
ity of Eq. �4� we have introduced the function 	�� ,k�. Note
that this cannot depend on the direction of k but only on its
magnitude, if � involves only isotropic central potentials.

Therefore we can take k to be along the z axis, k=kẑ, and
write

	��,k� =� exp�− mk2/2��
i

�xi
2 + yi

2� − ���
���3��rc.m.�	

i=1

N

d3ri. �6�

Because the dependence of 	 on k is only radial, we can also
perform the k angular integrals in Eq. �4�, rewriting the k
integration in spherical coordinates and obtaining

Z��,L,N� =
c

L
�

0




k sin�kL�	��,k�dk �7�

where c is a constant that plays no role in the subsequent
analysis.

It should be noted that, although the above derivation now
involves no explicit energy conservation, this is still math-
ematically equivalent, in the limit of large N, to the initial
formulation at fixed energy, momentum, and angular mo-
mentum. We will return to this point later in Sec. II B, when
we discuss the dependence of temperature on the angular
momentum, and in the discussion, Sec. III.

The potential is taken to be that of an ideal Gaussian
chain with step length l and a ring topology,

��0 =
3

2l2��
i=1

N−1


ri+1 − ri
2 + 
rN − r1
2� . �8�

We expect by the central limit theorem that many models of
polymer chains will all give the same results for most quan-
tities of interest, if the overall radius of gyration is �N. We
will establish this in more detail in Sec. II D.

In order to calculate the radius of gyration, one can add an
additional potential with a parameter �,

�� = ��0 + �l�
i=1

N


ri
2, �9�

so that the average radius of gyration can be written as

Rg
2 =� 1

N
�
i=1

N


ri
2� = �− 1

Nl

�lnZ

��
�

�=0

. �10�

The integration in Eq. �6� is Gaussian and we can now take
the usual limit to turn this into a functional integral,

	��,k� =� exp�− �
0

M �Tmk2

2l
+ ���x2�s� + y2�s� + �z2

+
3

2l

ṙ
2ds����3��rc.m.��r�s� . �11�

The functional integrations in the x, y, and z directions de-
couple and the x and y functional integrals are identical.
Each one of these three integrals is of the form of the parti-
tion function of a one-dimensional quantum harmonic oscil-
lator at finite temperature except for the restriction on the
center of mass. If we consider the Euclidean time action for
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a quantum harmonic oscillator of mass M at inverse tem-
perature �0,

S = �
0

�0 M

2
�ẋ2 + �0

2x2�dt , �12�

then the partition function

Z0 =� e−S�x�t� �
1

2 sinh��0�0/2�
�13�

with periodic boundary conditions on the paths x�0�=x��0�.
This is true because of the general formula relating the par-
tition function to the Euclidean path integral over times rang-
ing from 0 to the inverse temperature �9�. The partition func-
tion Eq. �13� can also be derived in a less elegant but more
direct manner by writing all paths in terms of a Fourier ex-
pansion, which then decouples the integrals, and forms an
infinite product over all modes. This latter approach is useful
in the present application because we have the additional

restriction on the path integral that the zero mode should not
be integrated over as a consequence of the restriction on the
center of mass. Using the Fourier decomposition approach,
we can easily incorporate this restriction, by not including
the zero mode in the product. This amounts to multiplying
Eq. �13� by �0

Rescaling variables so that the angular momentum L�
�L�12 / �Nl�mT� and using Eq. �10� gives

Rg
2

Nl2 =
1

36

�
0




„k�− 6 + k2 + 6k coth�k��csch�k�2sin�kL��…dk

�
0




k3 csch�k�2sin�kL��dk

.

�14�

Both the numerator and denominator can be computed in
closed form using contour integration. This gives the final
result

Rg
2

Nl2 =
2L��3 + �2� + L���2 − 6�cosh�L��� + 3�L�2 − 1�� sinh�L���

36��2L�� + L�� cosh�L��� − 3 sinh�L����
. �15�

A plot of this equation is displayed in Fig. 1.
For L�=0 this reduces to Rg

2 / �Nl2�= �1+15 /�2� /36
�0.07. For a ring without angular momentum conservation,
Rg

2 / �Nl2�= �1 /12��0.083, which means that the restriction to
L=0 causes the rings to be smaller relative to the case where
the angular momentum can take on any value.

A. Large-L limit

1. Ideal chains

In the opposite limit of large L�, Rg
2 / �Nl2�→L� / �12��.

Note that in terms of L, Rg
2→Ll / ���12Tm� independent of

chain length N. To understand this behavior, we consider

high-L configurations, where we expect that a typical con-
figuration of the ring will be close to a circle rotating rapidly.
The approximate free energy contains a kinetic energy and
an elastic term

F =
L2

2I
+

k

2
C2, �16�

where C=2�R is the circumference, and k is the entropic
elastic spring coefficient k=3T / �Nl2�. The moment of inertia
is approximately I=mNR2. Minimizing F with respect to R2

gives the above result. It is not surprising that this result is
exact because in the large-L limit we expect that this circular
configuration will become dominant.

2. Excluded volume interactions for large L

The fact that in this limit we obtain the exact asymptotic
dependence for Rg on L suggests that this can be extended to
chains with excluded volume satisfying Rg�N�, with �
�3 /5 in three dimensions. In this case the elastic free energy
is known �1� up to a prefactor from the entropy

S � � R

N��1/1−�

, �17�

and using this in the equation for the free energy, Eq. �16�,
and then minimizing with respect to R gives

R � L2�1−��/3−2�N2�−1/3−2�. �18�

0
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0.2

0 1 2 3 4 5

R
g2 /N

l2

L’

FIG. 1. Radius of gyration versus rescaled angular momentum
for an ideal ring chain.
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B. Lack of dependence of T on L

The temperature in this model at a given energy is deter-
mined in the usual way, by requiring that the average energy
in the canonical ensemble is equal to the microcanonical
energy. However, in this case, the radius of gyration is a very
sensitive function of L. To see this, note that changes occur
on a scale L��1, or L�Nl�mT. Because I is typically
��Nm�Rg

2��Nm��Nl2��N2l2m then L�Nl�mT. The order
of L2 /2I is therefore �T. This means that a change of order
one degree of freedom changes Rg

2 / �Nl2� by a number of
order unity, which has a negligible effect on the temperature
but a large effect on the radius of gyration. So for fixed L�, as
N→
, we see that in the canonical ensemble, the effect of
the angular momentum constraint on the energy is a fraction
of order 1 /N. This means that when the limit N→
 is taken
with L� fixed, the relation between the temperature and en-
ergy can be obtained as it would be for a polymer without
angular momentum conservation, and thus will not have any
dependence on L�. This is also seen more rigorously by com-
puting the exact dependence of the partition function on L�,
which is done below in Sec. II C.

C. Thermal distribution of L

It is useful to calculate the probability density for finding
the polymer with a particular value of total �rescaled� angular
momentum L�. This should be important in the case where
there is a dilute gas of such polymers. It is also important for
a single chain for long times, since the angular momentum is

changed by the weak coupling to electromagnetic blackbody
radiation �5�. In this case the probability density function
P�L�� is proportional to the partition function Z�� ,L� ,N�.
The normalization requirement is that

�
0




P�L��4�L�2dL� = 1. �19�

The normalization is straightforward to calculate using Eq.
�7� and integrating over L� first. The L� integration requires
evaluating

�
0




L� sin�kL��dL� = − �
0


 d cos�kL��
dk

dL� = − ����k� ,

�20�

and, using this, the integral over k is now easily accom-
plished:

�
0




Z��,L�,N�4�L�2dL = c�� �„k	��,k�…
�k

�
k=0

. �21�

Z was evaluated previously in the process of calculating the
radius of gyration and is proportional to

�
0




k3 csch�k�2sin�kL��dk/L�. �22�

Evaluating this integral and including the correct normaliza-
tion using Eq. �21� yields

P�L�� =
�3 csch�L��/2�4�2L�� + L�� cosh�L��� − 3 sinh�L����

16L��2 . �23�

ln�P�L��� versus L� is plotted in Fig. 2. Because of the non-
constant value of the moment of inertia for the chain, this
distribution is decidedly non-Gaussian. In the large-L� limit,
the slope of this curve approaches a constant with a slope of
−�. This is in agreement with the minimization argument for
large L� given under Eq. �16�.

D. Universality of results for ideal chains

We now return to a more detailed analysis of the question
of the universality of these results. In particular, the exact
results were derived for a Gaussian ideal chain. In general,
the links coupling monomers together will not be quadratic
but some more general functional form V��� that can be
expanded in a power series in �. We know that, without the
constraint of angular momentum conservation, the large-
distance properties, such as the radius of gyration, are well
described by a Gaussian ideal chain. However, we should
analyze whether this continues to be the case with the addi-
tional constraints imposed here. Consider a continuous chain
r�s�. We can ask what happens if we add higher-order terms
in the expansion of the potential:

�0 =
3

2l
�

0

Nl �� dr

ds
�2

+ �
n=3




an� dr

ds
�n�ds , �24�

where an are determined by the coefficients of the expansion
of V. Rescaling variables so that s�=s / �Nl� and �=r /�Nl2,

-14

-12

-10

-8

-6

-4

-2

0

0 1 2 3 4 5

ln
(P

(L
’))

L’

FIG. 2. Probability density function for finding a chain in ther-
mal equilibrium with rescaled angular momentum L� for an ideal
ring chain.
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�0 =
3

2
�

0

1 �� d�

ds�
�2

+ �
n=3




anN1−n/2� d�

ds�
�n�ds�. �25�

In Eq. �11� of the above analysis, we can generalize �0 to
include these an’s and then can take the limit N→
 but with
Nl2 held constant and with rescaled angular momentum L�
�Ll held constant. Then all the above terms in the summa-
tion go to zero and we recover the Gaussian form for �0 that
we used in the derivation. Therefore we expect the results
Eqs. �15� and �23� to hold for a wide variety of local cou-
plings between monomers. This was confirmed by computer
simulations, as discussed below.

As usual with such arguments, the value of the Kuhn step
length l has not been determined. This argument only shows
that such a step length exists. The actual value of it will
depend on the detailed molecular structure, as is the case for
polymers in solution �1�.

III. DISCUSSION

It is of interest to compare the extreme sensitivity of a
polymer to restrictions in angular momentum with what
would be expected for other kinds of systems. The system
considered here is essentially one dimensional in that inter-
actions are only from nearest neighbor monomers. In, for
example, a membrane or a three-dimensional gel, the system
is of higher dimension. In such two- or three-dimensional
systems, a perturbation that changes the free energy by
O�kBT� is expected to affect averages by only microscopic
amounts. However, for polymers, it has a much larger effect.
For example, a force pulling the ends of a polymer costing
kBT of energy will increase its radius of gyration by a mul-
tiplicative constant of order unity. Because a polymer chain
with the restriction L=0 reduces the number of degrees of
freedom by at least one, it should affect the free energy by
O�kBT�. So, by the above argument, this is expected to make
nontrivial changes to its statistics, unlike in higher-

dimensional systems. So even for the case L=0 the noninter-
acting polymer is no longer described correctly as an uncor-
related random walk.

Where this derivation will fail is in cases where the sys-
tem cannot be adequately described by the microcanonical
ensemble, or equivalently, when the system is not ergodic.
For sufficiently nonlinear interactions between neighboring
monomers and large N, ergodicity is expected to occur for
most three-dimensional systems, and experimentally all sys-
tems appear to be ergodic enough to obey statistical mechan-
ics. However, for one-dimensional chains with nonlinear in-
teractions, such as studied by Fermi, Pasta, and Ulam �10�,
such equilibration can be quite slow and depends in detail on
the initial modes that have been excited �11�. Computer
simulations for polymer molecules have recently been per-
formed to look at Lyapunov exponents, and these can be very
small for systems close to a phase transition, such as the
coil-globule transition �12�. More strongly nonlinear ather-
mal models such as the Sinai-Chernov pen case model �13�
and the random collision model �14�, do not suffer from
these equilibration effects. Therefore, to investigate the equi-
librium properties discussed in this work, simulations of a
highly nonlinear athermal polymer model have been recently
undertaken �5�. The model used was one of rigid links with a
fixed distance between monomers. The links could rotate
freely aside from this constraint. The simulation obeyed con-
servation of energy, momentum, and angular momentum to
high precision. It gave the same radius of gyration for L=0
as predicted by this theoretical analysis, confirming the va-
lidity of the ergodic hypothesis for this case, and the subse-
quent theoretical analysis of Sec. II. In this case Rg

2 / �Nl2�
was found to be 0.071, which is the same as the exact result
mentioned above, �0.07, to within statistical error.
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