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Nematic elastomers: From a microscopic model to macroscopic elasticity theory

Xiangjun Xing,1 Stephan Pfahl,” Swagatam Mukhopadhyay,3 Paul M. Goldbart,” and Annette Zippeliuss‘6
lPhysics Department, Syracuse University, Syracuse, New York 13244, USA
2Institute for Atmospheric Physics, University of Mainz, Becherweg 21, 55099 Mainz, Germany
3Deparz‘ment of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
4Deparz‘ment of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, USA
SInstitute for Theoretical Physics, University of Gottingen, Friedrich-Hund-Platz 1, 37077 Gottingen, Germany
Max Planck Institute for Dynamics and Self Organization, Bunsenstrasse 10, 37073 Gottingen, Germany
(Received 19 November 2007; published 8 May 2008)

A Landau theory is constructed for the gelation transition in cross-linked polymer systems possessing
spontaneous nematic ordering, based on symmetry principles and the concept of an order parameter for the
amorphous solid state. This theory is substantiated with help of a simple microscopic model of cross-linked
dimers. Minimization of the Landau free energy in the presence of nematic order yields the neoclassical theory
of the elasticity of nematic elastomers and, in the isotropic limit, the classical theory of isotropic elasticity.
These phenomenological theories of elasticity are thereby derived from a microscopic model, and it is further-
more demonstrated that they are universal mean-field descriptions of the elasticity for all chemical gels and

vulcanized media.
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I. INTRODUCTION

The classical theory of rubber elasticity [1] has been re-
markably successful in describing the behavior of elasto-
meric systems in which there is no long-ranged nematic or-
der. A blend of phenomenology and molecular-level
reasoning, it is based on a few simple assumptions and bears
great predictive and descriptive power. It models rubbery
materials (i.e., elastomers) as incompressible networks of en-
tropic Gaussian polymer chains and, further, assumes that the
cross-links (i.e., the junctions of the polymer network) are
fixed in space (for any given macroscopic deformation) but
nevertheless deform affinely under macroscopic deforma-
tion. The classical theory gives their elastic free-energy den-

sity f as

f= gTrATA, (1.1)
for a spatially uniform deformation r— A -r that conserves
the volume (i.e., obeys det A=1). For most rubbery materi-
als the assumption of volume conservation (i.e., incompress-
ibility) is well satisfied. The shear modulus w is given by
nkgT, where T is the temperature and kp is Boltzmann’s
constant. (Henceforth, we choose units in which kg7 is
unity.) The parameter n, is usually referred to as “the density
of effective chains in the network.” The classical theory [i.e.,
Eq. (1.1) and the associated arguments supporting it] ex-
plains many essential features of rubbery materials, such as
their stress-strain curves (at least for deformations that are
not too large), and the striking temperature dependence of
their shear moduli, as well as their strain-induced birefrin-
gence (i.e., the stress-optical effect).

There are several important issues left unresolved by the
classical theory. First, for a given cross-link density, “the
effective chain density,” is not calculated within the theory. A
correct theoretical understanding of this issue is an important
mission of the percolation-vulcanization theory [2-4]. Sec-
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ond, in the intermediate range of strains there is a universal
and significant downward deviation of the experimental
stress-strain curve, compared with the theoretical prediction
of the classical theory. This deviation has traditionally been
attributed to entanglement effects [5—7]. However, it has re-
cently been pointed out [8] that the classical theory has an
important internal inconsistency, in that it ignores the en-
tropy associated with thermal fluctuations of the positions of
the cross-linkers. It was further shown [8] that the entropy
associated with these fluctuations is comparable to the en-
tropy of polymer chains that is included by the classical
theory, and that this entropy depends sensitively on the mac-
roscopic deformation. The inclusion of this missing entropy
leads to a qualitatively and quantitatively better fit to the
stress-strain relation. Entanglement effects are known to play
an important role in the dynamical properties of polymer
solutions and melts. Nevertheless, we believe that their im-
portance (or relevance) to the static properties of rubbery
materials needs to be critically reexamined. A resolution of
this issue may be achieved via the comparison of materials
possessing various levels of entanglement.

Recently, an elegant anisotropic generalization of the clas-
sical model [9,10], known as the neoclassical model, was
constructed to describe the highly unusual elasticity of nem-
atically ordered elastomers, i.e., rubbery materials having
(spontaneously) broken rotational symmetry, and has done so
with considerable success. According to the neoclassical
model, in the presence of nematic order the elastic free en-
ergy of a nematic elastomer under a volume-conserving de-
formation A is given by

f= gTr LATT'A, (1.2)

where 1, and 1 are the (in general, anisotropic) step-length
tensors in the initial (i.e., A=I) and the deformed (i.e., A
#1) states that characterize the conformations of the poly-
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mer chains. The step-length tensors 1, and 1 have the sym-
metry of the nematic order parameters, viz. Q¥ in the initial
state and Q in the deformed state, respectively. A remarkable
feature of Eq. (1.2) is that in the nematic phase, for which 1,
and 1 are both anisotropic and differ only by a rotation, there
exists a continuous manifold of deformations that cost zero
elastic free energy [11-14]. This so-called soft elasticity has
not been observed in experiment [15,16]. Several explana-
tions have been invoked to account for the discrepancy be-
tween the predictions of the neoclassical theory and the ex-
perimental findings. Nematic elastomers usually condense
into a multidomain structure, unless an external field is ap-
plied, thus introducing an external anisotropy, in particular, if
the sample is cross-linked in the stretched state [17]. Alter-
natively, approximations of the neoclassical theory, e.g., the
assumption of affine deformations, could be responsible for
the observed “nonsoft” elasticity. The effects of thermal and
quenched fluctuations on the soft modes of the neoclassical
theory are the focus of intensive study [14,18,19]. For recent
reviews, see Refs. [9,10,14,20,21].

In a classic paper, Deam and Edward [2] initiated a fully
statistical-mechanical approach to the study of rubber elas-
ticity that incorporates both thermal fluctuations and
quenched disorder along with repulsive interactions. This
replica-based approach has been explored in detail [3] and
has been applied to a variety of microscopic models. The
long-length-scale physics was shown to be universal, apply-
ing to gels as well as vulcanized matter. Consequently, the
associated Landau theory [22] provides the natural frame-
work for a discussion of the long-length-scale physics of
elastomers, especially in the vicinity of the gelation-
vulcanization critical point.

The aim of the present work is to establish the connection
between the statistical-mechanical approach and the neoclas-
sical elasticity of nematic elastomers at the level of mean-
field theory. As we shall work at the level of coarse-grained
effective field-theory descriptions, with the original polymer
degrees of freedom having been completely integrated out,
the issue of entanglement does not concern us. For the sake
of simplicity, our focus will be on incompressible systems,
although our approach can readily be extended to allow for
compressibility. We begin our task in Sec. II by generalizing
the Landau theory for the gelation-vulcanization transition to
allow for systems that have spontaneous nematic order. Our
construction makes use only of the transformation properties
of the order parameters for random solidification and nem-
atic ordering, and the symmetry properties of the free energy,
and hence should apply completely generally to nematic
elastomers. In Sec. III we study the statistical mechanics of a
microscopic model of cross-linked dimers coupled via
Maier-Saupe interactions, and use it to derive the Landau
theory discussed in Sec. II. We return to the Landau theory in
Sec. IV to show that the neoclassical theory of the elasticity
of nematic elastomers, Eq. (1.2), emerges via the stationary
point of the Landau free energy. As one would expect, we
recover the classical theory of rubber elasticity, Eq. (1.1), in
the limit of isotropic states.

II. LANDAU THEORY OF NEMATIC ELASTOMERS

We begin with the real-space version of the order param-
eter field () for the replica field theory of vulcanization [4]
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in d dimensions, which is a function of the (1+n)-fold rep-
licated d vectors )?::(XO, ,x"). Its expectation value is

given by
a\\ 0 n a _L
Q) =(Qx", ... . x")) = %(E (X" = €/))14n AT
(2.1)

Here, c“ (with =0,1,...,n) are the 1+n replicas of the
posmon d vectors of the N particles (mdexed by j
=1,...,N) that comprise the system. Of these, c describes
the posmon of the jth particle rlght before cross- hnkmg (i.e.,
in the preparation state), and {c ”} (n-fold repllcated)
describes its positions in a state after cross-linking (i.e.,
the measurement state). Vj, is the volume of the system in the
preparation state, and V is its volume in the measurement
state (which may in principle differ from V). The angle
brackets (--),,, denote an average over the replicated posi-
tions of the monomers cj‘?‘. One can readily see that the first
term in Eq. (2.1) gives the joint probability density that a
particle is found at x° at the time of cross-linking and that the
same particle is later found at {x', ... ,x"}, respectively, in n
independent measurements performed at widely separated
times after cross-linking [23], averaged over the N particles
constituting the system. In the liquid state, all particles are
delocalized, and therefore this joint probability density is in-
dependent of the positions {x°,x!,...,x"}, and is simply
given by the constant N/ V,V". The order parameter therefore
vanishes in the liquid state. In the gel state, however, a non-
zero fraction of the particles belong to the infinite cluster and
are localized: Their positions after cross-linking are now
strongly correlated with their positions right before cross-
linking. As we shall discuss in much more detail in Sec. IV,
this correlation, as well as the fraction of particles that have
gelled, is captured by the nonvanishing value exhibited by
the order parameter, Eq. (2.1), in the gel phase.

The order-parameter expectation value in the one-replica
sector is given by

Q@) 11 axP= E(ﬁ(x

B(#a)

op”(x%) = (Q%(x) =

N

- c;()>l+n - %

(2.2)

for a=0,...,n, where V*=(V,,V,...,V). Defined this way,
it is clear that §p°(x") is the density fluctuation in the prepa-
ration ensemble, i.e., in the liquid state, whereas Sp“(x®) (for
a=1,...,n) are the density fluctuations in the measurement
ensemble, i.e., after cross-linking. In the following, we shall
treat the component of the order parameter () that lies in the
one-replica sector (i.e., 6p®) explicitly, so that ) now has
components only in the higher-replica sector.

The Landau free energy for vulcanization and/or gelation
for isotropic systems is given by
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n

K K
FQ]= J a7 T2V + 53 (V07 + 207 - 20
2 250 27 3

B B n
+3° f dx05p0(xo)2+52 f dx®Sp*(x*)?, (2.3)
a=1

where V¢= g/ 9x* (for «=0, ...,n). The parameter r triggers
the transition to the solid state when it becomes negative
(i.e., when the density of cross-links exceeds some critical
value). B, and K, are, respectively, the inverse susceptibility
for density fluctuations and the chain stretchability, both in
the preparation ensemble, and B and K are the corresponding
quantities in the measurement ensemble [4]. A larger value of
K (or K,) corresponds to floppier polymer chains that are
easier to stretch.

In the original version of this Landau theory for vulcani-
zation and/or gelation [22], the one-replica-sector (i.e., den-
sity) fluctuations Sp“(x®) were simply excluded, which cor-
responds to the incompressible limit By=B=, i.e., the
repulsive interactions were taken to be infinitely strong, so
that the particle density could not fluctuate at all. To avoid
unnecessary complications our focus here will similarly be
on incompressible systems although, as mentioned above,
our approach can readily be extended to allow for compress-
ibility. Furthermore, it was originally assumed that the pa-
rameters K, and K are equal to one another. However, it
should be noted that neither K, and K, nor B, and B, need to
be identical, as they describe systems at two potentially dif-
fering states, one right before the cross-linking and the other
after the cross-linking.

We note that the order-parameter field (%), Eq. (2.1), of
this Landau theory is a single-particle quantity (albeit repli-
cated). The original polymer degrees of freedom are inte-
grated out in deriving the Landau theory, and consequently
the issue of topological entanglement becomes irrelevant in
this theory. The inclusion of entanglement effects in the
original theory would simply lead to a quantitative modifi-
cation of the parameters in the Landau theory, Eq. (2.3), not
an invalidation of the theory itself.

A variety of rubbery solids in which there are mesogenic
chemical groups can display nematic order [10], which is
characterized by a symmetric, traceless order-parameter field
0={0,}, irrespectively of the underlying microscopic con-
stitution of the system. The simplest way to incorporate the
possibility of nematic ordering into our Landau theory is to
couple the gel order-parameter field () to replicas of the sym-

metric traceless tensor fields, i.e., Q%x% (with «
=0,1,...,n). Of these fields, Q0 describes nematic order in
the preparation ensemble, whereas the Q (for a=1,...,n)

describe nematic order in the (n-fold replicated) measure-
ment ensemble. The resulting free energy must be invariant
under the simultaneous rotation of Q% and the spatial posi-
tion vectors x“ independently for each replica a. The
lowest-order coupling between () and a uniform nematic
order-parameter field allowed by symmetry is
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Fyy= f dﬁ(%ggbvgnvgsn %72 Qg,,vmvgn),
a=1
(2.4)

where V; indicates a derivative with respect to the ath Car-
tesian component of the ath replicated position vector. The
signs of the coupling constants 7, and 7 depend on details of
the chemical structure of the nematic entities under consid-
eration. An example will be given in the next section, where
we compute the coupling constants for a particular model:
Cross-linked dimers. As is well known, the gradient term in
the Landau free energy for a magnetic system reflects the
underlying coupling between spatially proximate spins. In
the setting of vulcanized systems the gradient term reflects
the coupling between constituents due to crosslinks, medi-
ated by spatially extended, stretchable entities such as poly-
mer chains. Nematic order confers anisotropy on this cou-
pling, as manifested by the anisotropy acquired by the
effective step-length tensor that we shall see in Sec. IV.
Other terms are allowed by symmetry as well, such as

f dE Q) (VEVE0S)(VEVEOR), (2.5a)

f diQ(%)’VeViQY,, (2.5b)
which are of the same (or lower) order in ) as those kept in
Eq. (2.4). However, these terms vanish for conditions of uni-
form nematic order, and therefore they can be ignored in our
discussion of macroscopic elasticity at the mean-field level.
Even restricting ourselves to uniform nematic order, there
will be additional terms of higher order in Q in Eq. (2.4). We
ignore these terms here, even though the magnitude of the
nematic order parameter is not necessarily small. However,
our main results will not be affected by these terms. In par-
ticular, the symmetry of the step-length tensor is captured
correctly, and only its magnitude will be affected by these
higher order terms.
The total free energy

FIQ,0]=F[Q]+ F\LQ]+ FyQ.0]

also contains a part, F, that depends only on the replicated
nematic order parameter {0°,0',...,0" and accounts for
the interactions between neighboring (anisotropic) particles
that favor nematic order. In the next section, we shall give Fyy
explicitly (3.8) for a particular microscopic model—cross-
linked dimers.

The above Landau free energy is completely general, as it
is based on symmetry and length-scale arguments. However,
it is useful to substantiate it with help of a microscopic
model. This will be done in the following section, in which
we consider the simplest model of a nematic elastomer: A
system of cross-linked dimers. As we shall see, the micro-
scopic model gives rise to precisely the above free energy,
with the additional benefit of yielding explicit expressions of
the expansion coefficients in terms of the parameters of the
microscopic model. After rederiving the Landau theory, in

(2.6)
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FIG. 1. (Color online) Model of dimers cross-linked by har-
monic springs.

Sec. IV we work out its implications for the elasticity of
nematic elastomers. Thereby, we derive the previously phe-
nomenological neoclassical theory from a microscopic
model.

III. MICROSOPIC MODEL

A simple microscopic model for a nematic elastomer con-
sists of N rigid dimers that interact with one another via a
Maier-Saupe type of interaction. Dimer j consists of two
particles having d-dimensional position vectors ¢;; and ¢; .
The relative separation of the two particles is fixed to be [,
and the orientation of the dimer is specified by the unit vec-
tor

njz_c.L_c.&' (31)
|cj,l_cj,2|

Parallel or antiparallel alignment of the dimers is energeti-
cally favored, as described by the following interaction po-
tential:

Hpem = EJ,,[(n n)>-d'l.

tJl

(3.2)

Here, J; ; specifies the strength and range of the interaction.

The system of N dimers is cross-linked via Hookean
springs (see Fig. 1). We randomly choose M pairs of par-
ticles C={i,,s,;j,t.}",, with the first (i,) and third (j,) in-
dices indicating which dimers (1, ...,N) are linked by cross-
link e (=1,...,M) and the second (s,) and fourth (z,) indices
indicating which of the particles (1 or 2) in the dimers are
connected by the cross-links. Each cross-linked pair is con-
nected via a Hookean spring of typical extent b,

¢, P (3.3)

xlmk 2b22 |C, WS,

All particles are taken to repel one another at short distances,
as described by the excluded-volume interaction
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N
Hy=2S 3 deu-cy). (3.4

ij=1 st=12

We shall focus on the situation in which the excluded-
volume parameter \ is very large, so that the density fluctua-
tions are fully suppressed. The total Hamiltonian is thus
given by H=H, ., +H i+ H.,, and we aim to address the
randomly constrained partition function

N
Z(C) =J [1de; e T1 &ej 1 —¢jol = 1) (3.5)
i,s j=1

associated with the configuration C of quenched disorder
(i.e., the random cross-linking).

The above model is able to account for both the gelation
transition, which is controlled by the number of cross-links
M, and the nematic ordering transition, which is controlled
by the strength of the Maier-Saupe coupling J; ; relative to
the temperature. (Recall that we are using units in which
kgT=1.) As these parameters can be varied independently,
the system shows a rich phase diagram exhibiting nematic
and isotropic sol and gel phases [24]. Here, we concentrate
on a nematic gel phase in order to investigate the elasticity of
the anisotropic gel.

The distribution of quenched disorder is taken to be of the
Deam-Edwards type:

P(C) « (3.6)

2 M
L) e,
2N (2mD7)

and the average of the logarithm of the partition function is
achieved with the help of replicas (see the appendixes for
details). The resulting free energy per dimer, f=F/N, can be
decomposed into three terms: One accounting for the gela-
tion transition, one for the nematic ordering, and a coupling
term,

AQ,0]=fv[Q]+ fy[Q]+ fun [Q.0]. (3.7)
The first of these terms is given via Eq. (2.3) but with par-
ticular values for the parameters r=1-u?, v=1/6, and K,
=K =(élz+b2)/ 2. Moreover, since we are considering incom-
pressible systems all terms in the free energy associated with
density fluctuations are suppressed.

The nematic free energy fy has the standard form [25].
We assume that the interaction J; ;=J(¢;~¢;) depends only on
the distance between the dimer centers of mass ¢;=(c;;
+¢;,)/2. The corresponding Fourier-transformed function
J(Kk) is expected to be monotonically decreasing, giving rise
to spatially uniform nematic order at sufficiently low tem-
peratures. We denote by Jy=J%k=0) the maximum cou-
pling constant, and we allow for the possibility that the
cross-linking and measurements of the anisotropic elasticity
are done at different temperatures. Mathematically, this is
achieved by allowing the possibility of there being two dis-
tinct coupling constants, one for replica =0 (i.e., for the
preparation ensemble) and one for replicas a=1,2,...,n
(i.e., for the measurement ensemble).
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0.00 "

-0.05 |

FIG. 2. (Color online) Nematic free energy as a function of Q
for various values of the coupling constant associated with the
Maier-Saupe interaction. The transition point is denoted by Jg,
whereas Ji indicates the limit of local stability of the isotropic
phase.

In this paper, we treat the nematic order within mean-field
theory only, and make the following Ansatz for the order
parameter of a uniform, uniaxial nematic state: Qg ,(k=0)
=Q*n,n,—d'6,,). When substituted into the free energy,
this yields a first-order transition, as expected. The nematic
part of the free energy fy decomposes into a sum over un-
coupled replicas: fy=2"_.fy, with

Ja 1
= goQ“(Q“ +1) = In( f dy exp(J§0%?)).

0

(3.8)

The above free energy is shown in Fig. 2. It displays a dis-
continuous transition from an isotropic to a nematic phase at
‘ . :
0=6.812, at which the order parameter jumps from zero to
the nonzero value 0=0.429.
The terms in the free energy that couple the nematic and
gel order parameters are, to lowest order, given by

n

N J d5(S) 70 (VAQ)(VEQ) + S gFOAVEVEQS,)
a=0 a=0

+ 2 gyPUVIVIOL)(VEVEOR)). (3.9)

a,B=0

The coupling constants are determined by the strength of the
Maier-Saupe interaction Jg, the cross-link concentration ,uz,
and the length of the rods /,

7"~ gt~ JoPut and  g5F ~ JIGI .

(Their precise values are given in the appendix.) The first
term in Eq. (3.9) is precisely of the form given in Eq. (2.4).
The second and third terms involve spatial derivatives of the
nematic order parameter V,V,0,,, and these vanish in the
saddle-point approximation. Hence, in the mean-field ap-
proximation, if we assume Q¢ to be constant in space, the
microscopic model yields the Landau free energy given in
Sec. II.
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IV. ISOTROPIC AND ANISOTROPIC RUBBER
ELASTICITY

We shall only consider the case of uniform nematic order-
ing deep in the nematic phase, and hence we may neglect the
feedback of the () ordering on the nematic order. We there-
fore assume {Q°,0,...,0} to be constants, characterizing
the uniform nematic order in the preparation and measure-
ment states, respectively. Additionally, it will be understood
that By and B have values that are positive and very large,
consistent with the assumption that the system is incom-
pressible. This appropriately guarantees that the saddle-point
value of ) vanishes in the one-replica sector. Accordingly,
we require that Vy=V. By varying the total free energy over
the vulcanization-gelation order parameter (), we arrive at
the saddle-point equation

— — — U =

Koo VOV + KD 1, VeVEQ = rQ - 592, (4.1)
a=1

in which summations over repeated Cartesian indices are, as

usual, implied. The tensors 1, and 1 in this formula are short-
hand for

0 _ 0 0
lab = 5ub + EOQab

and lab = 5ab + EQab' (42)
K

As we shall see below, they are in fact the (dimensionless)
effective step-length tensors of the initial and deformed
states that appear in the neoclassical elastic free energy, Eq.
(1.2).

The saddle-point equation (4.1) should be solved under
the constraint of the vanishing of () in the one-replica sector.
Let us first consider the following simple Ansatz [26]:

(5 — p(7) 70 -1 0
Q(x)—qjdz dmeXp —2(y Iy -y

! 1
+ 2yl -y“)} o (- (4.3a)
a=1 VO
y=x"-z, y*=x%-gz,
N(®) = (/D)2 (det 1) V*(det )2, (4.3b)

where the d-dimensional vector z is integrated over the vol-
ume of the (preparation) system V. Evidently, if both the
preparation state and the measurement state are isotropic
(i.e., 0°=0=0 and l,=1=I), the above saddle-point Ansatz
reduces to the form appropriate to isotropic gelled systems
[3], with p(7) being the distribution of inverse square local-
ization lengths. The interpretation of the saddle point (4.3) is
as follows. A certain fraction ¢ of the particles belong to the
infinite cluster (i.e., the gel fraction) and are localized in
space. In the preparation ensemble (i.e., replica 0) each lo-
calized particle fluctuates around the point z subject to the
Gaussian variance matrix T_llo, and in the measurement en-
semble (i.e., replicas 1 to n) fluctuates around the same point
z but with variance matrix 77 'l. The state described by this
saddle point corresponds to a nematic elastomer that has not
been subjected to an elastic deformation. From Egs. (4.2) it
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o=

FIG. 3. A macroscopic uniform deformation, imposed after
cross-linking, changes affinely the average positions of particles in
the measurement state (i.e., the measurement replicas a=1,...,n),
with respect to their positions in the preparation state (i.e., prepara-
tion replica @=0).

is straightforward to see that the role of a nonvanishing nem-
atic order is to confer spatial anisotropy on the position fluc-
tuations of the localized particles. Finally, a continuous dis-
tribution p(7) of (inverse square) localization scales 7 reflects
the fact that in a typical realization of quenched disorder, the
localization length fluctuates from place to place in the
sample, i.e., elastomers are spatially heterogeneous.

In the gel phase (i.e., r<<0), we find that the Ansatz Eq.
(4.3) does indeed solve Eq. (4.1), provided that

q=2r| (4.4a)

and that p(7) satisfies the following integro-differential equa-
tion:

7_2 T
Sp'(7)= (L—' - r)pm 3 L—' fo p(7)p(r=7)d7".

U
(4.4b)

Equations (4.4a) and (4.4b) are identical to those found for
the isotropic case [3], up to trivial rescaling of parameters.

We now come to the main point of the present paper:
Obtaining the elastic free energy of performing uniform,
volume-preserving deformations of isotropic and nematic
random solids. To do this, we shall impose a volume preserv-
ing, but otherwise arbitrary, homogeneous deformation of the
boundary of the system after cross-linking, which is charac-
terized by the deformation gradient tensor A (the determi-
nant of which is unity). We proceed by hypothesizing the
following geometrical modification [27] of the original
saddle-point solution (4.3):

0_ o=
y¥=x%-z — {X g (@=0), (4.5)

x*-A-z (a#0).

By substituting this modified Ansatz into Eq. (4.1), we find
that it is indeed a solution, provided ¢ and p(7) are, respec-
tively, given by Egs. (4.4a) and (4.4b) (in the limit n—0).

We now argue that this new saddle point, 0, [given by
Eq. (4.3) with the replacement Eq. (4.5)] describes a uni-
formly deformed nematic elastomer: In the preparation rep-
lica a localized particle continues to exhibit Gaussian fluc-
tuations around the position z, with an unchanged variance
matrix T“lo; however, in the measurement replicas it fluctu-
ates around the new position A-z (i.e., the deformation of
the old position) but in a manner controlled by the same
variance matrix 71 as in the undeformed state. Hence, the
average positions of the particle before and after cross-
linking are related to one another by the linear transforma-
tion A, as illustrated in Fig. 3. This is precisely a macro-
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scopic uniform deformation. Also, it now becomes clear that
even though the average positions of particles are deformed
by A, the fluctuations around the average positions are inde-
pendent of deformation [29]. This result is, however, an ar-
tifact of our mean-field approximation, and is not expected to
hold for a real heterogeneous amorphous solid, in which
there are order-parameter fluctuations.

We now calculate the elastic free-energy density of nem-
atic elastomers f,;(A) at the mean-field level. To do this, we
insert the deformed saddle point (4.3), modified according to
Egs. (4.5), into the total free-energy density (2.6), and sub-
tract the value corresponding to the undeformed (i.e., A=I
and Q°=Q) saddle point. Then, dividing appropriately by nV
(recall that there are n replicas of the measurement en-
semble) and taking the replica limit (i.e., n—0), we find the
elastic free-energy density of an incompressible nematic
elastomer,

1 _ _
Fu(A) = lim—(F[Q,] - FIQ) = ETri,AT A - £4,
nV 2 2

n—0

(4.6a)

where

4K (4.6b)

M=3Kv2'

Equation (4.6a) coincides with the free-energy density of the
neoclassical theory of nematic elastomers, Eq. (1.2), up to a
trivial additive constant. If Q°=Q=0 then, by Egs. (4.2), we
have 1y=1=I, and our result trivially reduces to the classical
theory of isotropic rubber elasticity, Eq. (1.1). Finally, the
scaling of the shear modulus as |r|* is a mean-field result
which has been derived via other methods [28,30]. We em-
phasize that Eqs. (4.6a) are derived from the Landau theory
of gelation, generalized to include nematic ordering. This
Landau theory provides the effective field theory for the
long-length-scale physics of gelation. Consequently, it is in-
dependent of short-distance details, and thus provides a uni-
versal mean-field description for the elasticity of all forms of
vulcanized matter near the vulcanization point, provided that
the corresponding transition is described by the Landau
theory. This observation explains, in part, the tremendous
success of the classical theory of rubber elasticity, Eq. (1.1),
and its anisotropic generalization, the neoclassical theory,
Eq. (1.2).

V. CONCLUSIONS AND OUTLOOK

We have extended the Landau theory for isotropic elas-
tomers to the setting of nematic ordering, focusing on incom-
pressible systems. Symmetry and length-scale principles dic-
tate the coupling between the order parameters for
amorphous solidification and for nematic ordering. The neo-
classical theory of nematic elastomers was thus shown to be
derivable from the saddle-point approximation of the result-
ing Landau theory. Our approach can readily be extended to
allow for compressibility.

In addition, a simple microscopic model of nematic elas-
tomers was introduced. In it, rigid dimers with a Maier-
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Saupe interaction are randomly cross-linked, giving rise to a
gel phase exhibiting nematic ordering. This microscopic
model was shown to reproduce the Landau theory, general-
ized to nonuniform nematic ordering. Thereby, the macro-
scopic elasticity of nematic elastomers is connected to a mi-
croscopic, statistical-mechanical model.

What is perhaps most valuable about our approach is that
it provides a platform for the systematic study of quenched
spatial fluctuations in various forms of vulcanized matter.
Until recently, there has been very little quantitative or phe-
nomenological modeling of fluctuations such as these [31],
although a heuristic discussion can be found in Ref. [32]. As
a first step in this direction, we have analyzed the fluctua-
tions of the elastic constants and the random residual stress
for isotropic elastomers [33]. In the context of nematic elas-
tomers it is of particular interest to understand whether or not
the well-known soft mode of nematic elastomers [11-14]
survives in the presence of nonaffine deformations. More
generally, the interplay of nematic distortions and internal as
well as externally applied stresses is of great interest. The
present work constitutes a starting point for such studies.
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APPENDIX A: AVERAGING OVER CROSS-LINK
CONFIGURATIONS USING REPLICAS

In this appendix we present elements of our analysis of
the microscopic model. The first step is to eliminate the
quenched disorder, so as to obtain the disorder average, de-
noted by F, of the free energy. This is achieved with the help
of replicas,

- F=[In Z,,(C)] = lim n~Y{[Z,,(C)"] - 1}. (A1)
n—0

Here, [---] denotes the disorder average, i.e., the average
over all cross-link configurations, weighted by the Deam-
Edwards distribution (3.6). As this distribution is propor-
tional to the randomly constrained partition function itself,
we can write [Zy,(C)"]=2Z,,,/ Z,. The disorder average can
be worked out explicitly, by analogy with the case of flexible
chains [3] or hard rods, and yields

Hy

”)2/2172) _
n+l

E 2 e Z—O :Xr

i,j=1 s,t=1
The thermal average, denoted by (- --), is taken with the Bolt-
zmann weight exp(-H,), where Hy=H.+H,,, is the
Hamiltonian of the uncross-linked melt. The subscript n+ 1
refers to the (n+1)-fold replication of the system. The nor-
malization of the disorder distribution is given by Z;
=lim,_y Z,,1, so that the disorder-averaged free energy fol-
lows from
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Z., -2
— F=lim— =1
n—0 N2

(A2)

APPENDIX B: DECOUPLING AND COLLECTIVE
FIELDS

The next step in the analysis is the decoupling of the
different (replicated) dimers in the Maier-Saupe interaction,
as well as in the interactions arising from cross-linking. To
decouple the interactions due to cross-linking, we note that
the exponent in Z,,; can be written as a quadratic form

2N,LL2 H,
Z, = exp(72 Mzé|P12|2> (B1)
k n+l

by introducing the n+ 1-fold replicated density

=33 i,

llsl

(B2)

The sum over replicated wave vectors 2; runs over all vec-
tors k with kZE %Z for u=1,...,d and a=0,...,n. The
coefficient uy is simply the Fourier transform of the cross-
link constraint. For harmonic springs it is explicitly given by

n
Py 2712 7212
up= H J dxe—tk -xe—\x\ 12 _ (2’7Tb2)d(n+l)/2€_k b /2,
=

where the limit V— R? has been taken.
The sum over replicated wave vectors 2; in Eq. (B1), is

decomposed into the O-replica sector (k=0), the one- rephca

sector [k nonzero in only one replica, i.e., k
=(0,...,k,...,0)=ké"], and the higher-replica sector, ab-
breviated as HRS. The O-replica sector is trivial because pg
=2N and does not fluctuate. The one-replica sector of the
collective coordinate,

(B3)

accounts for fluctuations in the density. The excluded-
volume interaction is quadratic in the density, i.e.,

2}1
ezwwa{=—22vm@

(B4)
a=0 k

and can be combined with the one-replica sector of Eq. (B1)
to obtain the following representation of the partition func-
tion:

n nem
N DN+ N@? X uzzlpé|2> :

Zn+l -~ exp( -
a=0 k KEHRS

n+l

Here, El'( denotes a sum over all k’s, excluding k=0. The
average is taken with respect to the Boltzmann weight exp(
~H,en), and 7>=4u*/ V" and

N = ANNYV = BPitya.
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The last step is to rewrite the Maier-Saupe interaction as a
quadratic form by introducing the nematic order parameter,
which is a symmetric, traceless tensor,

N

0= g - a8, (BS)
Nici

Here, we denote by ¢;=(c;;+¢;,)/2 the center of mass of

dimer i and assume that the interaction J;; in Eq. (3.2) de-

pends only on the distance between the centers of mass of

the two interacting dimers,

a V (43 a (23
J —;/J (¢f'~cf).

= (B6)
With these definitions the orientational interaction can be
represented as a quadratic form,

exp(— > Hzem) = exp(%VE > J”(k)l%(k)lz),
a=0 a=0 k

with J*(k) being the Fourier transform of J“(c?—c;‘), and
summation convention being adopted for repeated Cartesian
indices.

It is now straightforward to decouple the different (repli-
cated) dimers by suitable Hubbard-Stratonovich transforma-
tions, by introducing collective fields for the density €}, the
gel order parameter (), and the nematic order parameter
05,(k). [When introducing the collective fields, care must be
taken of the symmetries of the collective fields, Q_,;EQZ,
Q% =(Q))", and Qy,(-k)= 04, (k)*, which require us to
constrain the fields to half-spaces. However, in the resulting
expressions the fields can be continued to the full space of
arguments.] The partition function Z,,; is then represented
as a functional integral over these collective fields,

Zyn ~ J DODQ exp[— Nf i {4 O, 0 (K)}], (B7)

with a Landau-Wilson free energy per dimer f,,; given by

n

~2
a Ha M Aoy ~ 1 IANCiTe Yo
fn+1{QIE,Qk,Qgh(k)} = ? 2 ”k|Qk|2 + 52 E )\k|Qk|2

KEHRS a=0 k
1 n
+5 2 27|05, )P
a=0 k

2
~In exp( @Y upQp >, e

KEHRS s=1

n 2
+iY, 2N, ek
s=1

a=0 k

+ 2 2 1K) Qg (K)e "
a=0 k
dim

X (niny —d™! 5a,b)> (BS)

n+l
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The average (--)%™=(4m?V)™! [deide,&e;—cy|—1) -+ re-
fers to a single dimer of fixed length /.

APPENDIX C: LANDAU-WILSON FREE ENERGY

We only consider phases that exhibit macroscopic trans-
lational invariance. Mathematically, this can be achieved by
requiring the excluded-volume interaction to be sufficiently
strong that it overcomes the effective attractive interaction
due to cross-linking,

N = 4NNV = @Pitga > 0,

which ensures stability with respect to macroscopically inho-
mogeneous states. In fact, to simplify the presentation we
shall go further than this by considering systems that are not
just stable with respect to macroscopic inhomogeneity but,
rather, are strictly incompressible, so that macroscopic den-
sity fluctuations are completely suppressed. This is accom-
plished by taking the excluded-volume parameter \ to be
very large. Our reason for doing this is that we are concen-
trating on the coupling terms between the nematic and gel
order parameters, and hence we want to keep the analysis as
simple as possible. The free energy, Eq. (B8), then simplifies
to

3 o K
Q005 0) =" 2 w0+ 23 o 00

. — 2
KEHRS a=0 k

— In{exp[G,(Q) + G,(Q)dm.

Here, we have introduced the abbreviations

Gi)=a X w2 e,

KEHRS s=1,2

" o 1
G,(0) = X 2 J4k) Q% (k)e ke (nf:ns - géa,b>,

a=0 k
(&)

and specialized to three spatial dimensions (i.e., d=3).

If the nematic order parameter vanishes, the above free
energy reduces to a special case of the universal gelation
transition free energy discussed, e.g., in Ref. [22]. If the gel
order parameter vanishes, the free energy has only the nem-
atic contribution. Within mean-field theory, we only consider
uniform nematic order and, furthermore, assume a uniaxial
state, for which Q,(0)=Q%(t,1,— 6, ,/3). Here, t denotes the
unit vector along the preferred axis of the nematic state. With
this Ansatz, the free energy is of the standard mean-field
type, given in Eq. (3.8),

1 n
105,00} = 52 J§05,(0)?
a=0

n dim
1
~In exp[2 Jggs,,(m(nsnz— 5%)] .

a=0 n+l

We have, furthermore, assumed that the interaction Jij falls
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off monotonically with distance, so that the Fourier trans-
form J(K) is maximal for k=0, J,=J(0)=J(k) for all k.

The interesting terms are the ones that couple the nematic
and gel order parameters. At cubic order in ) and Q (i.e.,
Q00 or Q0OQ) there are two such terms:

(G,(Q)G,(Q)Hen

n+l

=@ 2 2 X wilp)JPq) 0%, (p)0E(q)

a,=0 p.q IQEHRS

XE< i(p-c +ch+kc)< ﬂg—l@b)

3
1 dim
X (ncﬁndﬁ -5 c,d) >
3 n+1

(G1(Q)’G,(Q))dim

_ASS S

=0 4 [ scHRS

N 1 dim
% 2 kc +PE1+q-e”) nung_ ~8.p )
3 n+1

s.s'=1
(C2b)

To proceed further with the computation of these two cubic
terms we need to compute the single-dimer correlations.

(C2a)

upup“(q)QQ504,(q)

APPENDIX D: SINGLE-DIMER CORRELATIONS

The simplest such correlation is of the form

om : sin lk
(e, )i = (| |)52'" k,,0° (D1)
! |k|
with k=3"", d;,2K,. We also need the correlation
] . dim
(”anb _ _5a b>e—1[k-cx+p»(c1+c2)/2]
3" 1
paPy 1
= g(l| |/2)< : - 5 a,b) 6k+p,0’ (D2)
in which the function g(a) is given by
1 3 3 a—0 2
gla)= ( )sm(a) +—cos(a) — —. (D3)
a a 10

With help of these correlations we can evaluate the expres-
sion in Eq. (C2a). First, we note that there is no contribution
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for a=p, as this implies a k lying in the one-replica sector,
where ) vanishes. Thus, we arrive at

(G1(Q)G,(Q)»im

E E Ja(k)Jﬁ(P)( |k|2 % a,b) Q(E;b(k)

a#B Kk,p

pPa 1
(W -3 c,d) 08 (P)utyapspQ yia_pssg (1K|/2)

g(lp|/2). (D4)

In the long-wavelength limit the above expression further
simplifies to

(G1(Q)G,(0)Hin

~2
M @

> 2 UGB aepask kO (K)ppsQ2y(p).
800 a# B Kk,p

(D5)

Similarly, the expression in Eq. (C2) is computed to be

~4 N
<G,<Q>ZGZ<Q)>3T:=%E > Eu;u;+qgafa(q){g<l|ql/2>

=0 tcHrs 4

qaqp 1
X( ¢ 3 “’b>
sin(/|k?
I L)

B(#a) l|kﬁ|
( (K + q/2) (k* + q/2),,

g([k“+q/2|)

ke + q/2|?

1
- 5511,17) :| QIQQ—IQ—qé“QZ{b(q) . (D6)

In the limit of long wavelength the expression simplifies to

(G1(Q)2G,(Q))3m

~412 n
=2 X 2 ugualilqags + K+ q/2) (k% + g/2),]
a=0 feprs 4

X g2Q0(q) - (D7)

Rewriting Egs. (D7) in real space, one recovers the coupling
terms given in Eq. (3.9).
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