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The phase diagram of hard-core nematogenic models in three-dimensional space can be studied by means of
Onsager’s theory, and, on the other hand, the critical properties of continuous interaction potentials can be
investigated using the molecular field approach pioneered by Maier and Saupe. Comparison between these
treatments shows a certain formal similarity, reflecting their common variational root; on this basis, hard-core
potential models can be mapped onto continuous ones, via their excluded volume. Some years ago, this line of
reasoning had been applied to hard spherocylinders, hence the continuous potential G���=a+b�1−�2, b�0
had been used to define a mesogenic model on a three-dimensional lattice �S. Romano, Int. J. Mod. Phys. B 9,
85 �1995��; in the formula, � denotes the scalar product between the two unit vectors defining particle orien-
tations. Here we went on by addressing the same interaction potential on a two-dimensional lattice. Our
analysis based on extensive Monte Carlo simulations found evidence of a topological transition, and the critical
behavior in its vicinity was studied in detail. Results obtained for the present model were compared with those
already obtained in the literature for interaction potentials defined by Legendre polynomials of second and
fourth orders in the scalar product �.
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I. INTRODUCTION AND POTENTIAL MODEL

Several families of classical statistical mechanical spin
models, by now extensively studied in the literature, involve
n-component unit vectors uk, n=2,3, associated with the
sites of a two-dimensional lattice, with coordinate vectors xk;
the pair interaction potential is taken to be translationally
invariant, restricted to nearest neighbors, and to possess O�n�
symmetry at least; in formulas:

W = Wjk = �G���, � = � jk = u j · uk, �1�

where � denotes a positive quantity, setting temperature and
energy scales �i.e., temperature and energy will be expressed
in units of ��, and G��� is a continuous function of its argu-
ment, possessing a minimum when �=1, so as to produce a
fully ordered ground state. By the Mermin-Wagner theorem
and its generalizations �1–3�, the named models cannot sup-
port long-range orientational order at any finite temperature
in the thermodynamic limit; on the other hand, in some
cases, these studies have shown, and even proven, the exis-
tence of a topological phase transition.

The simplest, prototypal case, involves two-component
spins �plane rotators, also often called the XY model�, param-
etrized by usual polar angles � j, so that �=cos�� j −�k�, and
coupled by a ferromagnetic �odd� interaction, i.e., G���=−�;
this model produces the well known and extensively studied
Berezinski�-Kosterlitz-Thouless �BKT� transition �4–8�,
whose existence was proven rigorously by Fröhlich and
Spencer �4�: this is a transition to a low-temperature phase

possessing slowly decaying �inverse-power-law� correla-
tions, reflected by an infinite susceptibility.

Several other related functional forms of G���, involving
two-component spins and sometimes of different parity, have
been studied as well �see, e.g., Refs.�9–12��, and often found
to produce a similar transition; the even counterparts have
been investigated in connection with nematogenic models
�11,12�. On the other hand, as discussed in Ref. �8�, for a
wide class of interaction models involving two-component
spins, available mathematical results �4,13–15� entail the ex-
istence of a BKT-like transition, as well as a rigorous lower
bound on the transition temperature.

Moreover, in some other cases, it was first argued on the
basis of simulation results, and later rigorously proven, that
the transition to the low-temperature phase may turn first-
order �16,17�. Let us also mention that similar rigorous re-
sults have been obtained for lattice-gas extensions as well,
and even for “liquid” extensions, where particle coordinates
xk sweep the Euclidean plane R2 �18,19�; a first-order tran-
sition to a BKT phase was studied by simulation in Ref. �20�.

Another case studied in the literature involves n=3 and
ferromagnetic interactions �G���=−�, classical Heisenberg
model�; does this model support a topological transition as
well? No rigorous answer to the question is known to date
�21�, but various pieces of evidence have been obtained over
the years. Various authors �see, e.g., Ref. �22�� have argued
that the model does not produce such a transition; the oppo-
site view has been put forward by Patrascioiu and Seiler, in a
series of papers starting in the 1990s �23,24�; examples of
the resulting debate can be found in or via Refs. �25–28�.

In contrast to the previous cases, another set of models
involves n=3 component spins and even interactions; the
cases investigated so far are of the form G���=−PM���,
where PM�¯� denotes Legendre polynomials of even order;*Corresponding author. Silvano.Romano@pv.infn.it
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no rigorous answers are available here either. The case M
=2 was investigated over the past 25 years �29–41�, and
various pieces of numerical evidence suggest the existence of
such a transition; a recent simulation estimate for the transi-
tion temperatures is �2=0.548�0.002 �41�; the case M =4
was addressed more recently �42,43�, and a simulation esti-
mate for the transition temperature is �4=0.376�0.015
�42,43�; evidence for a transition of this kind was obtained
for some “liquid” counterparts as well �44,45�.

Hard-core models of nematogens in three-dimensional
Euclidean space are often treated by Onsager theory or ex-
tension of it �46–49�, based on their excluded volume; in
turn, the excluded volume between two hard-core particles is
an appropriate continuous function of their mutual orienta-
tion; actually, when particles are assumed to possess D	h
symmetry, the resulting excluded volume is an even function
E��� of the scalar product between the two unit vectors de-
fining particle orientations; an explicit expression for this
function has been obtained in some cases such as spherocyl-
inders �46,50�, cylinders �46,50�, and ellipsoids of revolution
�50–52�; spherocylinders are the most studied case, with

E��� = 8
��D2

4
+

D3

6
� + 2D�2�1 − �2, �2�

where � denotes the cylindrical length, and D is the diameter
of the cylinder. In turn, in the named �convex� cases, the
function E��� possesses its minimum when �=1, and could
be interpreted as pair potential defining a lattice model with
nearest-neighbor interactions, or fed into a mean field treat-
ment of the Maier-Saupe �MS-MF� type �53,54�. Upon com-
paring the equations resulting from the two treatments
�54,55�, one notices a certain analogy, reflecting their com-
mon variational root: it turns out that the reciprocal tempera-
ture in a MS-MF approach basically plays the same role as
the density in an Onsager treatment. There also exist differ-
ences between the two approaches, since the additional con-
straint of equal pressures and chemical potentials in the two
phases must be satisfied for the hard-core case only �46–48�.
In other words, a hard-core interaction can be mapped onto a
continuous separable potential via its excluded volume, and
the latter model is expected to produce a weaker transition
than the former. An early example of this idea can be found
in Ref. �56�, where a continuous pair potential was param-
etrized so as to fit the excluded volume between two identi-
cal hard parallelepipeds for selected reciprocal orientations,
i.e., in the six cases where the principal axes of the two
inertia tensors were the same, apart from a relabeling. Thus a
functional form,

G��� = a + b�1 − �2, b � 0, �3�

had been used to define a mesogenic model �the sin model,
for short� on a three-dimensional lattice �55�; the square root
in Eq. �3� can be expanded in a series of Legendre polyno-
mials of even order, whose expansion coefficients are known
in closed form, and their signs are all negative �48,57�; this
suggests a possible strengthening of the transition in com-
parison with the well known Lebwohl-Lasher �LL� model
�58,59�. Actually, the numerical values for the coefficients

a and b used in Ref. �55� were chosen to be b=32 / �5
�,
a=−8 /5, for ease of comparison, so that, to lowest order in
the expansion of Eq. �3�, one recovers −P2���, i.e., the LL
model. In the three-dimensional counterpart, the above addi-
tional terms were found to make the transition recognizably
closer to its MF limit than the LL counterpart �55�. Here we
go on to study the same interaction potential on a two-
dimensional lattice. Our aim is to gain insights into its criti-
cal behavior via extensive Monte Carlo simulations.

The plan of the paper is as follows. In Sec. II we discuss
our simulation procedure in detail and define the physical
quantities of interest to be computed. Section III presents an
analysis of our results and discusses the critical behavior of
the model. Comparisons with other models, and especially
comments on the transition behavior of the P4 model �42,43�,
are presented in Sec. IV, also containing a summary and
some concluding remarks. Let us finally mention that purely
two-dimensional hard-core models, involving uniaxial con-
vex bodies moving in R2, have been studied as well �see,
e.g., Ref. �60� and others quoted therein�, and often found to
produce evidence of a BKT transition.

II. COMPUTATIONAL ASPECTS

Simulations were carried out using periodic boundary
conditions in order to neglect possible surface effects; differ-
ent sample sizes were examined �N=L2 , L=40,60,80,
100,120,160�, and calculations were carried out in cascade,
in order of increasing temperature; each cycle �or sweep�
consisted of 2N Monte Carlo �MC� steps, including a sublat-
tice sweep �61,62�. Equilibration runs took between 25 000
and 250 000 cycles, and production runs took between
250 000 and 1 250 000; subaverages for evaluating statistical
errors were calculated over macrosteps consisting of 1000
cycles. Different random-number generators were used, as
discussed in Ref. �62�.

Calculated quantities include mean potential energy U in
units � per particle �and hence, for graphical convenience, its
value scaled by the corresponding ground-state quantity U0
=−16 /5, i.e., UN=U /U0�, as well as configurational heat ca-
pacity; long-range order parameters were defined and calcu-
lated via the appropriate ordering tensors, as discussed in
detail elsewhere �63–66�, and are expected to go to zero at
all finite temperatures in the thermodynamic limit. Alterna-
tively and equivalently, the second-rank order parameter and
the associated susceptibility can be worked out as follows:
let

F = �
j=1

N

�
k=1

N

P2�u j · uk�; �4�

then the simulation estimate for the second-rank order pa-
rameter is

P̄2 =
1

N
	�F
 , �5�

and its associated susceptibility reads �30,36� �but see also
Sec. IV�
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� =
1

N

	F
, 
 = 1/T; �6�

notice that, for a finite sample, ��
N. By the addition theo-
rem for spherical harmonics, the double sums appearing in
Eq. �4� can actually be calculated �67� as linear combinations
of the squares of the computationally less demanding quan-
tities

�m = �
j=1

N

Re�C2,m�u j��, �m = �
j=1

N

Im�C2,m�u j��; �7�

here m=0,1 ,2, C2,m�¯� are modified spherical harmonics,
and Re and Im denote real and imaginary parts, respectively;
in turn, each spherical harmonics is a suitable polynomial
constructed in terms of Cartesian components of the corre-
sponding unit vector �see, e.g., Ref. �68��. We also evaluated
the so-called short-range order parameters �65,69�

�M = 	PM���
, M = 2,4, �8�

measuring correlations between nearest-neighboring par-
ticles.

III. RESULTS

Simulation estimates for the potential energy were found
to evolve with temperature in a gradual and continuous way,
and to be independent of sample size; results for the short-
range quantities �M followed the same pattern �Fig. 1�,
showing the expected decrease of nearest-neighbor correla-
tions with increasing temperature. The three named quanti-
ties showed a change of the slope of their curves at about
T=0.7. This change of the slope for the energy is investi-
gated further through the behavior of the specific heat, whose
results showed a peak at about T�0.7 and a slightly more
pronounced sample-size dependency around the same tem-
perature �Fig. 2�. Notice that the specific heat did not de-

velop a divergence at the indicated temperature. Simulation

results for P̄2 and P̄4 were found to decrease with tempera-
ture, and, at each temperature, with increasing sample size,
�Figs. 3 and 4, respectively�; moreover, they showed a rec-
ognizable amount of finite-size order setting in at T�0.66.

At all investigated temperatures simulation results for the

order parameters P̄M, �M =2,4� exhibited a power-law decay
with increasing sample size. They were well fitted by the
respective relations

ln P̄M = − bM1 ln L + bM0, bM1 � 0 �9�

for a given temperature. Furthermore, the coefficients bM1�T�
were found to increase with T for higher temperatures and
proportional to T to within statistical errors in the low-
temperature region. The results obtained from Eq. �9� show
that both order parameters vanish at the thermodynamic
limit, i.e., L→	 in conformity with the Mermin-Wagner
theorem. Such a behavior is in agreement with the spin wave
theory developed for the magnetization in the case of the
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FIG. 1. Simulation results for the scaled potential energy UN

=U /U0, as well as short-range order parameters �2 and �4 obtained
with the largest sample size. Unless otherwise stated or shown, here
and in the following figures, statistical errors fall within symbol
sizes.
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FIG. 2. Simulation results for the configurational specific heat,
obtained with different sample sizes. The statistical errors, not
shown here, range between 1 and 5 %.
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FIG. 3. Simulation results for the second-rank order parameter

P̄2 obtained with different sample sizes.
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two-dimensional planar rotator �see Refs. �70,71� and those
quoted therein�.

Results for ln � vs temperature Fig. 5 were found to be
independent of sample size when T�0.71, and showed a
recognizable increase with it �a power-law dependence of �
on L� when T�0.68. The behaviors of specific heat, order
parameters, and nematic susceptibility suggest that the
present model undergoes a BKT-like phase transition. Ac-
cording to the BKT theory, in the thermodynamic limit, the
susceptibility � diverges exponentially while approaching
the transition temperature � in the high-temperature region
�7�, i.e.,

� � a� exp�b��T − ��−1/2�; T → �+ �10�

and remains infinite in the low-temperature region T��.
For a finite sample consisting of N=L2 sites, the situation is
different, since the susceptibility obeys the constraint �
�
N; thus � is always finite, and its exponential divergence

in the transition region is rounded, because of the important
finite-size effects.

In the critical region, i.e., in the vicinity of the BKT tem-
perature, the correlation length becomes comparable in mag-
nitude with the linear size L of the system. In this case, the
exponential divergence of the susceptibility is rounded in the
critical region, but the divergence persists in the behavior of
� at higher temperatures, where the correlation length is
smaller than the linear system size and finite-size effects can
be neglected. We first fitted our MC results obtained for the
largest sample size and for temperatures in the range 0.698
�T�0.760 to Eq. �10�, and obtained evidence of the expo-
nential divergence of the susceptibility �see Fig. 5�, and an
estimated transition temperature �=0.66�0.01, with a�

=0.46�0.11 and b�=1.38�0.08.
Our results were checked by using data on a wider range

of temperatures extending up to T=0.80. This yielded a con-
sistent result. In the following we refine our results using a
more elaborate method, i.e., finite-size scaling theory, and
apply it in the temperature region where the singularity of �
is rounded. Then, the correlation length � is proportional to
the size of the sample, ��L. From the behavior of the sus-
ceptibility ���2−�, with �=1 /4 �7�, we have

���� � L2−�. �11�

In this expression we have ignored the “analytic” corrections
emanating from the background, expected to contribute with
small corrections to the finite-size scaling expressions.

The temperature region 0.65�T�0.67, was explored in
greater detail, first by carrying out a linear fit of ln � vs ln L
and extracting � from the slope. Our estimations for some
temperatures are presented in Table I along with the associ-
ated coefficient c� according to ��T�=c�L2−�. A nonlinear
square fit was attempted as well, and yielded results consis-
tent with these ones. Thus the transition temperature is esti-
mated to be �=0.650�0.002, in agreement with the above
mentioned result obtained by fitting the data of the suscepti-
bility, corresponding to the largest sample size, in the high-
temperature region; at this temperature the value of � is ex-
pected to be 1

4 to within statistical errors. Thus the present
model exhibits a BKT-like phase transition. Notice that for
this model the maximum of the specific heat occurs at a
temperature about 7% higher than the critical point.
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FIG. 4. Simulation results for the fourth-rank order parameter

P̄4 obtained with different sample sizes
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FIG. 5. Simulation results for the logarithm of the nematic sus-
ceptibility �, obtained with different sample sizes; the statistical
errors on �, not shown, range up to 3%. The solid curve is obtained
by fitting to Eq. �10� with data corresponding to L=160.

TABLE I. Results obtained from the linear fit of the simulation
data of the susceptibility, for some selected temperatures, using the
expression ��T�=c�L2−� following Eq. �11�.

T � ln c�

0.648 0.243�0.005 0.47�0.02

0.649 0.244�0.005 0.46�0.02

0.650 0.246�0.005 0.46�0.02

0.651 0.247�0.007 0.46�0.03

0.652 0.249�0.005 0.45�0.02

0.653 0.263�0.003 0.51�0.02

0.654 0.270�0.009 0.53�0.04
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IV. COMPARISON WITH OTHER MODELS
AND CONCLUSIONS

In this section we compare results for the transitional be-
havior resulting from the present interaction model with
those obtained for the above mentioned pair potentials. i.e.,
of the form −PM���, with M =2,4. Both a BKT �see, e.g.,
Ref. �36�� a second-order scenario �41� have been proposed
in the literature for the −P2��� model; furthermore, some
remarks are appropriate about the transitional behavior of the
−P4 model as well, for which evidence of a first-order tran-
sition has been produced �42,43�.

Notice that the authors of Refs. �41–43� had used a dif-
ferent definition of susceptibility, which appears to corre-
spond to

�� =
1

N

�	F
 − 	�F
2� �12�

in our symbols �see also Eq. �6��; this definition seems to be

appropriate for an ordered phase, where P̄2�0 �see the dis-
cussion for the magnetic case in Refs. �72,73��, and did not
produce results diverging with sample size below the transi-
tion temperature. This difference is likely to explain, at least
partly, the difference in transition character which the au-
thors of Ref. �41� point out. �As a minor point, notice also
that, since 
Pm�t�
�1,m�N , −1� t� +1 �74�, Eq. �6� and
Fig. 7 in Ref. �41� disagree by orders of magnitude, i.e., a
factor N seems to be missing in Eq. �6�; the same remarks
appear to apply to Eqs. �6�–�8� and Fig. 14 in Ref. �43�.�

We ran additional simulations for the −P4 model �using
L=40,80,120,160� and found results suggesting a slowly
developing discontinuity of potential energy, as well as of
long- and short-range order parameters, around the estimated
transition temperature proposed in Refs. �42,43�; moreover,
our results for � �Fig. 6� were found to be independent of
sample size above this temperature, and to exhibit a recog-
nizable power-law increase with L below it. Thus it seems

likely that the two-dimensional −P4 model actually supports
a first-order transition �42,43� to a low-temperature BKT
phase; examples of this type of transition are also known for
magnetic models of the saturated-lattice type, as well as for
some lattice-gas counterparts of them, as mentioned in the
Introduction.

Now we turn to quantitative comparison between the
three models; this can be realized by considering the ratios
between transition temperatures and ground-state energies:
the values are 0.279�0.001 for the −P2 model �41�,
0.188�0.008 for the −P4 model �42,43�, and �0.2 in the
present case. As for the counterparts associated with a three-
dimensional lattice, where a discontinuous ordering transi-
tion takes place, the corresponding ratios are 0.3744 for the
−P2 model �75–79�, 0.2178�0.0002 for the −P4 model
�66,80�, 0.257�0.001 for the sin model �55�. In both cases
the ratio recognizably decreases upon going from the
second-rank model to the fourth-rank one, and, to a lesser
extent, upon going from the P2 to the sin model.

This trend can be correlated with known aspects of the
interaction models. On the one hand, in comparison with
−P2, the sin model produces a greater separation between
maximum and minimum ��32 /5
� vs �3/2��, but also a
broader minimum; on the other hand, the separation between
maximum and minimum for −P4 is �10/7� vs �3/2� for P2

and, moreover, the P4 model possesses a secondary mini-
mum at �=0, where P4�0�= �3 /8� �66,80�, mildly disfavoring
the mutual parallel orientation of the interacting pair at finite
temperature.

To summarize, we have studied via extensive Monte
Carlo simulation the critical properties of a two-dimensional
lattice spin model, involving three-component unit vectors,
and whose interaction potential is restricted to nearest neigh-
bors and defined by the above Eq. �3�; as discussed in Sec. I,
its counterpart associated with a three-dimensional lattice
can be obtained via the mutual excluded volume between
two hard spherocylinders, thus defining a mapping and, so to
speak, a bridge, between the Onsager and the MS-MF treat-
ments.

We have computed a number of thermodynamic quantities
in order to characterize the critical behavior of the present
model. Both potential energy and short-range order param-
eters were found to be independent of sample size and
showed a smooth and gradual decrease with the temperature.

The behaviors of specific heat, of order parameters P̄2 and

P̄4, and especially of the susceptibility �, suggested a BKT-
like phase transition. The transition temperature was deter-
mined by analyzing the data obtained for the susceptibility.
This is �=0.650�0.002. The maximum of the specific heat
was found to be at a temperature higher than �, as is the case
for systems exhibiting a BKT-like transition. Note that the
two-dimensional −P2 model may exhibit a second-order
phase transition, while its −P4 counterpart appears to support
a first-order phase transition to a low-temperature BKT
phase. Quantitative comparisons between the three pair inter-
action potentials have been carried out, and correlations with
known aspects of the models have been found.
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FIG. 6. Simulation results for the logarithm of the nematic sus-
ceptibility � for the −P4 model; the statistical errors on �, not
shown, range up to 3%.
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