PHYSICAL REVIEW E 77, 051305 (2008)

Pentagon deposits unpack under gentle tapping
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We present results from simulations of regular pentagons arranged in a rectangular box. The particles are
subjected to vertical tapping. We study the packing fraction, number of contacts, and arch size distribution as
a function of the tapping amplitude. Compared with disks, pentagons show peculiar features. As a general rule,
pentagons tend to form fewer arches than do disks. Nevertheless, as the tapping amplitude is decreased, the
typical size of the pentagon arches grows significantly. As a consequence, a pentagon packing reduces its
packing fraction when tapped gently, in contrast with the behavior found in rounded particle deposits.
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I. INTRODUCTION

The study of compaction of granular matter under vertical
tapping is a subject of much debate and consideration. Set-
ting apart all issues related to the slow relaxation shown by
these systems, and considering only the steady state regime
whenever achieved, the investigated granular deposits attain
rather high packing fractions when tapped very gently. More-
over, these systems display a rapid reduction in the packing
fraction as tapping intensity is increased. This decrease in
packing fraction has been observed in simulation of spheres
[1], in experiments with glass beads [2,3], and in simulation
of disks [4,5]. In some cases, the steady state may be ob-
tained by extended constant-intensity tapping; however,
other experimental configurations may require a suitable an-
nealing in order to achieve the so-called reversible branch
[3].

Few studies of this type have been carried out on sharp
objects. An experimental investigation uses assemblies of
spheres to build up more complex objects which, however,
retain the smooth edges of the constituents [6].

Here, we show that packings of pentagons simulated
through a pseudo-molecular-dynamics method (PMDM)
present a response to vertical tapping which is significantly
different from that observed in packings of rounded grains
like disks or spheres. We base our assertions on the compari-
sons with disk packings obtained with an analogous method.

It is worth mentioning that studies on pentagon assem-
blies do exist [7-9]. These put special emphasis on the crys-
tallization of these systems. However, these experiments and
simulations consider systems that relax continuously under
the effect of a background vibration (either thermal or me-
chanical agitation).

1539-3755/2008/77(5)/051305(6)

051305-1

PACS number(s): 45.70.Cc, 61.43.Gt

II. THE MODEL

The main stages of our simulations consist in (a) the gen-
eration of an irregular base, (b) sequential deposition of pen-
tagons to create an initial packing, (c) vertical tapping ob-
tained through vertical expansion followed by small random
rearrangements, and (d) nonsequential (simultaneous) depo-
sition of the pentagons using a PMDM.

We sample 1000 regular pentagons from a uniform size
distribution (5% dispersion). A number of them are placed at
the bottom of a rectangular box in a disordered way in order
to create an irregular base. Arranged in this manner, the N
base particles fix the wall-to-wall width of the box, which is
about 40 particle diameters. These pentagons remain still
over the course of the tapping protocol. The remaining pen-
tagons are poured one at a time from the top of the box and
from random horizontal positions and random orientations.
Each grain falls following a steepest descent algorithm.
When a pentagon touches an already deposited particle, it is
allowed to rotate about the contact point until a new contact
is made or until the contact point no longer constrains the
downward motion of the particle, which is deemed to fall
freely again. If a particle has reached two contacts such that
the x coordinate of its center of mass lies between and above
them, the pentagon is considered stable. Otherwise, the pen-
tagon will be allowed to rotate around the contact point with
lower y coordinate. Sidewalls are considered without fric-
tion.

Once the initial configuration is obtained, a tapping pro-
cess is carried out by using an algorithm that mimics the
effect of a vertical tap. The system is expanded by scaling all
the y coordinates of the particle centers by a factor A>1.
Base particles are not subjected to this expansion. When pen-
tagons are expanded upward with this simple rule, overlaps
between some of them occur. This happens, for example,
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FIG. 1. Example of an overlap promoted by homogeneous up-
ward expansion. See text for details.

when a pentagon has a vertex above a second pentagon while
the center of the first pentagon is below the center of the
second. In Fig. 1, we show an example of this situation.
Pentagons 1 and 2 rest in contact and have vertical coordi-
nates y; and y,, respectively. After expansion, their coordi-
nates change to y;=Ay, and y;=Ay,, the net displacement
for each particle being &y, and &y,, respectively, where &
=A—1. Because of the fact that initially y,<y,, the expan-
sion raises particle 1 more than particle 2, giving as a result
an overlap as indicated in Fig. 1. For this reason, we perform
some additional moves for those particles presenting over-
laps after the overall expansion. These additional moves con-
sist in small upward displacements of the order of 105,
where &is a PMDM parameter that will be introduced below,
which are repeated for overlapping particles until all overlaps
are removed. We have checked that this extra moves of some
particles do not affect the overall amplitude of expansion A.

After expansion, we introduce a horizontal random noise
for those particles touching any of the walls of the box. This
is done by attempting to displace each of these particles a
random distance in the range [0,A—1] toward the center of
the box in the x direction. Only if the new position of a
pentagon does not originate an overlap with neighbor penta-
gons is the move accepted. Each of these particles has only
one chance to move. This process mimics in some way the
shaking that grains suffer in a real experiment because of the
collisions with the walls. Notice that the amplitude of the
random moves is proportional to the amplitude of the expan-
sion.

Following expansion and random rearrangements, the par-
ticles are allowed to deposit nonsequentially (i.e., simulta-
neously rather than one at a time) following an algorithm
similar to that designed by Manna and Khakhar for disks
[10,11]. In brief, this is a pseudodynamic method that con-
sists in small falls and rolls of the grains until they come to
rest by contacting other particles or the system boundaries.
Particles are moved one at a time but they perform only
small moves that do not perturb to a significant extent the
subsequent motion of the other particles in the system. For
very small particle displacements, this method yields a real-
istic simultaneous deposition of the grains. Results obtained
through the PMDM are of course dependent on the step &
used to update the particle coordinates as they fall and roll.
We have carried out a series of simulations to find the de-
pendence of the final packing fraction on . The system was
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tapped 10* times at constant amplitude (A=1.10) for various
values of 8. The final steady state packing fraction was cal-
culated by averaging over the last 1000 taps. We found that
results agree within statistical uncertainties for all values of
the step size as long as 6=<0.01. We then took 6=0.01 as a
convenient choice for the PMDM simulations since the CPU
time required decreases with increasing o.

Once all pentagons come to rest, the system is vertically
expanded again and a new cycle begins. After a large number
of taps, the packing attains a steady state whose characteris-
tic parameters fluctuate around equilibrium values. Each re-
alization (10* taps) takes 50 h of CPU time for the minimum
tapping amplitude explored (A=1.1) and 240 h for the maxi-
mum amplitude (A=3.0) in a PC with an Intel Centrino pro-
Cessor.

The nonsequential deposition of grains consists in choos-
ing a pentagon at a time and allowing it to fall freely a
distance o. If in the course of a fall of length & a pentagon
collides with another pentagon, the falling pentagon is put
just in contact and this contact is defined as its first support-
ing contact. If the pentagon has one single supporting con-
tact, we let it rotate through an arc of length & around the
point of contact with its supporting particle [12]. On rolling,
any collision is identified if after the small roll of arclength &
the rolling pentagon overlaps a second particle. This overlap
is negligible since ¢ is typically two orders of magnitude
smaller than the particle diameters. We do not move this
overlapping particle back to the contact position but keep the
small overlap. If in the course of a roll of length J a pentagon
collides with another pentagon (or a wall), a new contact is
established as a potential supporting contact. The positions
of the two contacts may allow the pentagon to roll further
around the last contact in which case the first contact is re-
moved from the contact list. Otherwise, the pentagon is as-
sumed to be in a transiently stable position. If no new rear-
rangements of the supporting particles of a transiently stable
pentagon occur in future PMDM steps, the pentagon will
remain stable in position and its supporting contacts will be
uniquely defined. In this dynamic context, a moving penta-
gon can change the stability state of other pentagons sup-
ported by it; therefore, this information is updated after each
move. Each particle is given a chance to move at each itera-
tion. The deposition is over when each particle in the system
has both supporting contacts defined. Then, the coordinates
of the centers of the pentagons and the corresponding labels
of the two supporting particles or wall, are saved for analy-
sis.

It is worth mentioning that, when trying to attain equilib-
rium positions, particles like pentagons show much more
constrained movements than do disks. This fact introduces
special configurations that are not commonly observed in
disk packings. For instance, a pentagon may be supported by
two others whose centers are at higher positions [see Fig.
2(a)]. Also, a pentagon may have two contacts with another
single pentagon. This situation corresponds to the particles
shearing part of a side of the polygons. If the center of mass
lies between the two contacts, the upper pentagon is said to
lie flat on the bottom pentagon [see Fig. 2(b)] no matter how
steep is the inclined plane. Effectively, this assumes that the
pentagon surfaces have a static friction coefficient w
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FIG. 2. Examples of unusual (compared with disks) stable con-
figurations of pentagons. Arrows indicate contacts between par-
ticles, and bold points represent the center of mass of the pentagons.
(a) The central pentagon B is supported by particles A and C whose
centers of mass are in higher positions. (b) Pentagon A lies flat on
top of its supporting bottom partner B. Its center of mass lies be-
tween the two indicated supporting contacts. (c) Pentagon B is
locked during its rolling by the other two particles A and C. The x
coordinate of its center of mass lies at the left of both supporting
contacts. (d) Theoretical crystal unit for pentagons, taken from Ref.

[7].

>tan(7r/5) =~ 0.72 [13]. Another peculiarity is that pentagons
may be locked during rolling by pentagons coming from
above in such a way that the x coordinate of the center of
mass lies outside the range defined by the two contacts [see
Fig. 2(c)]. In this case, the particle stops rolling and attains
this stuck position until a rearrangement occurs in a future
PMDM step. If this does not occur, this position is the final
position of that particle. All these configurations are not pos-
sible in disk packings and are responsible for the particular
behavior found in pentagon assemblies, as we will show be-
low. We will refer to the crystalline order shown in Fig. 2(d)
later.

We study the packing fraction ¢, coordination number (z),
and arch size distribution n(s) of the deposits. To identify
arches one first needs to identify the two supporting particles
of each pentagon in the packing. Then, arches can be identi-
fied in the usual way [5]: first we find all mutually stable
particles—which we define as directly connected—and then
we find the arches as chains of connected particles. Two
pentagons A and B are mutually stable if A supports B and B
supports A. Unlike disk deposits generated through the
PMDM, pentagon packings present capriciously shaped
arches.

III. RESULTS AND DISCUSSION

The packing fraction of the pentagon deposits is plotted
against the number of taps for various tapping amplitudes in
Fig. 3. Each curve corresponds to a single run. Since density
fluctuations are large, we have used running averages to
make the plot clearer. The sizes of the fluctuations are indi-
cated by error bars. The packing fraction is measured in a
rectangular region far from the irregular base, the walls, and
the free surface of the bed. From Fig. 3 we see that, as the
amplitude is increased, compaction is enhanced. This trend is
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FIG. 3. (Color online) Packing fraction of pentagons as a func-
tion of the number of taps. The different curves correspond to dif-
ferent amplitudes A as indicated. Running averages have been taken
of the raw data to make the plot clearer. The error bars indicate the
size of the fluctuations in the raw data.

similar to the one found by Knight et al. [14]. They observed
an increase in the packing fraction with tapping intensity.
However, our system reaches a clear plateau after a moderate
number of taps, irrespective of the tapping amplitude, while
in Ref. [14] the steady state was hardly achieved for high
tapping amplitudes and definitely not for low intensities. Ex-
periments in two-dimensional (2D) packings of disks [15]
show a much faster equilibration than the 3D packings of
Ref. [14].

We show snapshots of part of two packings in Fig. 4.
Figure 4(a) shows a picture of part of the whole assembly of
a deposit of 1000 pentagons after being shaken 5 X 10° times
at A=1.2. Figure 4(b) shows the same situation but for A
=1.7. Arches are indicated by segments. It can be seen that
the final equilibrium positions of the particles in each case
are quite different. At low A, the creation of long arches due
to blocked rolls of the particles gives as a result a lower ¢
compared with that shown by a packing tapped at higher
amplitudes. Moving the particles farther apart during expan-
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FIG. 4. Examples of two packings tapped 5X 107 times. We
show only part of the 1000-particle assembly. Arches are indicated
by segments. (a) A=1.2 and (b) A=1.7.
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FIG. 5. Steady state packing fraction obtained by averaging over
the last 1000 taps as a function of the tapping amplitude for disks
(circles) and pentagons (squares). The horizontal dotted line corre-
sponds to the sequential deposition limit for pentagons (see text for
details). The inset shows results for disks up to very large tapping
amplitudes.

sion allows them to rearrange better and to increase side-to-
side contacts.

In Fig. 5 we plot the final values of ¢, obtained when the
system attains the steady state regime (averaging over the
last 1000 taps), as a function of the tapping amplitude. We
compare results with those of the same experiment carried
out on disks [5] (using the same size dispersion, number of
particles, and box size) and with a pentagon limiting case
obtained as follows. We raise all pentagons up to a large
height and let them fall one at a time and in order of height
(the lowest particle first). This process leads to the highest
compaction. The tapped deposits approach this value of ¢
when A is increased, as seen in Fig. 5. Since the deposition is
sequential, pentagons do not form arches at all in the limiting
case. Some simulations carried out on different irregular
bases showed that the particular realization of the base has
negligible impact on the steady state density.

There are two clear distinctions between the behavior
shown by disks and that displayed by pentagons. First, disks
attain larger packing fractions at all tapping amplitudes. This
is to be expected since pentagons, if not carefully arranged,
tend to leave large interstitial spaces. This is also explained
by the fact that pentagons can hardly attain compact crystal-
line structures like the one sketched in Fig. 2(d) spanning all
over the system. Second, while disks present a nonmono-
tonic dependence of ¢ versus A, pentagons show a mono-
tonic increase in the packing fraction. At high values of A
both systems increase ¢ with increasing tapping amplitudes
and eventually reach a maximum plateau value. In the inset
of Fig. 5 we extend the range of values of A studied for disks
since the increase in ¢ is rather smooth. For low A, we find
that disks tend to order and so increase ¢ as A is decreased
[5]. A minimum in the packing fraction of disks is then lo-
cated at intermediate values of A. However, this feature is
not present in pentagon packings. Pentagons seem not to
order at low A, and ¢ does not present a minimum as in disk
packings.
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It is worth mentioning that in Ref. [9] the authors show a
pentagon system that displays crystallization. However, the
Monte Carlo (MC) protocol used in [9] allows particles to
explore positions and orientations only constrained by the
proximity of other particles. In our model, particles can only
move downward due to the action of gravity, and the explo-
ration of positions and orientations during deposition is not
driven by a stochastic process but by the dynamics of falls
and rolls. After a pentagon reaches a stable position in our
model, it is not possible for it to search for “more favorable”
configurations. Tapping is not able to drive crystallization in
these systems since the number of configurations explored is
still reduced by the deposition algorithm compared with a
MC simulation in a system at zero gravity.

Realistic molecular dynamic simulations of the tapping of
pentagon packings yield higher densities overall [16] since,
in general, the restitution coefficient is greater than zero and
bouncing promotes rearrangements of already deposited
grains. In our simulations the effective restitution coefficient
is zero and hence bouncing is avoided. The higher compac-
tion in realistic molecular dynamics resembles the high com-
paction of packings obtained in Ref. [7]. The same effect is
observed when realistic molecular dynamics of disks [4] are
compared with corresponding PMDM results [5]. However,
the PMDM has been shown to yield the same general trends
observed in realistic molecular dynamics (compare Ref. [4]
with Ref. [5]).

In pentagon packings, we find that the number of arches
presents a monotonic decrease with increasing A. In contrast,
disks present a maximum at the same tapping amplitude
where the minimum packing fraction is achieved. It is par-
ticularly interesting that at A<<1.1 disks enter an ordered
phase [5] where arches are largely eliminated from the sys-
tem, whereas pentagon deposits remain in a disordered state
with an increasing number of arches down to very small
tapping amplitudes.

We observe that, in general, pentagons form fewer arches
than disks (about 40% fewer arches). This seems to be in
contradiction to the fact that we found that pentagons show a
lower coordination number. However, this effect is explained
by the wider arch size distribution found in pentagons. In
Fig. 6 we show the distribution of arch sizes for pentagons
and disks at two values of A. We confirm here that for low A
pentagons have a larger tendency to form large arches (up to
20 particles), whereas disks form arches of fewer than ten
particles. A detailed study of the particle-particle contacts
and the formation of arches will be presented elsewhere.

In order to assess whether the tapping protocol applied to
the packings is significant in the results discussed above, we
have carried out an annealed tapping to compare with con-
stant tapping. We start from a sequentially deposited packing
and then tap the system at variable amplitude. The amplitude
was increased from A=1.1 to 1.7 in steps of 0.1, and 5000
taps were applied at each amplitude value. Then the same
protocol was followed but for decreasing amplitudes. No evi-
dence of hysteresis or irreversibility was found in the results.
We also found that the annealing curves coincide with the
constant tapping results of Fig. 5. Both disks and pentagons
attain a unique packing fraction value for a given tapping
amplitude, no matter the history of the tapping protocol.
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FIG. 6. Distribution of arch sizes for disks (circles) and penta-
gons (squares) at A=1.2 (filled symbols) and 3.0 (open symbols).

Previous simulations on disks [5] and experiments on
glass beads [2] do show an irreversible branch in this type of
experiment. It is important to note that in the case of previ-
ous simulations [5] the annealing was conducted in a differ-
ent manner since the tapping amplitude was increased in a
quasicontinuum fashion and a single tap was applied at each
value of A. This prevented the disk packing from reaching
the steady state at each value of A. In the present work we
give sufficient time for the system to reach the steady state at
each amplitude. The annealing experiments of Nowak et al.
[2] were conducted in much the same way as our simula-
tions; however, their system presented a very slow relaxation
that effectively prevented the packing from “equilibration” at
each tapping amplitude.

To get a closer insight into the “peculiar” behavior of
pentagons (i.e., the reduction of packing fraction as A dimin-
ishes) we show in Fig. 7 the evolution of a pentagon deposit
after a sudden reduction in tapping amplitude. After 5000
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FIG. 7. Packing fraction of pentagons as a function of the num-
ber of taps before and after a sudden reduction in tapping ampli-
tude. From r=1 to 5000 the packing is tapped with A=1.5; from ¢
=5001 the amplitude is set to A=1.1. The insets show snapshots of
parts of the system (with arches indicated by segments) before and
after the change in tapping amplitude, and a magnification of the
point where the sudden change is induced.
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FIG. 8. Steady state packing fraction of disks as a function of A
for two values of size dispersion: 5% (circles) and 50% (squares).

taps applied to the system with A=1.5, we set the tapping
amplitude to A=1.1 and continue to tap the deposit for 1000
taps. As we can observe, the reduction in A induces a rapid
reduction in packing fraction associated with an increase in
the size of the arches formed (see insets in Fig. 7), in contrast
with the behavior generally observed in deposits of disks.
This seemingly paradoxical effect is in fact simple to ex-
plain. Arches—which are the main void-forming
structures—are more easily created when particles start
deposition from an initial high-density expanded configura-
tion. At low A, the expanded configuration leaves particles
very close to each other and this make particles meet each
other more often during deposition, enhancing the probabil-
ity of arch formation. This has been discussed recently by
Roussel et al. [17] and it has been observed by Blumenfeld
et al. [18] in experiments of compaction in two-dimensional
granular systems.

IV. CONCLUSIONS

We have shown that, for pentagons, through either con-
stant tapping or annealing, the steady state of the packing
presents a monotonically increasing packing fraction with
tapping intensity. However, disks and spheres display a clear
reduction in the packing fraction as tapping intensity is in-
creased [1-5]. Moreover, we have shown that our model
disks present a smooth increase in packing fraction at large
tapping amplitudes. Such findings reveal that the complexity
of pentagon deposition leads to an unexpectedly simpler be-
havior of the packing fraction compared with simpler sys-
tems.

The behavior of rounded particles—which increase den-
sity on reduction of tapping intensity—is indeed puzzling;
while pentagons seem to behave as expected. If grains fall
from a highly compact expanded configuration they should
form more arches, and hence reduce packing fraction.
Rounded particles do not follow this pattern, as has been
observed in experiments and simulations of various kinds.
Although the behavior of rounded particles seems to be con-
sidered reasonable by most workers, no thorough discussion
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on this has been given in the literature. Most authors explain
the effect on the basis that large taps create voids but do not
explain how these voids are created from a mechanical point
of view. According to the detailed discussion presented by
Roussel et al. [17], large taps should destroy arches (and thus
voids). We believe that the “reasonable” behavior is that
large taps eliminate arches and voids; however, at low tap-
ping amplitudes, we presume that this phenomenon com-
petes with the crystal-like ordering that reduces arch forma-
tion in disk packings in our simulations.

We have tested the hypothesis that partial ordering leads
to the nonmonotonic behavior of disks and spheres. How-
ever, some trial simulations carried out with rather polydis-
perse disks that are known to show frustration of order still
present the same nonmonotonic features, although less
marked than in monosized disks (see Fig. 8). A sensible ex-
planation for the formation of large arches of pentagons at
low tapping amplitude should in principle shed light on this
issue. At present, we can only suggest that pentagons (and
any other sharp particles) have a larger tendency to multipar-
ticle collisions. Multiparticle collisions are necessary (al-
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though not sufficient) to form large arches. These multipar-
ticle collisions are enhanced by two factors: (a) the fact that
pentagons may approach each other more closely than disks
(recall that a side-to-side contact leaves pentagon centers
separated by =0.8 particle diameters) which increases num-
ber density despite the lower packing fraction, and (b) the
associated collisions on rolling originated by the protruding
vertices. A recent model based on collisional probabilities
[17] for the formation of arches may help to quantify these
effects.
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