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Existence of an upper critical dimension in the majority voter model
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We study the critical properties of the majority voter model on d-dimensional hypercubic lattices. In two
dimensions, the majority voter model belongs to the same universality class as that of the Ising model.
However, the critical behaviors of the majority voter model on four dimensions do not exhibit mean-field
behavior. Using the Monte Carlo simulation on d-dimensional hypercubic lattices, we obtain the critical
exponents up to d=7, and find that the upper critical dimension is 6 for the majority voter model. We also

confirm our results using mean-field calculation.
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I. INTRODUCTION

The opinion dynamics based on a stochastic spin model
using physical notions is one of the active fields in interdis-
ciplinary research [1-6]. The majority voter model is one of
the widely studied opinion dynamics [6—19]. In the majority
voter model, each agent on a lattice gathers the opinions
(spin values) from its neighborhood, and changes its opinion
by a majority of votes. When the effective temperature T is
introduced to put the stochastic process into a majority rule,
minority opinions can be accepted due to the nonzero effec-
tive temperature and an order-disorder phase transition oc-
curs at the critical effective temperature T, [7]. Also, critical
exponents are obtained at the critical effective temperature.
These exponents for the majority voter model in two dimen-
sions are in excellent agreement with those of the Ising
model [6-9]. Though the majority voter model is a nonequi-
librium model [6,7,9-11], it belongs to the same universality
class as the equilibrium Ising model because it is a nonequi-
librium model with up-down symmetry [20,21]. However,
the majority voter model on the random networks, the small-
world lattices or networks, or the scale-free networks does
not belong to the Ising universality class [12-15,17,22].

On a one-dimensional lattice, the Ising model does not
have an order-disorder phase transition, while it has a phase
transition above two dimensions. The upper critical dimen-
sion in the Ising model is d.=4 and thus it exhibits the stan-
dard mean-field behavior for d=d.. On a one-dimensional
lattice, both the Ising model and the majority voter model
have exactly the same transition rate. On a two-dimensional
lattice, the two models have the same set of critical expo-
nents, although their transition rates are a little bit different
[6]. Therefore, it would be of interest to examine the critical
behaviors of the majority voter model on the above three-
dimensional lattices.

In this paper, we have carried out Monte Carlo simulation
for the majority voter model on hypercubic lattices ranging
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from three to seven dimensions to find out whether there is
an upper critical dimension in the majority voter model.

II. MAJORITY VOTER MODEL ON HYPERCUBIC
LATTICES

The original majority voter model [6] is a spin model in
which each site i is occupied by a spin value either o;=+1 or
—1. Kwak et al. [7] studied the majority voter model with a
local configuration energy E, which is defined as follows:

E[O'i]=—0'i5<2 Uj)a (1)
W)

where the sum runs over the nearest-neighbors of sites, and
S(x) is the signum function for x # 0 and is zero if x=0, and
(j) denotes the nearest neighbors of i. The minus sign in Eq.
(1) denotes that the sign of site i follows the majority of the
nearest-neighbor spins. Since the energy difference takes on
values of +2, 0, =2 with the energy defined in Eq. (1) in the
majority voter model, the transition rate is given by

R I D e
W
where {o} is the original configuration, {o”'} is the configu-
ration after spin-flipping, and (7 is an inverse effective tem-
perature. Equation (2) is exactly identical to the transition
rate of the original majority voter model with noise param-
eter ¢ [6] under the relation (1-2g)=tanh B;.
The order parameter m, the susceptibility y, and Binder’s
fourth-order cumulant U are defined as follows:

1 N
m= Nz T, (3)
X=2 )~ ), @
4
U=1- % 5)
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FIG. 1. Plots of Binder’s fourth-order cumulant U as a function
of effective temperature on d-dimensional hypercubic lattices on (a)
2D [7], (b) 3D, (c) 4D, (d) 5D, (e) 6D, and (f) 7D.

The finite-size scaling forms of the order parameter, the
susceptibility, and Binder’s fourth-order cumulant for the lin-
ear dimension L are given by

m(L) =L PVm(L"") (1<0), (6)
x(L) =L X (L"), (7)
UI(L) =L1/V[7/(L1/Vl,)’ (8)

where the reduced effective temperature is given by r=(T
—T,)/T, and U'(L) is the derivative of Binder’s fourth-order
cumulant with respect to effective temperature. According to
the finite-size scaling theory [23], the scaling functions 7, ¥,

and U’ are constant and m(L), x(L), and U'(L) are smooth
and analytic functions in the vicinity of the critical effective
temperature 7.

III. RESULTS

Simulations are carried out on d-dimensional hypercubic
lattices with periodic boundary conditions, where the range
of d is from 3 to 7 and L is from 4 to 24. The location of the
critical effective temperature for the model is estimated from
Binder’s fourth-order cumulant Eq. (5).

Figure 1 shows Binder’s fourth-order cumulant U as a
function of effective temperature for the majority voter
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FIG. 2. Semilogarithmic plot of 7. as a function of dimension of
a hypercubic lattice.

model. The critical effective temperature 7. can be found
from an intersection point of U for different values of L. We
get 7.=0.796+0.005 for 2D [7], 1.30+0.01 for 3D,
1.70%=0.05 for 4D, 2.04+0.05 for 5D, 2.40 = 0.06 for 6D,
and 2.59 = 0.05 for 7D, respectively. As the dimension of the
lattice increases, T, is also monotonically increased. The re-
lations between T, and dimensions can be inferred as T,
~log d from Fig. 2.

Figure 3 is the plot of the derivative of Binder’s fourth-
order cumulant with respect to effective temperature as a
function of linear dimension L on d-dimensional hypercubic
lattices. The scaling form of U’(L) is given in Eq. (8). When
we draw the log-log plot of the maximum values of the finite
size U'(L) versus L, the slope of the log-log plot is 1/ v at the
finite-size critical effective temperature T,(L). The estimated
values of v obtained from fitting lines in Fig. 3 are
1.02x0.03 for 2D [7], 0.63=0.01 for 3D, 0.51=0.02 for
4D, 0.40£0.01 for 5D, 0.32%£0.02 for 6D, and 0.29 = 0.02
for 7D, respectively.

The critical exponent 3 of the order parameter is defined
below the critical effective temperature and the scaling rela-
tion is given by Eq. (6). From Fig. 4, which shows the plots
of scaling function mNP'"” as a function of scaling variable
tL"", B/ v is obtained: 0.120 = 0.005 for 2D, 0.60 + 0.01 for
3D, 0.77£0.01 for 4D, 1.06 =0.04 for 5D, 1.50%0.05 for
6D, and 1.78 £0.05 for 7D, respectively. Our simulation re-
sult for 3D is different from that of the Ising model, and
results for 4D and 5D are far away from the standard mean-
field values.

Using the maximum values of the finite-size susceptibility
x(L) at T,(L) and the finite-size scaling form in Eq. (7), we
are able to find y/v. In Fig. 5, the slope of a straight line
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FIG. 3. Log-log plot of the maximum values of U’ as a function
of linear dimension L on d-dimensional hypercubic lattices.

051122-2



EXISTENCE OF AN UPPER CRITICAL DIMENSION IN...

1.4 o
> >
a L=10 © a
z 081 75 o =
g 40 2 g
80 v
0.2 160 o
-18 6 6
tL1 /v
(a)
25 [ @
Ran
z z
2 16 a
Z =4 O =
s 6 o) £
0.7 8 2
10 «©
-18 6 6
I‘L1 /v
(c)
3.0 &
o)
z z
< s <
3 £
0.0

FIG. 4. Plots of mLP" as a function of L"" on hypercubic
lattices on (a) 2D [7], (b) 3D, (c) 4D, (d) 5D, (e) 6D, and (f) 7D.

gives y/v=1.78+0.05 for 2D [7], 2.10=0.01 for 3D,
2.46*=0.06 for 4D, 2.89£0.08 for 5D, 3.01 =0.09 for 6D,
and 3.44 = 0.09 for 7D, respectively. We also obtain the same
tendency as 8; our simulation result for 3D is different from
that of the Ising model, and results for 4D and 5D are far
away from the standard mean-field values.

We summarize the obtained values of critical exponents
for the majority voter model and the known values of the
Ising model in Table I. The critical exponents for the major-
ity voter model on three dimensions are quite different from
those of the Ising model, and also the values of 8 and 7y for
four and five dimensions are not equal to the standard mean-
field values, B=1/2 and y=1, respectively. However, the
obtained values of 8 and 7 for six and seven dimensions are
well fitted to B=1/2 and y=1, respectively. Our results for
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FIG. 5. Log-log plot of the maximum values of (L) as a func-
tion of L on a d-dimensional hypercubic lattice.

PHYSICAL REVIEW E 77, 051122 (2008)

TABLE 1. Estimates of the critical effective temperatures and
the critical exponents for the majority voter model (MV) and the
Ising model on the hypercubic lattices with different dimensions.

Model T. B 0% vd
2D MV [7] 0.796(5) 0.122(7) 1.82(10) 2.04(6)
3D MV 1.30(1) 0.38(1) 1.32(3) 1.89(3)
4D MV 1.70(5) 0.39(2) 1.25(8) 2.04(8)
5D MV 2.04(5) 0.42(3) 1.16(6) 2.00(5)
6D MV 2.40(6) 0.48(5) 0.96(9) 1.9(2)
7D MV 2.59(5) 0.52(5) 1.00(9) 2.0(2)
2D Ising [24] 1/8 7/4 2

3D Ising [25] 0.326(5) 1.247(5) 1.887(3)
mean field 172 1 2

d=6 also satisfy a hyperscaling relation from the Rush-
brooke and Josephson scaling laws: 28+ y=vd, where d is a
dimension of hypercubic lattices. We conclude that the upper
critical dimension of the majority voter model is d.=6.

IV. THE RATE EQUATION AND THE ORDER
PARAMETER

We analytically calculate the magnetization of the major-
ity voter model on the hypercubic lattices. The number of
sites N of d-dimensional lattices with a linear dimension L is
L¢. N, and N_ out of N are the number of up spins and down
spins, respectively. The relations between N, N,, N_, and m
are as follows: N,+N_=N and N,—N_=mN. Also the frac-
tion of up (or down) spins is expressed as P(+) [or P(-)].
Then, P(+)=(1=%m)/2 is obtained easily. If a spin in a site
chosen randomly is flipped by the transition rate, Eq. (2), the
expectation value of the magnetization change is as follows:

2 2
Am:;}P(— H+)—X7P(+ — =), )

where P(* — =) is a spin-flipping probability. When a site
that has a down (or up) spin is chosen and a spin on a site
flips, the expectation value of the magnetization change is
represented in the first (or second) term on the right-hand
side in Eq. (9). Using the relation P(F— =)
=P(¥)-(1 =tanh B;S)/2, Eq. (9) can be rewritten as fol-
lows:

Am:l%](—m+tanh B:S), (10)

where S=5(Zy0;).

On a d-dimensional hypercubic lattice, the number of
nearest neighbors is 2d and the number of possible spin com-
binations for a neighbor is 2d+1: (0,2d), (1,2d-1), ...,
(2d,0), where (a,b) denotes the number of up and down
spins. When the number of up (or down) spins is in the range
of 0 to d—1, the majority spin is down (or up). Therefore, the
probabilities that the sign of majority spins for the nearest
neighbors is +, 0, or — are as follows:
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d-1

PS=1)=3 (2: )P(t)M-kP(:)k, (1)
k=0

2d
P(§=0)= ( P )P(+ ) P(=), (12)

where (j)=x!/y!(x—y)!. Then, the expectation value of S in
Eq. (10), S, is expressed as S=1XP(S=+)+0X P(S=0)
—1 X P(S=-). Therefore, by substituting S for S in Eq. (10),
Am for a d-dimensional lattice is represented as follows:

d-1
m tanh B; 1 (2d> o
A =—— _— 1-
"EINTTN 22"% k (1=

X1+ m)2=2k — (1 = m)2-24], (13)

Under the conditions of m=0 and Am=0, the critical ef-
fective temperature is obtained as follows:

1 & <2d

L= gd-1
tanhz- 4o\ k

)(d—k). (14)

For d=1, tanh(1/T,)=1 is obtained from Eq. (14). Thus,
the system is always disordered phase for 7> 0. This result
is the same as the Ising model, because the transition rate is
exactly the same.

In general, by expanding Eq. (13) near T, with the condi-
tion Am=0, we obtain the following relation:

1 d tanh=
tanh— + TC< T) t+0()
TC dT T_T
d-1
1 2d
=F2(k )(d—k)+0(m2). (15)
k=0

Each of the first terms on the left- and right-hand side is
eliminated. Therefore, m ~ /2 is acquired regardless of di-
mension, and we thus get the mean-field value S=1/2 from
the simple calculation using the rate equation.

V. CONCLUSION

The majority voter model on two dimensions has the
same set of critical exponents as the Ising model, and both
models belong to the same universality class [6,7]. However,
for hypercubic lattices above three dimensions, the set of
critical exponents for the majority voter model differs from
that for the Ising model. Our simulation results for six and
seven dimensions follow well the values of the standard
mean-field values, B=1/2, y=1: B=0.48*0.05 and 7y
=0.96%0.05 for 6D, and $=0.52*0.05 and y=1.00=*0.09
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TABLE II. Comparison of configuration energy difference AE
between local and global, where d is a dimension of regular lattice
and [n,m] denotes a closed interval with integer values.

AElocal AEgloba\l

+2 [3-d,2(d+1)]
0 [-d.d]

) [-2(d+1),-(3-4d)]

for 7D, respectively. We thus conclude that the upper critical
dimension is d.=6. Our results satisfy well a hyperscaling
relation with 28+ y=7, where ¥=vd=2 and d is a dimension
of hypercubic lattices.

We consider the difference of the local and the global
configuration energies between before and after spin-flipping
to find out what factor makes the critical exponents of the
majority voter model differ from those of the Ising model.
The global configuration energy is obtained from summing
the local configuration energy all over the sites. From the
spin-flipping on a site, AE) ., the difference of a configura-
tion energy of a selected site always has one of the values
+2, 0, or =2 for the majority voter model. However, AEq,1,
the difference of a configuration energy of the whole system
after flipping a spin in a selected site, can have various val-
ues such as shown in Table II.

For the Ising model, the differences of the global and the
local configuration energy are exactly identical, regardless of
dimension. The energy decreasing spin-flipping is always
chosen with high probability, Whereas for the majority voter
model, the global and the local configuration energy differ-
ences are not identical. For the majority voter model in two
dimensions, the global and the local configuration energy
differences are not identical, but the sign of both energies is
the same. For d=3, the sign of the global and local configu-
ration energy is not always the same. Table II shows that, for
the local energy difference AE; ;<O (or AE),.,>0), there
are some probabilities to have the global energy difference
AE 00 >0 (or AEg,<0). Therefore, the local energy
minimization cannot produce the global energy minimization
for the majority voter model above three dimensions. We
conjecture that this discordance of the sign of the energy
difference between the global and local energy is responsible
for the different critical behaviors of the majority voter
model from those of the Ising model.
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