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The origin of diffusive transport of light in dry foams is still under debate. In this paper, we consider the
random walks of photons as they are reflected or transmitted by liquid films according to the rules of ray optics.
The foams are approximately modeled by three-dimensional Voronoi tessellations with varying degree of
disorder. We study two cases: A constant intensity reflectance and the reflectance of thin films. Especially in the
second case, we find that in the experimentally important regime for the film thicknesses, the transport-mean-
free path l� does not significantly depend on the topological and geometrical disorder of the Voronoi foams
including the periodic Kelvin foam. This may indicate that the detailed structure of foams is not crucial for
understanding the diffusive transport of light. Furthermore, our theoretical values for l� fall in the same range
as the experimental values observed in dry foams. One can therefore argue that liquid films contribute sub-
stantially to the diffusive transport of light in dry foams.
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I. INTRODUCTION

The interaction of light with matter is a highly interesting
subject with many facets. For example, multiply scattered
light in turbid media is a very complex topic. However, it
becomes treatable when, after a sufficiently large amount of
scattering events, light reaches its diffusive limit �1�. Diffus-
ing light is used for biomedical imaging �2� and in diffusing-
wave spectroscopy �DWS� it is able to monitor dynamic pro-
cesses in turbid materials �3�. Recently, even clear evidence
for strong localization of light was given �4�. In colloidal
suspensions and nematic liquid crystals �5� the respective
scattering events and diffusion of light are well understood.
But why are aqueous foams �6,7�, as used, e.g, in shaving
cream, turbid?

Aqueous foams consist of gas bubbles separated by liquid
films �6,7�. In dry foams, where most of the liquid has
drained out, the bubbles are deformed to polyhedra. The so-
called Plateau rules state that always three films meet in the
Plateau borders, which form a network of liquid channels
throughout the foam, and that four of these borders meet at
tetrahedral vertices. Foams are visibly opaque although both
the gas and liquid components are transparent.

Precise light-scattering experiments show that light trans-
port reaches its diffusive limit in foams �8–10�, which means
that photons perform a random walk. However, the mecha-
nisms underlying this random walk are not well understood.
One suggestion is that scattering from the Plateau borders is
responsible for the diffusing light �9�. The transport-mean-
free path l�, over which the photon direction becomes ran-
domized, is then predicted as l��H /��, where H is the av-
erage bubble diameter and � is the liquid volume fraction.
However, data rule this out in favor of the empirical law
�9,11�,

l� � H�0.14

�
+ 1.5� . �1�

The authors of Ref. �11� state that this may imply significant
contributions from scattering from vertices �12� or films
�13–17�. Transport effects, such as total internal reflection of
photons inside the Plateau borders, are studied in �11,18�.

In recent years we have explored how liquid films in com-
bination with ray optics determine light transport in dry
foams �13–17�. In a step-by-step approach, we employed
three model foams: The honeycomb structure, two-
dimensional Voronoi tessellations �19�, and finally the three-
dimensional Kelvin structure �7,20�. Apparently, the periodic
Kelvin structure is highly idealistic. In his momentous ex-
perimental study of bubble shapes, Matzke did not find even
a single Kelvin cell �21�. Therefore, in this paper, we extend
our studies toward real dry foams. We introduce topological
and geometrical disorder based on a three-dimensional
Voronoi foam model to investigate the influence of disorder.
Note that a Voronoi foam does not obey Plateau’s rules, and
indeed all films of a Voronoi foam are flat. Thus an accurate
sample foam provided by the Surface Evolver software �22�
clearly better describes the geometry of a real foam. Never-
theless, we deliberately concentrate on the Voronoi tessella-
tions with flat films in order to greatly simplify our simula-
tions of light transport, which are still very time consuming.
Moreover, a comparison of the results presented in this paper
with future theoretical studies of diffusive light transport in
exact models of real foams, will highlight the role of both
their geometry and their curved films.

Cells in a foam are much larger than the wavelength of
light, thus one can employ ray optics and follow a light beam
or photon as it is reflected by the liquid films with a prob-
ability r called the intensity reflectance. We perform exten-
sive simulations to determine the diffusive limit of light for
two models. In model I, we choose a constant intensity re-
flectance r to explore the effect of disorder. The essential*miri@iasbs.ac.ir
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result of our Monte Carlo simulations is summarized in the
empirical formula for the transport-mean-free path l�,

lVoronoi
� �r� = 0.63H

1 − r

r
�1 − b1 + b2r� . �2�

The main behavior of lVoronoi
� �r� is governed by the factor

�1−r� /r. Quite remarkably, this factor is also found in the
honeycomb, two-dimensional disordered Voronoi, and three-
dimensional regular Kelvin structures. However, there is a
small but systematic deviation from �1−r� /r, described by
the last factor in Eq. �2� with 0�b1�0.1 and b2�0.1. Both
constants show a slight dependence on disorder in the
Voronoi foam. In model II, we use the intensity reflectance of
thin films with its significant dependence on the incident
angle and on d /�, where d is film thickness and � is the
wavelength of light. Our theoretical values for the transport-
mean-free path l� fall in the same range as the experimental
values for the driest foams in Ref. �9�. This shows that liquid
films are important for the understanding of photon diffusion
in dry foams otherwise we should have obtained much larger
transport-mean-free paths. We also observe that topological
and geometrical disorder do not change the qualitative be-
havior of l�. Even quantitative changes are not very pro-
nounced. Thus, our extensive numerical simulations support
a conclusion that we already drew from our previous two-
dimensional investigations �14�: The detailed structure of a
Voronoi foam is not important for understanding the diffu-
sive limit of light transport.

Our paper is organized as follows. In Sec. II we introduce
the Voronoi tessellation as a simple model foam. Photon
transport in a Voronoi structure using constant and thin-film
intensity reflectances are discussed in Secs. III A and III B,
respectively. Discussions, conclusions, and an outlook are
presented in Sec. IV.

II. MODEL FOAM

As a simple model for a three-dimensional disordered dry
foam, we choose the Voronoi tessellation �19�. Voronoi
foams satisfy the topological requirements on edge and face
connectivity in Plateau’s rules, but not the geometric condi-
tions; e.g., the angles between two edges are not equal to the
tetrahedral angle. To make such a Voronoi foam, a distribu-
tion of seed points in the simulation box is chosen and then
Voronoi polyhedrons are constructed in complete analogy to
the Wigner-Seitz cells for periodic lattice sites. We start with
a body-centered cubic lattice of seed points, which gives the
Kelvin foam, and then systematically introduce disorder by
shifting the seed points in random directions. The magnitude
of the displacement vectors of the seed points is uniformly
distributed in the interval �0,h� and disorder in a Voronoi
foam increases with h. Referring h to the diameter HKelvin of
a cell in the Kelvin foam �16�, we study five samples with
h /HKelvin=0.02, 0.05, 0.07, 0.12, and 0.20. Our Voronoi
foams are produced by the software Qhull �23�. Typically,
the simulation box contains around 8200 cells, 62 800 films,
and 11 200 edges. To simulate the diffusion of photons in
these model foams, periodic boundary conditions are imple-
mented.

In disordered foams several random variables exist; e.g.,
the edge length L, the cell surface S, the cell volume V, the
number of faces per cell f , and the number of edges per face
n. A first insight into the cellular structure can be gained
through the distribution of these variables. To characterize
foams and their geometrical and topological disorder, we
have collected data for the following quantities:

�L/L =
�	L2
 − 	L
2�1/2

	L

,

�S/S =
�	S2
 − 	S
2�1/2

	S

,

�V/V =
�	V2
 − 	V
2�1/2

	V

,

IQ = � 36�V2

S3 � ,

�2,f = 	f2
 − 	f
2,

�2,n = 	n2
 − 	n
2, �3�

where averages are denoted by 	¯
. The first three quantities
give the standard deviations relative to mean values of the
three respective distributions for L, S, and V. The isoperimet-
ric quotient IQ is one for a sphere and, therefore, measures
how strongly the cells are deformed relative to a sphere.
Finally, the variances �2,f and �2,n are considered as mea-
sures for topological disorder. We also note that instead of
�V /V and IQ, alternative measures p= 	V
2/3 / 	V2/3
−1 and
	= 	S / �36�V2�1/3
, are introduced in Ref. �24�.

It is instructive to compare our samples with slightly
polydisperse real foams investigated by Monnereau et al.
�25�, and random monodisperse foams simulated by Kraynik
et al. �26�, see Table I. To produce such foams, Kraynik et al.
used the Surface Evolver software to relax an initial Voronoi
structure produced from the packing of spheres. Another
structure that is commonly considered the complete spatial
random pattern, is the Poisson Voronoi tessellation �PVT�
�19�. It allows the analytic evaluation of the moments of
various distribution functions, and consequently has gained
much attention. However, PVT clearly cannot serve as a
model for real foams. As Table I shows, PVT possesses a
high degree of topological disorder, �2,f =11.055 and �2,n
=2.49, while in real foams �2,f �3.66 and �2,n�0.42 �25�.
Moreover, in contrast to the simulated foams in �26�, PVT
has an overwhelming number of short edges, i.e., the distri-
bution of edge lengths reaches its maximum at L=0 �19�.

The distribution of L, S, V, f , and n for our Voronoi foams
are depicted in Figs. 1–3. Note that these foams are con-
structed from an initial Kelvin structure, thus here LKelvin,
SKelvin, and VKelvin serve as natural units of length, surface,
and volume, respectively. Characteristics of the Kelvin foam,
our Voronoi foams 1–5, real foams �25�, simulated foams
�26�, and the Poisson Voronoi tessellation �19� are summa-
rized in Table I. We shortly discuss several points. The stan-
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dard deviations and variances in Table I and the distributions
in Figs. 1 and 2 clearly demonstrate that the disorder in the
Voronoi foams increases with increasing displacement h of
the seed points. While Voronoi foam 1 �h /HKelvin=0.02� with
its narrow distributions is still close to the Kelvin foam, the
widths of the distributions grow with increasing h and are
quite broad in Voronoi foam 5 with h /HKelvin=0.20. This is
especially visible in the distributions for edge length L, cell
surface S, and cell volume V in Figs. 1 and 2. For
h /HKelvin
0.20, the Voronoi foam approaches the Poisson
Voronoi tessellation. The unit cell of a Kelvin foam consists
of eight hexagonal and six square faces. This is especially
visible in the bimodal distribution for the number of faces
with n edges in Fig. 3, which occurs in all of our Voronoi
foams 1–5. Note that foam 4 additionally contains pentagons
and in foam 5 furthermore triangles and heptagons appear. In
real foams, however, the distribution has its single maximum
at n=5.

Our Voronoi foams constructed from an initial Kelvin
structure, are indeed distinct from real foams, although some
of the statistical characteristics of foams 4 and 5 are close to

or agree with the one of real foams. Nevertheless, as we have
just discussed, our Voronoi foams 1–5 are characterized by
increasing topological and geometrical disorder. In the fol-
lowing, we investigate whether this disorder does have any
influence on the transport-mean-free path l�.

III. DIFFUSIVE TRANSPORT OF LIGHT

We investigate the transport-mean-free path l� for two
models.

A. Model of constant intensity reflectance

To explore the impact of disorder on l�, we assume here
that liquid films have a constant reflectance r. We model
single photon paths in a Voronoi foam as a random walk with
rules motivated by ray optics, i.e., an incoming light beam is
reflected from a face with a probability r or it traverses the
face with a probability t=1−r. This naturally leads to a per-
sistent random walk of the photons �13�, where the walker
remembers its direction from the previous step �27,28�. Per-
sistent random walks are employed in biological problems
�29�, turbulent diffusion �30�, polymers �31�, Landauer dif-
fusion coefficient for a one-dimensional solid �32�, and in
general transport mechanisms �33�. More recent applications
are reviewed in �34�.

Our computer program takes 104 photons at an initial po-
sition, and launches them in a direction specified by polar
angles � and �. Then it generates the trajectory of each
photon following a standard Monte Carlo procedure and
evaluates the statistics of the photon cloud at times

� �10 000,10 200, . . . ,15 800� �in units of 	L
 /c, where c
denotes the velocity of light�. As detailed in Ref. �13�, we
determine the diffusion constant D from the temporal evolu-
tion of the average mean-square displacement of the pho-
tons: 	r2
=6Dt. Then the transport-mean-free path follows
from

l� = 3D/c . �4�

For angles �� �3° ,20° , . . . ,71°� and
�� �3° ,20° , . . . ,156°�, the simulation is repeated for each
intensity reflectance r� �0.1,0.2, . . . ,0.9�. As a reasonable
result, no dependence on the starting point and the starting
direction is observed. In Fig. 4 we plot the transport-mean-

TABLE I. Topological and geometrical characteristics of the cells in the Kelvin foam, our Voronoi foams 1–5, real foams �25�, simulated
foams �26�, and the Poisson Voronoi tessellation �PVT� �19�. The symbols are explained in the text.

Kelvin foam Foam 1 Foam 2 Foam 3 Foam 4 Foam 5 Real foam Simulation PVT

�L /L 0 0.050197 0.126543 0.164922 0.312005 0.486383

�S /S 0 0.00684 0.01768 0.02340 0.04330 0.07433

�V /V 0 0.011179 0.028264 0.037067 0.069619 0.122512 0.08–0.29

IQ 0.757 0.752663 0.748894 0.745840 0.727823 0.686616 0.694 0.693–0.751

	f
 14 14.0 14.0 14.0 14.007812 14.188232 13.5 13.7–13.94 15.535

	n
 5.142857 5.142857 5.142857 5.142857 5.143335 5.154229 5.11 5.228

�2,f 0 0 0 0 0.028259 0.930633 0.85–3.66 0.812–1.46 11.055

�2,n 0.979593 0.979593 0.979593 0.979593 0.981509 1.028764 0.365–0.42 2.49
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FIG. 1. Distribution of edge length �in units of LKelvin� for the
disordered Voronoi foams 1–5.
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free path l� in units of the average cell diameter H as a
function of r, where H is defined via H= �6	V
 /��1/3. The
line is a fit to 0.63�1−r� /r. In Fig. 4 the transport-mean-free
paths l� for the regular Kelvin foam and the disordered
Voronoi foams 1–5 are not distinguishable from each other.
To increase the resolution, the rescaled transport-mean-free
path l��r� / �0.63H�1−r� /r� versus r is plotted in Fig. 5. The
error bars reflect the standard deviations when we average
over all transport-mean-free paths l��� ,�� for different start-
ing positions and angles. From Fig. 5 we find that our nu-
merical results agree well with the relation lVoronoi

� �r�
=0.63H 1−r

r �1−b1+b2r� mentioned already in Eq. �1� in the
introduction. Both constants b1 and b2 show a slight depen-
dence on disorder in the Voronoi foam. The results here al-
ready demonstrate that disorder in the Voronoi foams does
not change l� significantly.

B. Model of thin-film intensity reflectance

In the second, more realistic model, we use the intensity
reflectance of thin films. Again, we study the persistent ran-
dom walk of photons to probe the influence of disorder in the
Voronoi foams on the transport-mean-free path.

For a plane wave with wave vector kk̂ incident from the
air onto a liquid film with normal vector n̂, the incident elec-
tric field with a general state of polarization is Eincident
=E1ei�1ê1+E2ei�2ê2+E3ei�3ê3, where Em and �m are, respec-
tively, the magnitude and phase of the field component along
the unit vector êm �m=1,2 ,3�. Taking into account all pos-
sible multiple refraction paths in the film �35�, the electric
field vectors of the transmitted and reflected waves become

Etransmitted = �ts − tp��Eincident · b̂�b̂ + tpEincident,

Ereflected = �rs + rp��Eincident · b̂�b̂ − rpEincident

+ 2rp�Eincident · n̂�n̂ , �5�

from which one calculates the intensity reflectance r�i�
= 
Ereflected
2 / 
Eincident
2 as a function of the incident angle i of
the plane wave

r�i� = 
rp
2 +

Eincident · b̂
2


Eincident
2
�
rs
2 − 
rp
2� . �6�

Here 
¯ 
 denotes the magnitude of a complex number, and

b̂= n̂� k̂. Details of our approach with the explicit formulas
for the coefficients rp, tp, rs, and ts are given in Ref. �16�. We
implemented the reflectance r�i� of Eq. �6� in our Monte
Carlo simulations. Again, we used the launching directions
for the photons as mentioned in Sec. III A, but evaluated the
statistics of the photon cloud at times

� �30 000,30 200, . . . ,35 800� �in units of 	L
 /c�. Note
that the thin-film reflectance is small except near the grazing
incidence, thus long simulation times are required to achieve
the accuracy reported in Sec. III A.

The reflectance r crucially depends on the ratio d /� of
film thickness d and wavelength � of light, the refractive
index n0 of the film, and the incident angle i. Note that even
in films as thin as the common black film, r increases to 1
close to grazing incidence �i→90°�. This feature basically
explains why films significantly contribute to the diffusion of
light in aqueous foams �14,16�.
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FIG. 2. Distribution of cell surface �in units of
SKelvin�, and distribution of cell volume �in units
of VKelvin�, for the disordered Voronoi foams 1–5.
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First, we assume that all films of the foam have the same
thickness dav. In Fig. 6 we plot l� as a function of dav /� for
the Kelvin foam and our disordered Voronoi foams 1–5. For
dav /��0.2, the transport-mean-free path monotonically de-
creases as dav increases. There is a pronounced minimum
around dav /�=0.2. Between dav /�=0.2 and 3 oscillations
exist that are due to oscillations in the reflectance r of a thin
film. The oscillations are reduced for more disordered foams
but do not disappear. The transport-mean-free path l� exhib-
its two strong maxima around dav /�=0.43 and 0.84. A closer
inspection of Fig. 6 shows that the heights of the pronounced

maxima at dav /�=0.43 and 0.84 decrease as the disorder
increases. To explain this behavior, we note that in the
Kelvin structure, long straight photon paths can cross parallel
faces. These long photon paths occur for the parallel polar-
ization state since below the Brewster angle the reflectance is
small and especially for the most pronounced maximum at
dav /�=0.43 close to zero �16�. With increasing disorder in
the Voronoi foams these parallel faces and, therefore, long
straight photon paths, disappear. In Fig. 6 the transport-
mean-free paths l� for the regular Kelvin foam and the dis-
ordered Voronoi foams 1–5 are not distinguishable from each
other in the region of dav /��0.3. To increase the resolution,
the rescaled transport-mean-free path l� / lKelvin

� of Voronoi
foams 1–5 is plotted for this region in Fig. 7. Clearly, the
transport-mean-free paths differ from each other by at most
10%.

Second, in our model we introduce some additional ran-
domness in the thickness d of the films assuming that it is
uniformly distributed in �dav−dw ,dav+dw�, where dav de-
notes the average thickness and dw the width of the distribu-
tion. In Fig. 8 we plot l� as a function of dav /� for Voronoi
foam 4 with various thickness distributions. Other disordered
Voronoi foams show the same behavior. Obviously, disorder
in d decreases the oscillations to an approximately constant
transport-mean-free path for dav /�
1. The two strong
maxima are reduced noticeably and ultimately disappear for
strong disorder in the film thickness, as illustrated by the data
for dw /dav=0.5 and 0.9. However, we still observe that mod-
erate disorder in the thickness �dw /dav�0.2� does not affect
l� and its monotonic behavior for dav /��0.2.

IV. DISCUSSION, CONCLUSIONS, AND OUTLOOK

To understand the role of liquid films for light transport in
dry foams, we started with the two-dimensional honeycomb
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FIG. 4. The transport-mean-free path l� �in units of the average
cell diameter H� as a function of intensity reflectance r, for the
Kelvin and the disordered Voronoi foams 1–5. The Monte Carlo
simulation results and the fit l��r� /H=0.63�1−r� /r are denoted, re-
spectively, by points and line.
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�13� and Voronoi structures �14�. Then we focused on the
Kelvin foam �16� to explore the effect of space dimension.
The Kelvin foam is periodic in space, while real foams are
disordered. To investigate the influence of topological and
geometrical disorder on diffusive photon transport, we have
utilized in this paper the three-dimensional Voronoi tessella-
tions.

We have studied the photon’s persistent random walk in a
three-dimensional Voronoi structure based on rules moti-
vated by ray optics. In a first model, we used a constant
intensity reflectance r. The interesting result is that the
transport-mean-free path for the honeycomb structure, the
two-dimensional Voronoi foam, the three-dimensional
Kelvin structure, and the three-dimensional Voronoi foam are
all determined by the same factor �1−r� /r for constant in-
tensity reflectance r in spite of the differences in dimension
and structure. For the two-dimensional Voronoi foams, we
even see the same behavior as in Eq. �1� but with the pref-
actor 0.63 replaced by 0.55. Finally, the results here already
demonstrate that disorder in the Voronoi foams does not
change l� significantly �see Figs. 4 and 5�. This confirms our
speculation in Refs. �13–16� that neither the dimension of
space nor disorder have a strong influence on the magnitude
of the transport-mean-free path. Note that the factor �1
−r� /r expresses the fact that independent of the dimension of
space and the different shapes of the cells in a foam, photon
transport is ballistic for r=0, and that photons stay confined
to the initial cell for r=1.

In a second, more realistic model, we used the intensity
reflectance of a thin film, with its significant dependence on
film thickness dav and angle of incidence i. Close to grazing
incidence �i→90°�, the reflectance always sharply increases
to 1. Thus, a thin film, even as thin as the common black
film, randomizes the photon direction and contributes to l�.
Based on extensive Monte Carlo simulations, we paid special
attention to the behavior of l� at small dav /�: In real foams
dav�100 nm �36� and, combined with the visible portion of

the spectrum �450 nm���750 nm�, one arrives at dav /�
�0.2 as the relevant region in explaining the measurements
of the transport-mean-free path in Ref. �9�. Quite interesting,
we found that the monotonic behavior of l� for dav /��0.2
does not show a significant dependence on the detailed geo-
metrical structure of our Voronoi foams and on moderate
disorder in the film thickness �see Figs. 6–8�.

Real foams obey Plateau’s laws. They state the following:
�i� Each film has a constant mean curvature; �ii� three films
meet at angles of 120° at each Pleateau border; and �iii� these
borders meet in fours at the tetrahedral angle
�arccos�−1 /3�=109.47°� to form a vertex. A Kelvin foam
with flat faces of its cells approximately obeys the second
and third law; however, a disordered Voronoi foam does not.
We found that the transport-mean-free path of the Kelvin and
the Voronoi structures deviate from each other by at most
10% in the experimentally relevant region for dav /�. This is
an indication that fulfilling Plateau’s second and third laws is
of minor importance when one tries to understand the role of
liquid films for diffusive transport of light in foams. Even the
slight curvature of the films might not be very important
since in the ray optics approach it just introduces some ad-
ditional randomness in the relevant surface normal which
varies across the film. Future investigations on realistic foam
structures, e.g., constructed by the Surface Evolver software
will clarify all of these aspects.

Vera, Saint-Jalmes, and Durian observed the empirical
law stated in Eq. �1� for 0.008���0.3. Experimental values
for l� /H increase from 2 to 20 for decreasing �, whereas we
determine a range of l� /H between 5 �for dav /�=0.2� and 25
�for dav /�=0.06, i.e., for a common black film� as illustrated
in Fig. 6. That means our theoretical values for l� fall in the
same range as the experimental values for the driest foams in
Ref. �9�. This shows that liquid films are important for the
understanding of photon diffusion in dry foams, otherwise
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we should have obtained much larger transport-mean-free
paths. However, to compare our theoretical findings to ex-
periments, we should know the contribution of the Plateau
borders to l�. After all, even in a rather dry foam with a
liquid fraction of 1%, most of the liquid resides in these
borders and their junctions. Furthermore, a relation between
the film thickness dav and the liquid volume fraction � is
needed. To the best of our knowledge, systematic measure-
ments of the film thickness in dry foams have not been re-
ported, neither do theoretical models exist. In the case of
dense oil-in-water emulsions, the dependence of the film
thickness on the oil-volume fraction has been modeled by
Buzza and Cates �37�. However, their results cannot be ap-
plied directly to foams.

In this paper, we focused on the contribution of liquid
films to the transport-mean-free path of photon diffusion in
dry foams. To achieve a complete understanding of the sub-
ject, there is still much to do. Of immediate interest are mod-
eling of the film thickness variation with the liquid volume
fraction and following the random walk of photons by taking
into account both their refraction at thin films and their scat-

tering from Plateau borders. To the best of our knowledge,
the scattering matrix for a Plateau border is not available.
However, ray optics reveal intriguing optical properties of
the Plateau borders �38,39�. Using the hybrid lattice gas
model for two-dimensional foams, Sun and Hutzler �38� em-
phasize that the complex geometry of the Plateau borders
affects the optical properties of foams. However, Plateau bor-
ders of a two-dimensional foam do not form a network and
channeling of the photons, as observed in Ref. �11�, is im-
possible. Thus an extension of Ref. �38� to three-dimensional
foams would be interesting.
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