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In this paper, the stochastic diffusion process of a charged classical harmonic oscillator in a constant
magnetic field is exactly described through the analytical solution of the associated Langevin equation. Due to
the presence of the magnetic field, stochastic diffusion takes place across and along the magnetic field. Along
the magnetic field, the Brownian motion is exactly the same as that of the ordinary one-dimensional classical
harmonic oscillator, which was very well described in Chandrasekhar’s celebrated paper �Rev. Mod. Phys. 15,
1 �1943��. Across the magnetic field, the stochastic process takes place on a plane, perpendicular to the
magnetic field. For internally Gaussian white noise, this planar-diffusion process is exactly described through
the first two moments of the positions and velocities and their corresponding cross correlations. In the absence
of the magnetic field, our analytical results are the same as those calculated by Chandrasekhar for the ordinary
harmonic oscillator. The stochastic planar diffusion is also well characterized in the overdamped approxima-
tion, through the solutions of the Langevin equation.
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I. INTRODUCTION

In Chandrasekhar’s celebrated paper �1�, the study of
Brownian motion of a free particle was very nicely described
through a mathematical treatment relying upon both the
Langevin and Fokker-Planck �FP� equations, and some gen-
eral lines were suggested toward solving the same problem
in the presence of an external field of force. The proposal has
been extended to those situations for which the Brownian
particle is considered to be electrically charged and also un-
der the influence of an external magnetic field, in different
situations �2–8�. In particular, in Ref. �8�, the problem of
stochastic diffusion of heavy ions in the presence of an elec-
tromagnetic field was solved through an alternative method
of solution of the FP equation. This method was extended to
solve the phase-space FP equation, describing the stochastic
diffusion of heavy ions in the presence of an external electric
field only �9�. Also in Chandrasekhar’s paper, the solution to
the problem of a one-dimensional classical harmonic oscilla-
tor describing a Brownian motion was given through the
solutions of the Langevin and FP equations. After this work
on the stochastic harmonic oscillator, many related topics
have been reported in the literature; for example, we can
mention that the study of a harmonic oscillator with random
frequency is a subject that has been extensively investigated
in different fields, including physics �10,11�, biology �12�,
economics �13�, and so on; the study of a harmonic oscillator
with random damping �14� was also used for the problem of
water waves influenced by a turbulent wind field �15�; the
study of an underdamped harmonic oscillator for additive
and multiplicative noise has been described in Ref. �16�,
showing the phenomenon of stochastic resonance �14,17,18�.
Another branch that has been developed recently is that re-

lated to the so-called nonequilibrium work relations �19–23�,
also termed fluctuation theorems. Very recently, in Ref. �21�,
Jayannavar and Sahoo reported the analytical calculation of
the distributions of work expended by a charged particle in
the presence of a magnetic field in a two-dimensional har-
monic well. This physical model is used to verify the Jarzyn-
ski equality �JE� �22�, which relates nonequilibrium quanti-
ties with equilibrium free energies, in two different cases: in
the first case �i�, the center of the harmonic trap is dragged
with a uniform velocity whereas in case �ii� it is subjected to
an ac force. In both cases, the particle is moving in the pres-
ence of a time-dependent harmonic potential and the analyti-
cal results of �22� complement the Bohr–van Leeuwen theo-
rem on the absence of diamagnetism in a classical system.
An important point we would like to note here is that the JE
is calculated through the explicit solution of the Langevin
equation in the overdamped regime, not through the com-
plete solution of this equation. This is so because in the
large-friction limit or diffusive regime the fluctuations are
dominant. However, as far as we know, the explicit and com-
plete solution of the stochastic diffusion of a charged har-
monic oscillator in the presence of an external constant mag-
netic field is a problem that has not been reported yet in the
literature, and our purpose in this work is to give the com-
plete solution of such a problem in a three-dimensional
space-dependent harmonic potential well. Our proposal can
be extended to a situation for which the charged particle is in
a time-dependent harmonic potential well, or used for other
possible applications on single nanosized systems in physical
environments where fluctuations play a fundamental role
�24–28�. As usual, in our work we assume that the magnetic
field is allowed to point along the z axis of the Cartesian
reference frame, and as a result two independent processes
are taking place. One takes place along the z axis or along
the magnetic field but is not affected by this field, and the
particle is in a one-dimensional harmonic well. This case is
exactly the same as that described by the ordinary one-
dimensional harmonic oscillator describing a Brownian mo-
tion �1�. The other one takes place on the x-y plane across or
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perpendicular to the magnetic field and the particle is in a
two-dimensional harmonic well. In this case, the Langevin
equations associated with the x and y axes form a coupled
pair of equations describing the planar-diffusion process,
which is an interesting but not an easy problem to describe.
To solve this planar harmonic oscillator’s Brownian motion
analytically, we use Landau’s strategy �29�, which relies
upon a transformation, on the complex plane, of the Lange-
vin equation. On the complex plane, the resulting complex
Langevin equation strongly resembles that of the free har-
monic oscillator and, therefore, its explicit solution is easily
calculated using Chandrasekhar’s ideas. Following the same
strategy, we also study the overdamped limiting case corre-
sponding to the large-friction limit. This case is easier than
the preceding description, because the complex linear Lange-
vin equation is not already of second order but linear and of
first order. In fact, in the same large-friction limit, the same
Landau strategy is used by Jayannavar and Sahoo �21� to
solve the problem in a two-dimensional time-dependent har-
monic well, and applied to calculate the JE. This work is
organized as follows. In Sec. II, we establish the Langevin
equation for the two independent process and solve only that
associated with the planar-diffusion process in a two-
dimensional harmonic potential well. In the absence of a
magnetic field, our analytical results are compared with those
calculated by Chandrasekhar. In Sec. III, we study the prob-
lem in the overdamped approximation and the conclusions
are given in Sec. IV. Finally, we introduce three appendixes
for the explicit calculations in our work.

II. THE LANGEVIN EQUATION OF A CLASSICAL
HARMONIC OSCILLATOR IN A CONSTANT

MAGNETIC FIELD

The Langevin equation of a charged particle embedded in
a fluid describing a Brownian motion in a space-dependent
potential U�r� and in the presence of a constant magnetic
field, can be written for the velocity vector u as

u̇ = − �u +
q

mc
u � B −

1

m
grad U�r� + A�t� , �1�

where ��0 is the friction constant, q is the charge of the
particle and m its mass, grad U is the gradient operator of
potential U, and A�t� is the fluctuating force per unit mass,
which satisfies the properties of Gaussian white noise with
zero mean value �Ai�t��=0 and a correlation function given
by

�Ai�t�Aj�t��� = 2��ij��t − t�� . �2�

� is a constant that measures the noise intensity and, accord-
ing to the fluctuation-dissipation theorem, is related to the
friction constant by �=�kBT /m with kB the Boltzmann con-
stant and T the temperature of the surrounding medium. The
overdot in Eq. �1� denotes the derivative with respect to time.
Here we use A1�Ax, A2�Ay, and A3�Az. If we assume a
three-dimensional harmonic potential well U�r�=k�x2+y2

+z2� /2 with k a constant, and the magnetic field for simplic-
ity pointing along the z axis of the Cartesian reference frame,

that is, B= �0,0 ,B� with B a constant, then Eq. �1� can be
described by means of two independent processes. One is
described on the x-y plane perpendicular to the magnetic
field and the charged particle is in a two-dimensional har-
monic well U�x ,y�=k�x2+y2� /2; the other is along the z axis
or along the magnetic field in a one-dimensional harmonic
well U�z�=kz2 /2. In these cases, Eq. �1� can be written in
terms of its components as follows:

ẍ + �ẋ + �2x − �ẏ = Ax�t� , �3�

ÿ + �ẏ + �2y + �ẋ = Ay�t� , �4�

z̈ + �ż + �2z = Az�t� , �5�

where �=qB /mc is the Larmor frequency and �2=k /m is
the characteristic frequency of the oscillator. As we can see,
Eq. �5� is exactly the same as that of the ordinary classical
harmonic oscillator describing a Brownian motion, which
has already been solved by Chandrasekhar �1�. Thus we will
focus on the two stochastic differential equations �Eqs. �3�
and �4��, which describe the diffusion process on the x-y
plane perpendicular to the magnetic field in a two-
dimensional harmonic well. Due to the Gaussian character-
istics of the processes here considered, there exist two ways
of describing this planar-diffusion process explicitly. One is
through the calculation of the first two moments of the vari-
ables x, y, ux, and uy, which can be achieved through the
explicit solution of the Langevin equations �3� and �4�. The
other one is through the explicit solution of the Fokker-
Planck equation associated with those Langevin equations.
Here we follow the proposal of solving those Langevin equa-
tions and as a consequence the calculation of the moments of
the relevant variables. Once those moments are calculated,
all the transition probability densities �TPDs� P��x , t�x0�,
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FIG. 1. Reduced correlation Ā�	xx
� �	xx / �kT /m�2� vs the re-

duced time 
��t for � /�=1 and different values of � /�. Solid
line, �=0; dashed line, � /�=1; dotted line, � /�=2; long-dashed
line, � /�=3.
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P��y , t�y0�, P��ux , t�x0 ,ux0
�, P��uy , t�y0 ,uy0

�, P��x ,ux , t�x0 ,ux0
�,

P��y ,uy , t�y0 ,uy0
�, P��x ,uy , t�x0 ,uy0

�, P��y ,ux , t�y0 ,ux0
�, and

P��x ,y ,ux ,uy , t�x0 ,y0 ,ux0
,uy0

� can readily be calculated from
the general Gaussian distribution �30,31�

P��	�
,t�	�
0� =
1

�2��n/2�Det 	ij�1/2

�exp�−
1

2�
i,j

�	−1�ij��i − ��i���� j − �� j��
 ,

�6�

where P��	�
 ,0�	�
0�=��	�
− 	�
0� represents the initial con-
dition, 	�
= ��1 , . . . ,�n�, and the variance 	ij = ��i− ��i���� j

− �� j��. In our case �i=x ,y ,ux ,uy. The two differential equa-
tions �3� and �4� are clearly coupled and seem to be some-
what complicated to solve analytically. To avoid this math-
ematical difficulty, we use an alternative method of solution
to the one proposed initially by Landau and Lifshitz �29�, by
solving the simple classical harmonic oscillator in the pres-
ence of a constant magnetic field. The proposal consists in
mapping Eqs. �3� and �4� on the complex plane, by defining
the complex function


̄ = x + iy . �7�

In this case, Eqs. �3� and �4� can be written as


̈̄ + �̄
̇̄ + �2
̄ = A�t� , �8�

where �̄=�+ i�, A�t�=Ax�t�+ iAy�t�. From now on, we will
write any complex number and any complex function with
an overbar, except for the correlations which appear in Figs.
1–6. As we can see, on the complex plane, Eq. �8� has a
structure very similar to that of the ordinary one-dimensional
harmonic oscillator describing a Brownian motion and,
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FIG. 2. Reduced correlation B̄�	uxux

� �	uxux
/ �kT /m� vs the re-

duced time 
��t for � /�=1 and different values of � /�. Solid
line, �=0; dashed line, � /�=1; dotted line, � /�=2; long-dashed
line, � /�=3.
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FIG. 3. Reduced correlation C̄�	xux

� �	xux
/ �kT /m�� vs the re-

duced time 
��t for � /�=1 and different values of � /�. Solid
line, �=0; dashed line, � /�=1; dotted line, � /�=2; long-dashed
line, � /�=3.
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FIG. 4. Reduced correlation D̄�	yux

� �	yux
/ �kT /m�� vs the re-

duced time 
��t for � /�=1 and different values of � /�. Solid
line, �=1; dashed line, � /�=2; dotted line, � /�=3.
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FIG. 5. Different reduced correlations �see Figs. 1–4 for their
definitions� vs the reduced time 
��t for � /�=1 and � /�=10.

Solid line, Ā�	xx
� ; dashed line, B̄�	uxux

� ; dotted line, C̄�	xux

� ;

long-dashed line, 10D̄�10�	yux

� .
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therefore, its solution is easy to calculate. In fact the solution
of Eq. �8� is calculated in Appendix A, yielding the follow-
ing result:


̄�t� =
1

�̄1 − �̄2

�e�̄1t�
0

t

e−�̄1t�A�t��dt� − e�̄2t�
0

t

e−�̄2t�A�t��dt��

+ ā10e
�̄1t + ā20e

�̄2t, �9�

where

�̄1 = −
�̄

2
+

�̄1

2
, �̄2 = −

�̄

2
−

�̄1

2
, �10�

and

�̄1 � ��̄2 − 4�2 = ��2 − �2 − 4�2 + i2�� . �11�

On the other hand, the complex velocity is defined as ū


� 
̇̄=ux+ iuy. Therefore

ū
�t� =
1

�̄1 − �̄2

��̄1e�̄1t�
0

t

e−�̄1t�A�t��dt�

− �̄2e�̄2t�
0

t

e−�̄2t�A�t��dt�� + �̄1ā10e
�̄1t + �̄2ā20e

�̄2t.

�12�

The constants ā10 and ā20 can be calculated in terms of the
initial conditions 
̄�0�� 
̄0=x0+ iy0, ū
�0�� ū
0

=ux0
+ iuy0

and are given by

ā10 = −
�
̄0�̄2 − ū
0

�

�̄1 − �̄2

, ā20 =

̄0�̄1 − ū
0

�̄1 − �̄2

, �13�

and therefore the solution of Eq. �8� and its corresponding
velocity can be written, respectively, as


̄�t� +
1

�̄1 − �̄2

��
̄0�̄2 − ū
0
�e�̄1t − �
̄0�̄1 − ū
0

�e�̄2t�

= �
0

t

A�t���̄�t��dt�, �14�

ū
�t� +
1

�̄1 − �̄2

��̄1�
̄0�̄2 − ū
0
�e�̄1t − �̄2�
̄0�̄1 − ū
0

�e�̄2t�

= �
0

t

A�t���̄�t��dt�, �15�

where the complex functions �̄�t�� and �̄�t�� read as follows:

�̄�t�� =
1

�̄1 − �̄2

�e�̄1�t−t�� − e�̄2�t−t��� , �16�

�̄�t�� =
1

�̄1 − �̄2

��̄1e�̄1�t−t�� − �̄2e�̄2�t−t��� . �17�

The solution for the complex conjugate 
̄��t� and its corre-
sponding velocity ū


� are also calculated in a completely
similar way in Appendix A. In order to analyze the meaning
of the solutions given in Eqs. �14� and �15� in terms of the
original coordinates x, y, ux, and uy, we must separate the
real and imaginary parts of Eqs. �14� and �15�, as well as the
real and imaginary parts of the roots �̄1 and �̄2, in such a

way that the complex number �̄1 can be written as

�̄1 = � �� + i�� , �18�

where

� =
1
�2

��a2 + b2 + a, � =
1
�2

��a2 + b2 − a , �19�

and the parameters a=�2−�2−4�2 and b=2��. We show
in Appendix B the solution and the complete expressions for
the averages x, y, ux, and uy for arbitrary initial conditions,
and only as an example we will write here the results for the
particular case when x0=y0=uy0

=0 and ux0
�0. In this case,

�x� = e−�t/2	B0�sinh��t/2�cos��t/2�cos��t/2�

+ cosh��t/2�sin��t/2�sin��t/2��

+ D0�cosh��t/2�sin��t/2�cos��t/2�

− sinh��t/2�cos��t/2�sin��t/2��
 , �20�

�y� = e−�t/2	B0�cosh��t/2�sin��t/2�cos��t/2�

− sinh��t/2�cos��t/2�sin��t/2��

− D0�sinh��t/2�cos��t/2�cos��t/2�

+ cosh��t/2�sin��t/2�sin��t/2��
 , �21�
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FIG. 6. Reduced correlation Ā�	xx
� �	xx / �kT /m�2� vs the re-

duced time 
��t divided by 5000 for � /�=0.01 and different
values of � /�. The solid line corresponds to the exact value given
by Eq. �26� and �=0; the dashed line is the exact result for �=1;
the dots the exact result for �=10. The circles correspond to the
overdamped approximation given by Eq. �50�.
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�ux� = e−�t/2ux0
�cosh��t/2�cos��t/2�cos��t/2�

+ sinh��t/2�sin��t/2�sin��t/2��

− e−�t/2	F0�sinh��t/2�cos��t/2�cos��t/2�

+ cosh��t/2�sin��t/2�sin��t/2��

+ H0�cosh��t/2�sin��t/2�cos��t/2�

− sinh��t/2�cos��t/2�sin��t/2��
 , �22�

�uy� = − e−�t/2ux0
�cosh��t/2�cos��t/2�sin��t/2�

− sinh��t/2�sin��t/2�cos��t/2��

+ e−�t/2	H0�sinh��t/2�cos��t/2�cos��t/2�

+ cosh��t/2�sin��t/2�sin��t/2��

− F0�cosh��t/2�sin��t/2�cos��t/2�

− sinh��t/2�cos��t/2�sin��t/2��
 , �23�

where now

B0 �
2ux0

�

�2 + �2 , D0 �
2ux0

�

�2 + �2 , �24�

F0 �
ux0

���2 + �2�

���2 + �2�
, H0 �

ux0
���2 − �2�

���2 + �2�
. �25�

Equations �20�–�23� represent the deterministic solution of
the problem since the average of the noise vanishes. The
quantity � is such that 0���� and the leading terms in
Eqs. �20�–�23� when t→� decrease exponentially with a re-
laxation time 2 / ��−��, in such a way that the presence of
the magnetic field makes the relaxation slower than in the
case where B=0. As a second step in the analysis of this
problem we calculate the two-time auto- and cross correla-
tion of the relevant variables. In Appendix B, we provide the
explicit expressions for all the correlations at different times
t1 and t2. For equal times t1= t2= t, Eqs. �B47�–�B52� can be
straightforwardly reduced to

	xx =
kBT

m�2�1 − e−�t�1 +
�2 + �2

�2 + �2

��2 sinh2��t/2� +
�

�
sinh��t�


+
�2 − �2

�2 + �2 �2 sin2��t/2� +
�

�
sin��t�
�� , �26�

	uxux
=

kBT

m
�1 − e−�t�1 +

�2 + �2

�2 + �2

��2 sinh2��t/2� −
�

�
sinh��t�


+
�2 − �2

�2 + �2 �2 sin2��t/2� −
�

�
sin��t�
�� , �27�

	xux
=

4�kBT

m��2 + �2�
e−�t�sinh2��t/2� + sin2��t/2�� , �28�

	yux
=

2kBT

m��2 + �2�
e−�t�� sinh��t� − � sin��t�� , �29�

and 	xy =0, 	uxuy
=0.

Now, let us define the reduced correlations as the
corresponding dimensionless quantities, that is, 	xx

�

=	xx / �kBT /m�2�, 	uxux

� =	uxux
/ �kBT /m�, 	xux

�

=	xux
/ �kBT /m��, and 	yux

� =	yux
/ �kBT /m��. Also the re-

duced time is 
=�t and in these new variables the behavior
of correlations is shown in Figs. 1–4 for certain values of the
magnetic field represented by the variable � /� and of � /�.
Several comments can be made about the behavior shown in
Figs. 1–4. First we recall that the value �=0 corresponds to
Chandrasekhar’s solution. In this case, in Fig. 4 the correla-
tion 	yux

� ��=0�=0, and it is not shown. Second, the relax-
ation when t→� is slower when ��0 than in the case
without the magnetic field. This effect is enhanced as the
normalized field � /� grows. In Figs. 1–3 the small-time
behavior is essentially the same no matter the field value.
Lastly, in Fig. 5 we can observe the behavior of the reduced
correlations for � /�=1 and � /�=10. In this case, due to the
magnitude of the � /� parameter, oscillations can be seen.

All our analytical results for the averages �x�, �y�, �ux�,
and �uy�, and the correlation functions given in Eqs.
�26�–�29�, can be compared in the absence of magnetic field
��=0� with those obtained by Chandrasekhar for the ordi-
nary one-dimensional harmonic oscillator. In this case, the
parameter b=0 and thus �=0, a=�2−4�2, which leads to
�=�a. If we define �1��a, then �=�1. Under these condi-
tions, we can clearly verify that

�x� = x0e−�t/2�cosh��1t/2� +
�

�1
sinh��1t/2�


+
2ux0

�1
e−�t/2 sinh��1t/2� , �30�

�ux� = ux0
e−�t/2�cosh��1t/2� −

�

�1
sinh��1t/2�


−
2x0�2

�1
e−�t/2 sinh��1t/2� . �31�

For the variances, we have

	xx =
kBT

m�2�1 − e−�t�2
�2

�1
2sinh2��1t/2� +

�

�1
sinh��1t� + 1
� ,

�32�

	uxux
=

kBT

m
�1 − e−�t�2

�2

�1
2sinh2��1t/2� −

�

�1
sinh��1t� + 1
� ,

�33�
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	xux
=

4�kBT

m�1
2 e−�t sinh2��t/2� . �34�

The averages �y� and �uy� have the same expressions as Eqs.
�30� and �31�, respectively, just changing the initial condi-
tions x0→y0 and ux0

→uy0
; both correspond exactly to Chan-

drasekhar’s results. The auto- and cross correlations also re-
duce immediately to the corresponding expressions, when
we recall that in this case 	xuy

=	yux
=0, which means that in

the absence of the magnetic field the processes �x ,uy� and
�y ,ux� become statistically independent as expected.

III. THE OVERDAMPED LIMITING CASE

In the overdamped approximation, or in the limit of large

friction, where ��̄� is large, we can neglect the inertial term in
Eqs. �3� and �4� and therefore the resulting equation on the
complex plane can be written as


̇̄ + �̄
̄ =
A�t�

�̄
, �35�

where

�̄ �
�2

�̄
= �R − i�I, �̄� �

�2

�̄�
= �R + i�I, �36�

and

�R �
��2

�2 + �2 , �I �
��2

�2 + �2 , �37�

which represent the real and imaginary parts of �̄. The solu-
tion of Eq. �35� and its corresponding velocity are immedi-
ately calculated, yielding the following results:


̄ = �
̄� + �
0

t

A�t���̄�t��dt�, �38�

ū
 = �ū
� + �
0

t

A�t���̄�t��dt� +
A�t�

�̄
, �39�

where the deterministic solutions �
̄� and �ū
� are given by

�
̄� = e−�̄t
̄0, �ū
� = − �̄e−�̄t
̄0. �40�

The complex functions �̄�t�� and �̄�t�� are defined as

�̄�t�� =
1

�̄
e−�̄�t−t��, �̄�t�� = −

�̄

�̄
e−�̄�t−t��. �41�

In a similar way, the solutions for the complex conjugates of

̄�t� and ū
�t�, as well as for x�t�, y�t�, ux�t�, and uy�t� are
given in Eqs. �C24�–�C27� of Appendix C. So the statistical
properties of the variables of the system will be calculated in
a similar way as before. The x, y, ux, and uy averages are
shown to be

�x� = e−�Rt�x0 cos��It� − y0 sin��It�� , �42�

�y� = e−�Rt�y0 cos��It� + x0 sin��It�� , �43�

�ux� =
e−�Rt

�2 + �2 	�2�y0� − x0��sin��It� − �2�x0�

+ y0��cos��It�
 , �44�

�uy� = −
e−�Rt

�2 + �2 	�2�x0� + y0��sin��It� + �2�y0�

− x0��cos��It�
 . �45�

Similarly as in the preceding section, we now evaluate the
integrals given in Eqs. �C30�–�C34� to obtain the following
expressions for the variances at two times, that is,

	xx =
kBT

m�2 �e�R�t1−t2� − e−�R�t1+t2��cos �I�t1 − t2� , �46�

	xux
=

kBT

m�e
�e�R�t1−t2� − e−�R�t1+t2��

��cos �I�t1 − t2� −
�

�
sin �I�t1 − t2�
 , �47�

	yux
=

kBT

m�e
�e�R�t1−t2� − e−�R�t1+t2��

���

�
cos �I�t1 − t2� + sin �I�t1 − t2�
 , �48�

	xy =
kBT

m�2 �e�R�t1−t2� − e−�R�t1+t2��sin �I�t1 − t2� , �49�

where �e���1+ �2

�2 � and, according to Eq. �37�, �R=�2 /�e
2

and �I=�2� /��e. Again, if t1= t2= t then the variances re-
duce to

	xx =
kBT

m�2 �1 − e−2�2t/�e� , �50�

	xux
=

kBT

m�e
�1 − e−2�2t/�e� , �51�

	yux
=

kBT

m

�

��e
�1 − e−2�2t/�e� . �52�

Here �e accounts for a redefinition of the friction coefficient
� when the magnetic field is present. This situation can be
understood in the following way. In the absence of the mag-
netic field, it is evident that �e=� and therefore expressions
�50�–�52� reduce, respectively, to

	xx =
kBT

m�2 �1 − e−2�2t/�� , �53�

	xux
=

kBT

m�
�1 − e−2�2t/�� , �54�

and 	xuy
=	yux

=0. Thus, the description of the Brownian
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motion through Eqs. �50�–�52� suggest a redefinition of the
friction coefficient by the value �e.

The reader may notice that we did not give the expres-
sions for the correlation of the velocity; actually is easy to
see that this correlation must have a term proportional to
Dirac’s �. This follows from Eq. �39� since the velocity is
proportional to a combination of the Gaussian white noise,
which is � correlated. A Dirac � in the correlations for the
velocity is a direct result of the approximation done, and
does not correspond to what we obtained without the ap-
proximation. It is to be expected that, although the correla-
tions for x-ux and y-ux remain finite, the comparison with the
exact results may not show agreement. This is actually the
case if one considers the large-time behavior for the exact
result and the overdamped approximation. In Fig. 6 a com-
parison between the exact and the overdamped approxima-
tion results for 	xx

� is shown for � /�=0.01 and different
values of � /�. As is evident from the figure the agreement is
rather good. Notice that for the free-field case 	xx

� is given
equally well by the exact result and the overdamped approxi-
mation; in contrast there is a noticeable difference in the
values for 	xux

� given by the exact result and the overdamped
approximation.

IV. CONCLUDING REMARKS

In this work, we have been able to solve the problem of
Brownian motion of a charged particle in the presence of a
constant magnetic field in a time-independent harmonic well.
The magnetic field is allowed to point along the z axis of a
Cartesian reference frame and, as a consequence of this fact,
two independent processes for the charged harmonic oscilla-
tor occur. One process takes place along the magnetic field
and is described by the Langevin equation �5�. This process
was exactly solved by Chandrasekhar �1� in 1943. The other
one takes place on the x-y plane perpendicular to the mag-
netic field and is described by two coupled Langevin equa-
tions. To solve these equations, we use an alternative method
of solution relying upon a transformation of these two equa-
tions through the change of variables given in Eq. �7�. This
method allows us to establish Eq. �8�, which is then easier to
solve than Eqs. �3� and �4�. We have established the general
auto- and cross correlations at two different times, which are
given in Eqs. �B47�–�B52�. At equal times t1= t2= t Eqs.
�B47�–�B52� reduce, respectively, to Eqs. �26�–�29� whereas
	xy =0 and 	uxuy

=0. Our analytical results have been com-
pared with those calculated by Chandrasekhar, in the absence
of the magnetic field. In this case, the planar-diffusion pro-
cess, on the x-y plane, takes place in an independent way for
each one of the processes, along the x and y axes, as ex-
pected. In the overdamped approximation we have calculated
the same statistical properties, which is easier than in the full
description. Our complete solution can be extended to that
situation for which the particle is in a two-dimensional time-
dependent harmonic well, similar to that studied in Ref. �21�
in the overdamped approximation. Finally, in this large-
friction limit the explicit solution of the Smoluchowski equa-
tion associated with the Jayannavar and Sahoo problem is in
progress.
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APPENDIX A: SOLUTIONS FOR �̄(t)
AND �̄�(t) FUNCTIONS

To calculate the solution of Eq. �8�, we follow the same
method used by Chandrasekhar to solve the one-dimensional
harmonic oscillator �1�; thus, we first calculate its homoge-
neous solution, which is given by


̄h = ā1e�̄1t + ā2e�̄2t, �A1�

where ā1 and ā2 are constant complex numbers, �̄1 and �̄2
are the roots of the homogeneous equation associated with
Eq. �8�, i.e.,

�̄2 + �̄�̄ + �2 = 0, �A2�

and therefore the roots are given by

�̄1 = −
�̄

2
+

�̄1

2
, �̄2 = −

�̄

2
−

�̄1

2
, �A3�

and

�̄1 � ��̄2 − 4�2 = ��2 − �2 − 4�2 + i2�� . �A4�

Now, we suppose that the solution of Eq. �8� is also of the
form of Eq. �A1�, but now assuming that ā1 and ā2 are time-
dependent functions, that is,


̄�t� = ā1�t�e�̄1t + ā2�t�e�̄2t, �A5�

and also satisfy the following condition:

dā1

dt
e�̄1t +

dā2

dt
e�̄2t = 0. �A6�

Substituting Eq. �A5� into Eq. �8�, we have

�̄1
dā1

dt
e�̄1t + �̄2

dā2

dt
e�̄2t = A�t� . �A7�

The solution of the system of equations �A6� and �A7� leads
to

ā1�t� =
1

�̄1 − �̄2
�

0

t

e−�̄1t�A�t�� + ā10, �A8�

ā2�t� = −
1

�̄1 − �̄2
�

0

t

e−�̄2t�A�t�� + ā20, �A9�

where ā10 and ā20 are constant. So the solution of Eq. �8� is
then


̄�t� =
1

�̄1 − �̄2

�e�̄1t�
0

t

e−�̄1t�A�t��dt� − e�̄2t�
0

t

e−�̄2t�A�t��dt��

+ ā10e
�̄1t + ā20e

�̄2t. �A10�

In a completely similar way, we can calculate the solution of
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the Langevin equation for the conjugate variable 
̄��t��x
− iy, which is given by


̈̄� + �̄�
̇̄� + �2
̄� = A��t� , �A11�

where the asterisk stands for the complex conjugate. In this
case, the complex function 
̄��t� and its corresponding veloc-
ity ū


��t�=ux− iuy are given by


̄��t� +
1

�̄1
� − �̄2

�
��
̄0

��̄2
� − ū
0

� �e�̄1
�t − �
̄0

��̄1
� − ū
0

� �e�̄2
�t�

= �
0

t

A��t���̄��t��dt� �A12�

and

ū

��t� +

1

�̄1
� − �̄2

�
��̄1

��
̄0
��̄2

� − ū
0

� �e�̄1
�t − �̄2

��
̄0
��̄1

� − ū
0

� �e�̄2
�t�

= �
0

t

A��t���̄��t��dt�, �A13�

where now the roots

�̄1
� = −

�̄�

2
+

�̄1
�

2
, �̄2

� = −
�̄�

2
−

�̄1
�

2
, �A14�

and

�̄1
� = ��̄�2 − 4�2 = ��2 − �2 − 4�2 − i2�� . �A15�

Here the functions �̄��t�� and �̄��t�� are now

�̄��t�� =
1

�̄1
� − �̄2

�
�e�̄1

��t−t�� − e�̄2
��t−t��� , �A16�

�̄��t�� =
1

�̄1
� − �̄2

�
��̄1

�e�̄1
��t−t�� − �̄2

�e�̄2
��t−t��� . �A17�

Under these conditions, the aforementioned solutions can
be written in shorthand as


̄ = �
̄� + �
0

t

A�t���̄�t��dt�, �A18�


̄� = �
̄�� + �
0

t

A��t���̄��t��dt�, �A19�

and

ū
 = �ū
� + �
0

t

A�t���̄�t��dt�, �A20�

ū

� = �ū


�� + �
0

t

A��t���̄��t��dt�, �A21�

where

�
̄� = 
̄0e−�̄t/2 cosh��̄1t/2� +
�
̄0�̄ + 2ū
0

�

�̄1

e−�̄t/2 sinh��̄1t/2� ,

�A22�

�ū
� = ū
0
e−�̄t/2 cosh��̄1t/2�

−
�ū
0

�̄ + 2
̄0�2�

�̄1

e−�̄t/2 sinh��̄1t/2� , �A23�

�
̄�� = 
̄0
�e−�̄�t/2 cosh��̄1

�t/2�

+
�
̄0

��̄� + 2ū
0

� �

�̄1
�

e−�̄�t/2 sinh��̄1
�t/2� , �A24�

�ū

�� = ū
0

� e−�̄�t/2 cosh��̄1
�t/2�

−
�ū
0

� �̄� + 2
̄0
��2�

�̄1
�

e−�̄�t/2 sinh��̄1
�t/2� . �A25�

APPENDIX B: SOLUTIONS FOR x(t)
AND y(t) FUNCTIONS

By defining the complex functions �̄�t���R�t�+ i�I�t�,
with �R�t� and �I�t� the real and imaginary parts of �̄�t�,
respectively, and similarly for �̄�t���R�t�+ i�I�t�, and also

�̄�t�� � A�t���̄�t��, �̄��t�� � A��t���̄��t�� , �B1�

�̄�t�� � A�t���̄�t��, �̄��t�� � A��t���̄��t�� , �B2�

we can easily show that

�̄�t�� = Re�̄�t�� + iIm�̄�t�� , �B3�

�̄��t�� = Re�̄�t�� − iIm�̄�t�� , �B4�

�̄�t�� = Re�̄�t�� + iIm�̄�t�� , �B5�

�̄��t�� = Re�̄�t�� − iIm�̄�t�� , �B6�

with

Re�̄�t�� = Ax�R − Ay�I, �B7�

Im�̄�t�� = Ax�I + Ay�R, �B8�

Re�̄�t�� = Ax�R − Ay�I, �B9�

Im�̄�t�� = Ax�I + Ay�R. �B10�

However, from Eqs. �16� and �17�, we can also show that
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�R�t�� =
1

�2 + �2 ���R�t,t�� + ��I�t,t��� , �B11�

�I�t�� =
1

�2 + �2 ���I�t,t�� − ��R�t,t��� , �B12�

�R�t�� =
1

�2 + �2 ���R�t,t�� + ��I�t,t��� , �B13�

�I�t�� =
1

�2 + �2 ���I�t,t�� − ��R�t,t��� , �B14�

where

�R�t,t�� =
1

2
�e�̄1�t−t�� − e�̄2�t−t��� +

1

2
�e�̄1

��t−t�� − e�̄2
��t−t��� ,

�B15�

�I�t,t�� = −
i

2
�e�̄1�t−t�� − e�̄2�t−t��� +

i

2
�e�̄1

��t−t�� − e�̄2
��t−t��� ,

�B16�

and

�R�t,t�� =
1

2
��̄1e�̄1�t−t�� − �̄2e�̄2�t−t���

+
1

2
��̄1

�e�̄1
��t−t�� − �̄2

�e�̄2
��t−t��� , �B17�

�I�t,t�� = −
i

2
��̄1e�̄1�t−t�� − �̄2e�̄2�t−t���

+
i

2
��̄1

�e�̄1
��t−t�� − �̄2

�e�̄2
��t−t��� . �B18�

If we now take into account that �
̄�= �x�+ i�y�, �
̄��= �x�
− i�y�, �ū
�= �ux�+ i�uy�, and �ū


��= �ux�− i�uy�, then, from Eqs.
�A18�–�A21� and �B1�–�B6�, we can conclude that the solu-
tions of Eqs. �3� and �4� will be given, respectively, by

x�t� = �x� + �
0

t

Re�̄�t��dt�, �B19�

y�t� = �y� + �
0

t

Im�̄�t��dt�, �B20�

ux�t� = �ux� + �
0

t

Re�̄�t��dt�, �B21�

uy�t� = �uy� + �
0

t

Im�̄�t��dt�, �B22�

where the averages for x, y, ux, and uy will be

�x� = e−�t/2x0�cosh��t/2�cos��t/2�cos��t/2�

+ sinh��t/2�sin��t/2�sin��t/2��

+ e−�t/2y0�cosh��t/2�cos��t/2�sin��t/2�

− sinh��t/2�sin��t/2�cos��t/2�� + e−�t/2�B0 + C0�

��sinh��t/2�cos��t/2�cos��t/2�

+ cosh��t/2�sin��t/2�sin��t/2�� + e−�t/2�D0 − E0�

��cosh��t/2�sin��t/2�cos��t/2�

− sinh��t/2�cos��t/2�sin��t/2�� , �B23�

�y� = e−�t/2y0�cosh��t/2�cos��t/2�cos��t/2�

+ sinh��t/2�sin��t/2�sin��t/2��

− e−�t/2x0�cosh��t/2�cos��t/2�sin��t/2�

− sinh��t/2�sin��t/2�cos��t/2�� − e−�t/2�D0 − E0�

��sinh��t/2�cos��t/2�cos��t/2�

+ cosh��t/2�sin��t/2�sin��t/2�� + e−�t/2�B0 + C0�

��cosh��t/2�sin��t/2�cos��t/2�

− sinh��t/2�cos��t/2�sin��t/2�� , �B24�

�ux� = e−�t/2ux0
�cosh��t/2�cos��t/2�cos��t/2�

+ sinh��t/2�sin��t/2�sin��t/2��

+ e−�t/2uy0
�cosh��t/2�cos��t/2�sin��t/2�

− sinh��t/2�sin��t/2�cos��t/2�� − e−�t/2�F0 + G0�

��sinh��t/2�cos��t/2�cos��t/2�

+ cosh��t/2�sin��t/2�sin��t/2�� − e−�t/2�H0 − I0�

��cosh��t/2�sin��t/2�cos��t/2�

− sinh��t/2�cos��t/2�sin��t/2�� , �B25�

�uy� = e−�t/2uy0
�cosh��t/2�cos��t/2�cos��t/2�

+ sinh��t/2�sin��t/2�sin��t/2��

− e−�t/2ux0
�cosh��t/2�cos��t/2�sin��t/2�

− sinh��t/2�sin��t/2�cos��t/2�� + e−�t/2�H0 − I0�

��sinh��t/2�cos��t/2�cos��t/2�

+ cosh��t/2�sin��t/2�sin��t/2�� − e−�t/2�F0 + G0�

��cosh��t/2�sin��t/2�cos��t/2�

− sinh��t/2�cos��t/2�sin��t/2�� , �B26�

where

B0 �
�

�2 + �2� x0

�
��2 + �2� + 2ux0


 , �B27�

C0 �
�

�2 + �2� y0

�
��2 − �2� + 2uy0


 , �B28�
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D0 �
�

�2 + �2� x0

�
��2 − �2� + 2ux0


 , �B29�

E0 �
�

�2 + �2� y0

�
��2 + �2� + 2uy0


 , �B30�

F0 �
�

�2 + �2�ux0

�
��2 + �2� + 2�2x0
 , �B31�

G0 �
�

�2 + �2�uy0

�
��2 − �2� + 2�2y0
 , �B32�

H0 �
�

�2 + �2�ux0

�
��2 − �2� + 2�2x0
 , �B33�

I0 �
�

�2 + �2�uy0

�
��2 + �2� + 2�2y0
 . �B34�

On the other hand, for the two-time auto- and cross correla-
tions we use the definition established in the text. According
to Eqs. �B7�–�B14� and �B19�–�B22�, it is possible to show
that the variances at two times are

	xx = �x�t1�x�t2�� − �x�t1���x�t2��

= 	yy = �y�t1�y�t2�� − �y�t1���y�t2�� = I�t1,t2� ,

�B35�

	uxux
= �ux�t1�ux�t2�� − �ux�t1���ux�t2��

= 	uyuy
= �uy�t1�uy�t2�� − �uy�t1���uy�t2�� = J�t1,t2� ,

�B36�

	xux
= �x�t1�ux�t2�� − �x�t1���ux�t2��

= 	yuy
= �y�t1�uy�t2�� − �y�t1���uy�t2�� = K�t1,t2� ,

�B37�

	xuy
= �x�t1�uy�t2�� − �x�t1���uy�t2��

= − 	yux
= �y�t1�ux�t2�� − �y�t1���ux�t2�� = L�t1,t2� ,

�B38�

	xy = �x�t1�y�t2�� − �x�t1���y�t2��

= − 	yx = �y�t1�x�t2�� − �y�t1���x�t2�� = M�t1,t2� ,

�B39�

	uxuy
= �ux�t1�uy�t2�� − �ux�t1���uy�t2��

= − 	uyux
= �uy�t1�ux�t2�� − �uy�t1���ux�t2�� = N�t1,t2� ,

�B40�

where

I�t1,t2� =
2�

�2�
0

t1 �
0

t2

��R�t1,t1���R�t2,t2��

+ �I�t1,t1���I�t2,t2���dt1�dt2�, �B41�

J�t1,t2� =
2�

�2�
0

t1 �
0

t2

��R�t1,t1���R�t2,t2��

+ �I�t1,t1���I�t2,t2���dt1�dt2�, �B42�

K�t1,t2� =
2�

�2�
0

t1 �
0

t2

��R�t1,t1���R�t2,t2��

+ �I�t1,t1���I�t2,t2���dt1�dt2�, �B43�

L�t1,t2� =
2�

�2�
0

t1 �
0

t2

��R�t1,t1���I�t2,t2��

− �I�t1,t1���R�t2,t2���dt1�dt2�, �B44�

M�t1,t2� =
2�

�2�
0

t1 �
0

t2

��R�t1,t1���I�t2,t2��

− �I�t1,t1���R�t2,t2���dt1�dt2�, �B45�

N�t1,t2� =
2�

�2�
0

t1 �
0

t2

��R�t1,t1���I�t2,t2��

− �I�t1,t1���R�t2,t2���dt1�dt2�, �B46�

where �2��2+�2. These integrals can be evaluated by us-
ing Eqs. �B15�–�B18�; the result is the following:

	xx =
2�

�2�E1�t1,t2�
� − �

cos��1�t1 − t2�� +
E2�t1,t2�

� + �

�cos��2�t1 − t2�� −
2

�2 + �2 �FRBR − FIBI�
 ,

�B47�

	uxux
=

2�

�2��̄1�̄1
�E1�t1,t2�

� − �
cos��1�t1 − t2��

+ �̄2�̄2
�E2�t1,t2�

� + �
cos��2�t1 − t2�� −

2

�2 + �2 �Re��̄1�̄2
��

��FRBR − FIBI� − Im��̄1�̄2
���FRBI + FIBI��
 , �B48�

	xux
=

2�

�2�−
E1�t1,t2�

2
�cos��1�t1 − t2�� +

� − �

� − �

�sin��1�t1 − t2��
 +
E2�t1,t2�

2
�� + �

� + �
sin��2�t1 − t2��

− cos��2�t1 − t2��
 −
1

�2 + �2 �FRCR − FICI�� , �B49�
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	yux
=

2�

�2�E1�t1,t2�
2

�� − �

� − �
cos��1�t1 − t2��

+ sin��1�t1 − t2��
 −
E2�t1,t2�

2
�� + �

� + �
cos��2�t1 − t2��

+ sin��2�t1 − t2��
 +
1

�2 + �2 �FRDI + FIDR�� , �B50�

	xy =
2�

�2�−
E1�t1,t2�

� − �
sin��1�t1 − t2�� +

E2�t1,t2�
� + �

�sin��2�t1 − t2�� +
2

�2 + �2 �FIER − FREI�
 ,

�B51�

	uxuy
=

2�

�2�− �̄1�̄1
�E1�t1,t2�

� − �
sin��1�t1 − t2��

+ �̄2�̄2
�E2�t1,t2�

� + �
sin��2�t1 − t2�� +

2

�2 + �2 �Re��̄1�̄2
��

��FREI + FIER� + Im��̄1�̄2
���FREI − FIER��
 , �B52�

where �2��2+�2, �1� 1
2 ��−��, �2� 1

2 ��+��, and

E1�t1,t2� � �e−��−���t1−t2�/2 − e−��−���t1+t2�/2� , �B53�

E2�t1,t2� � �e−��+���t1−t2�/2 − e−��+���t1+t2�/2� , �B54�

F1�t1,t2� � �e−��−i���t1−t2�/2 − e−��−i���t1+t2�/2� , �B55�

F2�t1,t2� � �e−��+i���t1−t2�/2 − e−��+i���t1+t2�/2� , �B56�

FR � �ReF̄1 − �ImF̄1, FI � �ReF̄1 + �ImF̄1,

�B57�

ReF̄1 = e−��t1−t2�/2 cos ��t1 − t2�/2 − e−��t1+t2�/2 cos ��t1 + t2�/2,

�B58�

ImF̄1 = e−��t1−t2�/2 sin ��t1 − t2�/2 − e−��t1+t2�/2 sin ��t1 + t2�/2,

�B59�

Re��̄1�̄2
�� =

1

4
��2 − �2� −

1

4
��2 − �2� , �B60�

Im��̄1�̄2
�� = −

1

2
��� − ��� , �B61�

BR � cos���t1 − t2�/2�cosh���t1 − t2�/2� , �B62�

BI � sin���t1 − t2�/2�sinh���t1 − t2�/2� , �B63�

CR � sin���t1 − t2�/2�	� sinh���t1 − t2�/2� + � cosh��

��t1 − t2�/2�
 − cos���t1 − t2�/2�	� cosh���t1 − t2�/2�

+ � sinh���t1 − t2�/2�
 , �B64�

CI � sin���t1 − t2�/2�	� cosh���t1 − t2�/2� + � sinh��

��t1 − t2�/2�
 + cos���t1 − t2�/2�	� cosh���t1 − t2�/2�

+ � sinh���t1 − t2�/2�
 , �B65�

DR � sin���t1 − t2�/2�	� cosh���t1 − t2�/2� + � sinh��

��t1 − t2�/2�
 − cos���t1 − t2�/2�	� cosh���t1 − t2�/2�

+ � sinh���t1 − t2�/2�
 , �B66�

DI � sin���t1 − t2�/2�	� cosh���t1 − t2�/2�
 + � sinh��

�t1 − t2�/2� + cos���t1 − t2�/2�	� sinh���t1 − t2�/2�

+ � cosh���t1 − t2�/2�
 , �B67�

ER � cos���t1 − t2�/2�sinh���t1 − t2�/2� , �B68�

EI � sin���t1 − t2�/2�cosh���t1 − t2�/2� . �B69�

APPENDIX C: SOLUTIONS FOR x(t) AND y(t)
FUNCTIONS FOR LARGE FRICTION

The Langevin equation for the complex function 
̄��t�
reads


̇̄� + �̄�
̄� =
A��t�

�̄�
. �C1�

Thus its solution and its corresponding velocity ū

� read


̄� = �
̄�� + �
0

t

A��t���̄��t��dt�, �C2�

ū

� = �ū


�� + �
0

t

A��t���̄��t��dt� +
A��t�

�̄
, �C3�

such that

�
̄�� = e−�̄�t
̄0
�, �ū


�� = − �̄�e−�̄�t
̄0
�, �C4�

�̄��t�� =
1

�̄�
e−�̄��t−t��, �̄��t�� = −

�̄�

�̄�
e−�̄��t−t��. �C5�

Again, if we define the complex functions �̄�t��=�R+ i�I and

�̄�t��=�R+ i�I, and also

�̄�t�� � A�t���̄�t��, �̄��t�� � A��t���̄��t�� , �C6�

�̄�t�� � A�t���̄�t��, �̄��t�� � A��t���̄��t�� , �C7�

we can show that
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�̄�t�� = Re�̄�t�� + iIm�̄�t�� , �C8�

�̄��t�� = Re�̄�t�� − iIm�̄�t�� , �C9�

�̄�t�� = Re�̄�t�� + iIm�̄�t�� , �C10�

�̄��t�� = Re�̄�t�� − iIm�̄�t�� , �C11�

where

Re�̄�t�� = Ax�R − Ay�I, �C12�

Im�̄�t�� = Ax�I + Ay�R, �C13�

Re�̄�t�� = Ax�R − Ay�I, �C14�

Im�̄�t�� = Ax�I + Ay�R. �C15�

Here the real and imaginary parts of �̄ and �̄ can be written
as

�R�t�� =
1

�2 + �2 �� R�t,t�� + � I�t,t��� , �C16�

�I�t�� =
1

�2 + �2 �� I�t,t�� − � R�t,t��� , �C17�

�R�t,t�� = −
1

�2 + �2 ��
R�t,t�� + �
I�t,t��� , �C18�

�I�t�� = −
1

�2 + �2 ��
I�t,t�� − �
R�t,t��� , �C19�

where

 R�t,t�� =
1

2
�e−�̄�t−t�� + e−�̄��t−t��� , �C20�

 I�t,t�� = −
i

2
�e−�̄�t−t�� − e−�̄��t−t��� , �C21�


R�t,t�� =
1

2
��̄e−�̄�t−t�� + �̄�e−�̄��t−t��� , �C22�


I�t,t�� = −
i

2
��̄e−�̄�t−t�� − �̄�e−�̄��t−t��� . �C23�

Also, in a similar way as was done in Appendix B, the solu-
tions for the real functions x�t�, y�t�, ux�t�, and uy�t� are then

x�t� = �x� + �
0

t

Re�̄�t��dt�, �C24�

y�t� = �y� + �
0

t

Im�̄�t��dt�, �C25�

and

ux�t� = �ux� + �
0

t

Re�̄�t��dt� + !x�t� , �C26�

uy�t� = �uy� + �
0

t

Im�̄�t��dt� + !y�t� , �C27�

where

!x�t� =
�Ax�t� + �Ay�t�

�2 + �2 , �C28�

!y�t� =
�Ay�t� − �Ax�t�

�2 + �2 . �C29�

Also, from Eqs. �C12�–�C19� and �C24�–�C29�, we can show
analogously as in Appendix B that at two times 	xx=	yy
=P�t1 , t2�, 	uxux

=	uyuy
=Q�t1 , t2�, 	xux

=	yuy
=R�t1 , t2�, and

	xuy
=−	yux

=S�t1 , t2�, and 	xy =−	yx=T,where now

P�t1,t2� =
2�

"2�
0

t1 �
0

t2

� R�t1,t1�� R�t2,t2��

+  I�t1,t1�� I�t2,t2���dt1�dt2�, �C30�

Q�t1,t2� =
2�

"2 ���t1 − t2� − �
R�t1,t1�� + 
R�t2,t1���

+ �
0

t1 �
0

t2

�
R�t1,t1��
R�t2,t2��

+ 
I�t1,t1��
I�t2,t2���dt1�dt2�� , �C31�

R�t1,t2� =
2�

"2�
0

t1 �
0

t2

� R�t1,t1��
R�t2,t2��

+  I�t1,t1��
I�t2,t2���dt1�dt2�, �C32�

S�t1,t2� =
2�

"2�
0

t1 �
0

t2

� R�t1,t1��
I�t2,t2��

−  I�t1,t1��
R�t2,t2���dt1�dt2�, �C33�

T�t1,t2� =
2�

"2�
0

t1 �
0

t2

� R�t1,t1�� I�t2,t2��

−  I�t1,t1�� R�t2,t2���dt1�dt2�, �C34�

where "2��2+�2. These integrals can be evaluated with
the help of Eqs. �C20�–�C23�.
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