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Entanglement and classical instabilities: Fingerprints of electron-hole-to-exciton phase transition
in a simple model
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We propose a schematic model to study the formation of excitons in bilayer electron systems. The phase
transition is signalized both in the quantum and classical versions of the model. In the present contribution we
show that not only the quantum ground state but also higher energy states, up to the energy of the correspond-
ing classical separatrix orbit, “sense” the transition. We also show two types of one-to-one correspondences in
this system: On the one hand, between the changes in the degree of entanglement for these low-lying quantum
states and the changes in the density of energy levels; on the other hand, between the variation in the expected
number of excitons for a given quantum state and the behavior of the corresponding classical orbit.
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I. INTRODUCTION

One of the most interesting issues in condensed matter
physics today is the phase transition from the unbound fer-
mionic system, consisting of electron-hole pairs, to a coher-
ent, mesoscopic one, composed of bosonic bound states of
these pairs [1-3]. Recently, Eisenstein and MacDonald re-
ported an experiment in a bilayer system under strong mag-
netic field [4], providing compelling evidence for such a
transition. With this experiment in mind, we propose a model
which allows for an exact numerical solution accounting for
this (fermion-boson) phase transition and its classical limit.
This schematic, physically motivated model proves to be rich
enough to elucidate some of the basic features of this pro-
cess.

A valuable tool to investigate quantum phase transition is
the degree of entanglement of the ground state, as measured,
e.g., by the linear or von Neumann entropies. Investigation
along this line started in the context of spin-1/2 models [5,6]
where it has been noted that the genuine character of a phase
transition can be tested by entanglement [7]. Several other
models were investigated and studies were also performed
on the classical analogs of quantum phase transitions and on
classical instabilities or bifurcations from equilibrium
[8—15]. They are the fingerprint of a phase transition in the
classical context. The first indications of a connection be-
tween qualitative changes in the ground-state entanglement
properties and classical bifurcations were given in Refs.
[12,13]. This connection was further developed in Refs.
[14,15] and [10]. Up to now, there has been however no
analytical proof of such a connection. In all numerical inves-
tigations the pattern is nevertheless the same. Here is how it
works in the quantum case: At a certain value of the coupling
strength there is a rapid decrease in the entropic measures of
quantum correlations. This particular phenomenon has been
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investigated in connection with a larger class of so-called
collective models [10]. Essentially all models in this class
are of direct physical relevance, such as the Dicke maser
model and its superradiant phase transition, the Lipkin model
from nuclear physics describing the phase transition from
spherical to deformed nuclei, and so on.

In this work we propose a schematic model for the
fermion-boson phase transition in the context of the transi-
tion between a state characterized by electron-hole pairs and
that involving excitons. We analyze both its spectral and
classical properties. As expected, the entanglement of the
ground state as a function of the coupling parameter signals
the phase transition. The classical counterpart of the model
exhibits a bifurcation from equilibrium. We also investigate
the relation of a particularly interesting classical orbit—the
separatrix—to the spectral structure around the correspond-
ing energy eigenstate. In the classical limit this trajectory
separates two kinds of motion and occurs at an energy which
may be far from that of the ground state. At this energy the
quantum spectrum presents an inflection point and the linear
entropy also shows a decrease of almost one order of mag-
nitude for the corresponding quantum state. We will show in
what follows a class of phenomena involving not only the
ground state but the entire spectrum and its classical coun-
terpart.

In Sec. II, we present the model, its spectral properties
and the linear entropy as a function of the coupling strength;
we investigate the same property for several states with par-
ticular emphasis on the inflection point, which is related to
the classical separatrix. Section III analyzes the classical ana-
log of the model; concluding remarks are given in Sec. IV.

II. MODEL, SPECTRAL PROPERTIES
AND THE LINEAR ENTROPY

We model the dynamics of the creation of an exciton from
an electron-hole pair via the Hamiltonian
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FIG. 1. Scaled energy spectra E; Xk for (a) 6/g=0, (b) /g
=20, (c) 6/g=50, and (d) &/g=60. The energies are scaled by the
factor 8/(gN>?) in order to be compared with the classical analog.

The total number of fermions is N=1600 in all figures. The arrow
indicates the position of the inflection point.

n/2
H= gE (a}aazab +b'a,a,,) + Ob'D, (1)
a=1

where a, (a;,) is the creation (destruction) operator for the
ath fermion in layer i (i=1,2) and b" (b) is the creation

(destruction) operator for an exciton. The coupling strength g
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FIG. 2. Energy spectra as a function of the coupling parameter
S/g. In (b) the energies are rescaled, by setting the ground-state
level equal to zero for all values of d/g.

measures the rate at which excitons are created. § measures
the energy difference between an exciton and a fermion pair.
Since we have in mind the situation described in Ref. [4], in
which one has electrons in both layers, we take 6>0 and
g>0 in what follows. Noting that the level of the fermion-
pair-to-boson transition is inversely proportional to the ratio
0/ g, we will use this ratio as the coupling parameter.
The operator

2 n/2
N=2> > al a,+2b'b )

=]l a=1

gives the total number of fermions N which is a constant of
motion under the evolution given by Eq. (1). We can there-
fore diagonalize H in the basis {|n,,(N-n,)/2),n,
=2,4,6,...,N}, where n, is the number of fermions and
(N-n,)/2 is the number of bosons. In Fig. 1 we show the
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FIG. 3. Linear entropy (filled squares, left-hand axis) of the
reduced fermionic state and level separation (open squares, right-
hand axis) for the ground state.
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scaled spectrum of the Hamiltonian for several values of 6/ g
as a function of the state label k. For values 6/g<<56 the
spectra have an inflection point at energy zero. As the cou-
pling parameter increases, the inflection point moves toward
lower regions of the spectrum and disappears at a critical
value 6/g=56. The energy at which this inflection point
occurs is always zero and around this value the density of
energy levels is maximal. This is illustrated also in Fig. 2(a),
where we show the change in the quantum spectra as a func-
tion of &/g. If one rescales the energy axis in this figure, by
setting the ground-state level to a constant E, for all values
of 6/g, one can see a hollow in the region around 6/g=56
[Fig. 2(b)]. The same behavior was observed by Heiss and
Miiller [13] in the Lipkin model, as an illustration of a phase
transition. In Fig. 2 it is apparent that the difference between
adjacent levels diminishes around the inflection points. Ac-
tually, this is the quantum counterpart of the fact that the
period of classical orbits in this energy region increases (see
Ref. [10]). Throughout this section we will call “separatrix™
this particular state corresponding to the inflection point; the
reason for this will become clear in the classical analysis,
where we show a one-to-one correspondence between that
quantum state and the classical separatrix, for each value of
the coupling parameter.

Now we connect the entanglement properties with the
states in the spectrum. In order to do this, consider the linear
entropy given by

A=1-trpk, (3)

where pp=trg|@){ ¢y is the reduced fermionic density opera-
tor and | ¢, an eigenstate of Hamiltonian (1). Here, try stands
for the partial trace over the bosonic (excitonic) variables.
Taking |¢,) as the ground state, we see (Fig. 3) a rapid de-
crease in the linear entropy when the coupling parameter 6/g
exceeds 56. In the same figure we show the energy separa-
tion between adjacent levels, AE,=E;,,—E, for k=1. Note
that this quantity follows closely the behavior of the linear
entropy, indicating a correlation between level spacing and
the sudden decrease in entanglement.

Higher states in the spectrum also appear to be sensitive
to the phase transition although to a lesser degree, as can be
seen in Fig. 4. Figures 3 and 4 show that the excited states
behave in a way qualitatively similar to the ground state, as
far as the linear entropy is concerned, albeit not so remark-
ably, since the left-hand scale [1—tr(p?)] changes by one
order of magnitude whereas the right-hand scale (AE}) is the
same. For any excited state in the spectrum with energy be-
low the separatrix energy zero, the change in linear entropy
always occurs when that state becomes the separatrix state,
as 0/ g is increased. In this sense, each excited state up to the
separatrix evidences the phase transition at a corresponding
critical value of the coupling parameter 6/g. The highest
level for which this occurs, k=400, has the behavior shown
in Fig. 4(c). For even higher lying states, as in Fig. 4(d), the
effect disappears (as does the separatrix).

In order to understand what happens with bosons and fer-
mions around the phase transition, we calculate the expecta-
tion value (n,(k)) of the number of bosons in the system for
a given state k. This is depicted in Fig. 5. For the ground
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FIG. 4. Linear entropy (filled squares, left-hand axis) of the
reduced fermionic state and level separation (open squares, right-
hand axis) for excited states E; with (a) k=1, (b) k=300, (c) k
=400, and (d) k=500.

state, which exhibits the transition at /g =56, we expect to
find a large number of bosons for values of /g below this
critical value, while near the transition (n,(1)) experiences a
decrease, with an accompanying increase in the number of
fermions, since the total number of particles is constant [see
Fig. 5(a)]. The same observation can be made for every ex-
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FIG. 5. Expectation value for the number of bosons (n,(k)) as a
function of the coupling parameter /g for states E; with (a) k=1,
(b) k=200, (c) k=400, and (d) k=500.

cited state below the separatrix state, although the effect is
then less pronounced [see Figs. 5(b) and 5(c)]. Figure 5(d)
illustrates the behavior for states above the separatrix, from
where we expect large numbers of excitons for any value of
olg.
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III. CLASSICAL THERMODYNAMIC LIMIT
OF THE MODEL

The classical analog of the model can be obtained as the
thermodynamic limit of Hamiltonian (1). To this end we first
map the creation and destruction operators into an SU(2)
algebra by taking

N
J.=b'b- " (4)
and
Lo

J+=Ji=w)—7bgl a1 aargb’. (5)
In terms of these operators, Hamiltonian (1) is rewritten as
H=g(U NI +0+ NI +11,)+ 8 +1) (©6)

with J=N/4.

The thermodynamic limit is obtained by letting N—
and V—oo with N/V, the density of particles in the system
volume V, being kept constant, and finally by rescaling the
Hamiltonian by N/V. In this classical limit variables are pro-
vided by the usual definitions [16]

J
ji= 1im7k(k= +,-.2) (7)

xX—w

and

1
Je= U+ ) =1 — j2 cos ¢, (8)

where ¢ and j, are canonical conjugate variables.
Finally a classical Hamiltonian is written as

h=2g"N(1 = j.)(1 +j,)cos ¢+ (1 +j,) 9)

with the rescaled constants g'=gV\N/8 and & =6V/4.

Energy surfaces and the classical phase space are shown
in Figs. 6 and 7 for various values of &§'/g’, equivalent to
6/ g for the quantum cases shown in the preceding section.
As expected the phase space is periodic in the variable ¢ and
J. 1s restricted to —1 =j,=1. In these figures we can see two
different dynamical regimes: One is represented by closed
orbits with negative energies encircling the central minimum
at ¢=1r; the other one is represented by closed orbits with
positive energies around the lateral maxima. Separating these
two dynamical regimes is a separatrix (dotted-dashed curve
in Fig. 7) which is always at energy zero, when it exists.

These aspects can be settled analytically via investigation
of the critical points of the function %(¢,j.). These are of
three kinds:

(i) Maxima localized at

o= (4« VIET 2]
(¢9]z)max = 2”’77, —|6- - + - +24 - .

(10)

(ii) Minima localized at
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for &'/ g’<\s"§. These minima turn into saddle points for

Slg' > V8.
(iii) Saddle points at

-16
(.):)saddie = {arccos<?—,),— 1]. (12)
V8¢

As the ratio ¢6'/g’ increases from zero, the energy surface is
lifted and at the value &' /g’ =8 there are no more rggions of
negative energy. For increasing values of §'/g’ > 8, the en-
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FIG. 7. Classical phase spaces for the same values of §'/g’ as
shown in Fig. 6. The orbit associated to energy zero (dotted-dashed
curve) is the separatrix.

ergy surface tends to become a vertical wall with basis at the
line j,=—1. The points (¢,].)saqqe Mark the points in phase
space where the separatrix touches the line j.=—1 and re-
stricts its existence to the interval 0=¢6"/g’ < \8; the sepa-
ratrix disappears for &'/g’ =18.

The behaviors of the classical energy surface and phase
space are in striking correspondence with the observations
made in the preceding section concerning the quantum
fermion-pair-to-boson phase transition.

The separatrix orbit at energy zero is associated with the
quantum “‘separatrix” state given by the inflection point in
the spectrum. In fact, the disappearance of the classical sepa-
ratrix at 8'/g’' =8 provides a more accurate value for the
critical value 6/g at which the quantum ground energy level
becomes the separatrix level, since g=8g'/(VYN) and &
=46"/V. For N=1600 particles, we have &/g=20y8
=56.5685.

The phase transition was seen to be associated to the rapid
decrease, and even absence, of excitons in the system, once a
critical value of the parameter 6/ g is attained. Looking at the
classical phase space, that transition can be anticipated and
explained in the following way. As the ratio &'/g’ is in-
creased from zero, the energy surface is gradually lifted until
&' /g’ =8, when the minimum turns into a saddle point with
energy zero at the line j,.=—1. On the other hand, the classi-
cal analog of the quantum operator b'h, which counts the
number of bosons in the system, is nothing but the function
(I+j,). A similar argument applies to the closed orbits
around the minimum, which correspond to the excited quan-
tum states with energy below zero.

The above correspondence between the quantum energy
level and the classical energy surface, concerning the ex-
pected number of bosons, is verified not only for the separa-
trix energy but for the whole quantum spectrum. In this
spirit, considering departures from the classical line j,=-1,
one can compare, for example, Fig. 5(d) at 6/ g=60 and Figs.
6(d) and 7(d) at &'/g' =4.0.
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IV. DISCUSSION

The model presented in this paper is motivated by an
experiment, reported in Ref. [4], where a peak in electron
tunneling in a bilayer system signalizes a boson-fermion
transition, with a corresponding rapid decrease in the number
of excitons. This quantum phase transition is seen when the
interlayer separation is diminished and goes below a certain
limiting distance, with the system always kept in a half-
filling-per-layer condition, meaning equal number of elec-
trons and holes. This condition can be broken by variations
in field, temperature, or distance between layers, for ex-
ample. In our work we deal with equal number of electrons
and holes and, since our simple model does not account for
factors such as fields nor temperature, it is reasonable to
assume that the coupling parameter g reflects solely the in-
terlayer separation. Concerning the above-mentioned experi-
mental observations, this model shows correspondingly that,
when 6/g exceeds the critical value V“TV—here interpreted
as the separation between layers being reduced below a criti-
cal value—the number of bosons expected for the ground
state experiences a rapid decrease, eventually going to zero
in the limit of vanishing values for g.

From the point of view of the classical analysis, it is con-
jectured in Ref. [15] that, whenever a fixed point in phase
space undergoes a supercritical pitchfork bifurcation at some
critical value of the coupling parameter, the corresponding
quantum ground state shows maximum entanglement. Al-
though in our work we do not see the emergence of two new
fixed points for &'/g’ > 8, characteristic of the pitchfork
bifurcation, we indeed have a loss of stability, with the mini-
mum [Eq. (11)] turning into a saddle point. As we observed,
at this critical value the linear entropy A [Eq. (3)] for the
quantum ground state attains a plateau approaching A=1, its
maximum possible value.

V. CONCLUDING REMARKS

We constructed a schematic physically motivated model
to describe a fermion-boson phase transition in bilayer elec-
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tron systems. The model allows for exact results and we
explore the quantum-classical analogy.

The sudden decrease in the ground-state linear entropy
has been discussed before in several contributions. We have
shown in the present case that not only the ground state but
every state, up to the separatrix energy, signals the phase
transition at a corresponding coupling parameter. When the
state becomes the separatrix state, it also shows a clear and
sudden decrease of the linear entropy as well as the density
of levels is maximized around its energy. The phenomenon is
less pronounced than in the ground state but physically ro-
bust. These results are in accordance with those found in
Refs. [13,17] for the Lipkin model and in Ref. [18] for col-
lective vibrations of nuclei, and we believe similar results to
be valid for others collective models [10,11] in which phase
transitions have been studied.

Also the quantum-classical correspondence shows itself
clear and wide ranging in this model, going from the role of
the classical separatrix orbit as indicative of the phase tran-
sition to the direct representation of the number of bosons in
the quantum system as one of the classical variables. Apart
from particular aspects of the model, the classical analogy
here presented suggests that the separatrix orbit can provide
important information on the quantum transition and de-
serves a better understanding of its role.

From another point of view, it is clear that here we deal
with noninteracting excitons. A repulsive interaction between
these particles can be treated with no special difficulty with
the inclusion of a term such as (bb)? in the Hamiltonian.
Work along these lines is presently in progress.
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