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There is growing interest in studying the role of connectivity patterns in brain functions. In recent years,
functional brain networks were found to exhibit small-world properties during different brain states. In previ-
ous studies, time-independent networks were recovered from long time periods of brain activity. In this paper,
we propose an approach, the event-related networks, that allows one to characterize the dynamical evolution of

functional brain networks in time-frequency space. We illustrate this approach by characterizing connectivity
patterns in magnetoencephalographic signals recorded during a visual stimulus paradigm. When compared with
equivalent random and regular networks, the results reveal that functional connectivity varies with time and
frequency during the processing of the stimulus, while maintaining a small-world structure. This approach may
provide insights into the connectivity of other complex and spatially extended nonstationary systems.
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Empirical studies have led to the hypothesis that transient
synchronization between distant and specific neural popula-
tions underlies the integration of neural activities as unified
and coherent brain functions [1]. Thus, specialized brain re-
gions would be largely distributed and linked to form a dy-
namical weblike structure of the brain [2]. An important
question is whether this transient connectivity has a func-
tional role in brain processes, such as the ongoing awareness
of sensory stimuli or perception.

In recent years, complex networks have provided an in-
creasingly challenging framework for the study of collective
behaviors based on the interplay between complexity in the
wiring architecture and dynamical properties of the coupled
units [3]. For brain networks, anatomical connectivity was
found to exhibit small-world features that can neither be cap-
tured by regular connectivity models as lattices, nor by ran-
dom configurations [4—6]. Small-world (SW) networks are
characterized by a small average distance between any two
nodes while keeping a relatively highly clustered structure
[4]. Thus, SW architecture is an attractive model for brain
connectivity because it leads distributed neural assemblies to
be integrated into a coherent process with an optimized wir-
ing cost [7].

Recent studies have attempted to characterize functional
connectivity (patterns of statistical dependencies) observed
between brain activities recorded by electroencephalography
(EEG), magnetoencephalography (MEG), or functional mag-
netic resonance imaging (fMRI) techniques [8,9]. Surpris-
ingly, functional connectivity patterns obtained from MEG
and EEG signals during different pathological and cognitive
neurodynamical states were found to display SW attributes
[9]; whereas functional patterns of fMRI often display a
structure formed by highly connected hubs, which yield an
exponentially truncated power law in the degree distribution
(8]

In functional networks, two different nodes (electrodes
and voxels or source regions) are supposed to be linked if
some defined statistical relation exceeds a threshold. Regard-
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less of the modality of recording activity (EEG, MEG, or
fMRI), topological features of functional brain networks are
currently defined over long periods of time, neglecting pos-
sible instantaneous time-varying properties of the topologies.
Nevertheless, evidence suggests that the emergence of a uni-
fied neural process is mediated by the continuous formation
and destruction of functional links over multiple time scales
[1,2,10].

In this paper, we propose a method, the event-related net-
works (ERNs), that allows characterizing the dynamic evo-
lution of functional brain networks in the time-frequency
space. We illustrate this approach by characterizing connec-
tivity patterns extracted from MEG data recorded from epi-
leptic patients during a visual stimulus paradigm. The results
reveal that brain connectivity patterns vary with time and
frequency, while maintaining a small-world structure.

The scheme depicted in Fig. 1 illustrates the basic steps of
our approach: (a) the relations between different brain re-
gions are first defined in the time-frequency space, (b) a sta-
tistical criterion is then used to define a functional connec-
tivity matrix for each time-frequency point, and (c)
topological attributes are extracted from connectivity pat-
terns to obtain a time-frequency characterization of brain net-
works. To assess the SW behavior of brain connectivity,
functional networks are compared with equivalent regular
and random networks.

Here, we discuss functional connectivity patterns associ-
ated with dynamic brain processes elicited by the repetitive
application (trials) of a external visual stimulus [11]. In this
paper, we define the functional links in brain signals by
means of the phase-locking value (PLV) computed between
all pairs of sensors [13]. By means of a complex wavelet
transform an instantaneous phase ¢"*(z,f) is obtained for
each frequency component of signals i=1,...,M at each trial
[14]. The PLV between any pair of signals (i,k) is inversely
related to the variability of phase differences across trials:
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FIG. 1. (Color) Extraction of the event related brain networks:
(a) from time-frequency relations between all pairs of signals (b)
functional connectivity matrices are extracted at each point of the
time-frequency plane, defining (c) the functional brain networks.
See details in the text.
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where N, 15 the total number of trials. If the phase differ-
ence varies little across trials, its distribution is concentrated
around a preferred value and PLV ~ 1. In contrast, under the
null hypothesis of a uniformity of phase distribution, PLV
values are close to zero.

Finally, to assess whether two different sensors are func-
tionally connected, we calculated the significance probability
of the PLV values by a Rayleigh test of uniformity of phase.
According to this test, the significance of a PLV value deter-
mined from N, can be calculated as p=exp(~Ny;,PLV?)
[15]. To correct for multiple testing, the false discovery rate
(FDR) method was applied to each matrix of PLV values
[16]. With this approach, the threshold of significance was
set such that the expected fraction of false positives is re-
stricted to ¢=<0.05.

Once the functional networks are determined, their topol-
ogy is studied. To characterize the topological properties of a
network, a number of parameters have been described [3].
Here we use three key parameters: mean degree (K), cluster-
ing index C, and global efficiency E. Briefly, the degree k; of
node i denotes the number of functional links incident with
the node and the mean degree is obtained by averaging k;
across all nodes of the network. The clustering index quan-
tifies the local density of connections in a node’s neighbor-
hood. The clustering coefficient ¢; of a node i is calculated as
the number of links between the node’s neighbors divided by
all of their possible connections and C is defined as the av-
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erage of ¢; taken over all nodes of the network [4]. The
global efficiency E provides a measure of the network’s ca-
pability for information transfer between nodes and is de-
fined as the inverse of the harmonic mean of the shortest path
length L;; between each pair of nodes [6]. The local effi-
ciency E; of the ith node is likewise defined as the inverse of
the harmonic mean of the minimum path length between
node i and all other nodes in the network.

To assess the small-world behavior of functional net-
works, we perform a benchmark comparison of the func-
tional connectivity patterns [4]. For this, the clustering and
efficiency coefficients of functional networks are compared
with those obtained from equivalent random and regular con-
figurations. Regular networks were obtained by rewiring the
links of each node to its nearest (in the sensor’s space) neigh-
bors, which yielded a nearest-neighbor connectivity with the
same degree distribution as the original network. To create
an ensemble of equivalent random networks we use the al-
gorithm described in [4]. According to this procedure, each
edge of the original network is randomly rewired avoiding
self- and duplicate connections. The obtained randomized
networks thus preserve the same mean degree as the original
network, whereas the rest of the wiring structure is random.

To illustrate our approach, we consider the brain re-
sponses recorded during the visual presentation of unfamiliar
pictures. Although our approach is applicable to any of the
functional methods available (EEG, fMRI, and MEG), here
we use the magnetoencephalography. This modality of acqui-
sition has the major feature that collective neural behaviors,
as synchronization of large and sparsely distributed cortical
assemblies, are reflected as interactions between MEG sig-
nals [12]. In this experiment, a collection of 48 simple struc-
tural images and scrambled images were randomly shown to
patients during 150 ms with an interstimulus interval of 2 s.
Patients were required to respond by pressing a button each
time an image was perceived. The event-related brain re-
sponses were recorded (from two patients who gave in-
formed consent) with a whole-head MEG system (151 sen-
sors; VSM MedTech, Coquitlam, BC, Canada) digitized at
1.25 kHz with a bandpass of 0—200 Hz.

Figure 2 shows the topological attributes of functional
networks elicited by the unexpected images. Pictures show
the values of the mean degree, clustering index, and effi-
ciency of networks, calculated at each point in the time-
frequency space, between 600 ms before and 1 s after the
onset of the stimulus. In the construction of all networks, a
functional connection between two sensors was assumed as
an undirected and unweighted edge. Topological features can
also be straightforwardly generalized to weighted networks
[17]. Nevertheless, qualitative similar results (not reported
here) were obtained for weighted networks with a functional
distance between nodes given by 1-PLV.

The first crucial observation is that functional connectiv-
ity patterns are not time invariant, but instead they exhibit a
rich time-frequency structure during neural processing. All
topological features (especially (K) and C) exhibit high val-
ues in a frequency band close to 10 Hz, which is a spectral
component mostly involved in the processing of visual infor-
mation [11]. Whereas the functional networks in the fre-
quency range of 10-30 Hz display large patterns of
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FIG. 2. (Color) Time-frequency maps of topological features extracted from brain networks associated with a visual stimulus presentation
(arriving at t=0). (a) Mean degree (K), (b) clustering index C, and (c) efficiency E. The reported values refer to the average over two
subjects. Dotted lines outline the regions revealing a significant change from the prestimulus region.

synchronization/desynchronization before the stimuli, a
highly connected pattern is induced by the stimulus at about
250 ms and between 15 and 25 Hz, which suggests a con-
nectivity induced by the unexpected sensory stimuli. This is
followed by weak connected structures at frequency bands
close to 7 and 15 Hz arising during the poststimulus activi-
ties and marking the transition between the moment of per-
ception and the motor response of the subject. The topologi-
cal features of these connectivity patterns were detected as
statistically different from the prestimulus epoch by a Z-test
corrected by a FDR at ¢ =<0.05. Brain activities above 30 Hz
are characterized by poor global connectivity.

The evolution of functional brain networks is further il-
lustrated in Fig. 3. Local parameters—&%;, ¢; and E—for each
sensor of the network are shown at three different time in-
stants for a frequency of 20 Hz. During the processing of the
stimulus, a time-space variability of connectivity is observed.
Before the onset of the stimulus, the networks are character-
ized by very sparse connectivity. Then, a clear clustered
structure triggered by the stimulus appears at =250 ms,
which defines two main regions (frontal and occipital) with a
high density of connections. After the stimulus, the func-
tional wiring again displays a sparse structure.

The comparison of the brain networks against random and
regular configurations is shown Fig. 4. Typically, small-
world networks exhibit a Egy greater than regular lattices,
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but less than random wirings E, < Eqw < E,,q; While for the
mean cluster index, C,,q<Csw<C, is expected [4]. The
results reveal that, despite the variability observed, func-
tional networks display a topology different from regular and
random networks. Namely, ﬁ >1 and ﬁ <1, which in-

dicates a SW structure ({...) stays for an averz<1§e over the

ensembles of equivalent networks). Further, E‘O <1 and
Eng) > 1 support the hypothesis of SW connectivity.

EIt is important to emphasize that, in contrast with previous
studies which have focused on time-invariant networks [8,9],
our results reveal dynamical small-world connectivity at
multiple time scales [18]. This is a remarkable result, insofar
as it suggests that the processing of a stimulus involves op-
timized (in a SW sense) functional integration of distant
brain regions by dynamic reconfiguration of links.

In conclusion, we address a fundamental problem in com-
plex networks research: whether the ongoing dynamics of a
complex system is correlated with changes in its connectivity
patterns. We propose a methodology to study the time-
frequency dependencies of functional brain networks, offer-
ing an instantaneous description of the brain architecture.
Applied over a visual stimulus paradigm, the exposed frame-
work reveals that functional brain connectivity evolves with
a small-world structure during different episodes of the neu-
ral processing.

The conclusions of our study provide meaningful insights
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FIG. 3. (Color) Upper row: time evolution of the (a) mean degree (K), (b) clustering index C, and (c) efficiency E parameters for a
frequency f=20 Hz. Lower row: topographic distribution of the local parameters for the same frequency at three different time instants

(indicated by the vertical dashed lines).
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FIG. 4. (Color) Comparison of functional networks with random
and regular configurations: time-frequency maps of (a) C/{Cy,), (b)
C/{Cppa)» (¢) (El)/E, and (d) (Eq)/E. Results of equivalent ran-
dom and regular networks refer to the average of 20 realizations.

into how brain networks can efficiently manage local pro-
cessing and global integration for the transfer of information
and are capable of adapting to satisfy changing neural de-
mands. Although the neurophysiological mechanisms in-
volved in the functional integration of distant brain regions
are still largely unknown, a dynamic SW organization is a
plausible solution to the apparently opposing needs of local
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specificity of activity versus the constraints imposed by the
coordination of distributed brain areas. The evidence of a
time-varying SW connectivity might thus provide some hints
for the modeling of neural dynamics with dynamical net-
works.

The present work was performed on MEG data in sensor
space, which contains some inherent spurious correlations
between magnetic fields on the surface of the brain. Al-
though this caveat does not affect the characterization of the
global network topology, future work will include a source
reconstruction of the activity in the cortex, which will allow
accurate inferences about anatomical locations. In this study,
we have reduced the influence of spurious correlations by
simply excluding the nearest sensors from the computation
of PLV values.

Applied to other multivariate data, our approach could
provide insights into the structure of the time-varying con-
nectivity at a certain time. In this study, functional links have
been defined by means of the phase-locking value. We no-
tice, however, that other time-frequency methods (e.g.,
wavelet cross-spectra) can also be used to detect and charac-
terize a time-varying connectivity of spatially extended non-
stationary systems (e.g., financial or epidemiological net-
works).
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