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Entangled polymer melts exhibit a variety of flow instabilities that limit production rates in industrial
applications. We present both experimental and computational findings, using flow of monodisperse linear
polystyrenes in a contraction-expansion geometry, which illustrate the formation and development of one such
flow instability. This viscoelastic disturbance is observed at the slit outlet and subsequently produces large-
scale fluid motions upstream. A numerical linear stability study using the molecular structure based Rolie-Poly
model confirms the instability and identifies important parameters within the model, which gives physical
insight into the underlying mechanism. Chain stretch was found to play a critical role in the instability
mechanism, which partially explains the effectiveness of introducing a low-molecular weight tail into a poly-
mer blend to increase its processability.
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There are numerous types of experimentally observed in-
stability in polymer melt flow; a recent review �1� highlights
three forms observed in extrusion that occur at increasing
rates of flow. The first two are “sharkskin” instabilities,
which develop due to free surface effects, and “stick-spurt”
or “stick-slip” instabilities, which result from material com-
pression and stick slip at the wall. While the mechanisms
underlying the formation of these first two are relatively well
understood �2,3�, the third class, termed “volume instability,”
is less so �4�. This instability in converging flows for extru-
sion and injection molding has been known for many years,
and an empiricism has been developed. But as yet there is no
understanding of the underlying physics of the problem, and
the inherent connection between the viscoelastic instability
and the molecular polymer dynamics. Understanding the un-
derlying physical process would greatly enhance industry’s
ability to define efficient processing conditions.

This Rapid Communication outlines recent work in which
we created an idealized model flow, related to the engineer-
ing flows in that the essential elements are present, but sim-
plified so that the experimental variables are well controlled
and so the whole flow field can be modeled. We have used
molecularly well-characterized materials �building on previ-
ous work for monodisperse materials under tightly controlled
flow conditions �5,6�� so that the connection between vis-
coelastic properties and molecular structure can be main-
tained without empirical fitting. Through these careful ex-

periments and multiscale modeling we have elucidated the
mechanism of instability.

These experiments were performed in a multipass rheom-
eter �7� using the rounded 7:1:7 contraction-expansion slit
geometry outlined in Fig. 1. The narrowed region of the slit
has length X=1.5 mm and width Z�1.4 mm, with rounded
corners of radius R=0.375 mm. The upstream and down-
stream regions are 10 mm square in cross section.

Flow-induced birefringence �FIB� was used to identify the
transient development of stress for five materials with mo-
lecular weight �MW� ranging from 110–523k. The flow in-
stability, shown in Fig. 2, was observed for the three highest
molecular weight materials, and was similar to that previ-
ously observed in bright field �6�. It is seen to originate at the
slit outlet and propagate back upstream over time.

Analysis of the experimental work was performed to in-
vestigate the critical parameters for instability using Weis-
senberg numbers to characterize both the material molecular
chain stretch and molecular orientation within the flow. This
dimensionless number is defined as the apparent wall shear
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FIG. 1. �Color online� A schematic illustration of the experimen-

tal geometry used in this work.
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rate �̇=6Q /Z2D, where Q is the volumetric flow rate, mul-
tiplied by either the Rouse time ��R� for molecular chain
relaxation, WeR= �̇�R, or the reptation time ��d� for molecu-
lar orientation relaxation, Wed= �̇�d. The ratio of these num-
bers, �d /�R, is a function of the polymer molecular weight. A
Weissenberg number above one corresponds to chain stretch
�for WeR� or molecular orientation �for Wed� within the flow.
In this study flow instabilities were only observed at flow
rates where both Weissenberg numbers were above one.
Temperature was used as a variable parameter to process the
different molecular weight materials at similar �d and �R to
determine any clear trend for instabilityonset in relation to
these two relaxation times. Example results are shown in Fig.
3, which plots the parameter space of molecular weight, rep-
resented by �d /�R, and the material deformation defined by
WeR. It illustrates the region in which instabilities are ob-
served, and clearly highlights that for low ratios of �d /�R the
instabilities are not observed even at high rates of deforma-
tion in this flow geometry. From this and a similar plot of
�d /�R against Wed, there is no simple criterion for instability
in terms of one critical Weissenberg number WeR or Wed.

Numerical modeling focused on the linear stability prop-
erties of the flowing system, in which the base flow was
assumed to be two dimensional and stability to three-
dimensional perturbations was studied. Although linear sta-
bility is not guaranteed to identify all instabilities �some vis-
coelastic instabilities are inherently nonlinear �8��,

experiments suggest that the melt instability we are pursuing
does have linear onset. We model the polymer using the
Rolie-Poly model �9�, currently the most advanced differen-
tial formulation of the Doi-Edwards tube model for linear
polymer melts that is also compact enough to be computable
in finite element complex flow calculations. It incorporates at
the level of two modes per chain the processes of reptation,
convective constraint release �CCR� �10�, chain stretch, and
retraction. We use a multimode version incorporating a sol-
vent viscosity term �without inertia�,

� · u = 0; − �p + ��2u + �
i

Gi� · �i = 0, �1�

D�i/Dt = � · �i + �i · �� − �d,i
−1��i − I�

− 2�R,i
−1�1 − Si

−1/2���i + �*Si
−1/2��i − I�� �2�

where u is the fluid velocity, p pressure, � the velocity gra-
dient, and 3Si is the trace of the polymer stress tensor �i for
each mode. The physical parameters are � �effective solvent
viscosity�, Gi �modulus of each mode�, �R,i �Rouse time for
each mode�, �d,i �reptation time for each mode�, and �*

�CCR parameter�.
We considered three levels of numerical modeling for

each material: �A� the simplest model, a single Rolie-Poly
mode with no solvent viscosity; �B� a single Rolie-Poly
mode with solvent viscosity; and �C� solvent viscosity plus
two Rolie-Poly modes. In each case the values of the physi-
cal parameters were obtained, as in earlier studies �5,11�,
from fitting to the full Likhtman-McLeish model �12� of the
chosen molecular weight linear polymer.

The steady base flow was found using a semistaggered
finite volume method, similar to earlier work �13� but using
Newton’s method rather than time-dependent calculation. If
the underlying flow is unstable, time-dependent simulations
will never find a steady state. Similar time-dependent calcu-
lations have been carried out by Alves et al. using the Phan-
Thien Tanner model �14�. To calculate the stability properties
of this solution, we linearized equations �1� and �2� for small
�lower case� perturbations about the �upper case� base solu-
tion ��x ,y ,z , t�=�0�x ,y�+��x ,y�exp�ikz+�t�. The solution

Flow

(a)

(b)

FIG. 2. �Color online� FIB images of the 488k MW material at
180 °C, illustrating elements of the flow instability. The images are
presented at two sequential times �a� and �b�, half an oscillation
period apart. At each time a magnified downstream image is shown
on the right. Static photographs alone do not capture the form of the
instability well; the detailed form is much more evident from ob-
serving a video sequence. The disturbance is first observed down-
stream of the contraction, and manifests as an oscillation of the
fringe pattern perpendicular to the bulk flow; this is characterized
by lateral movement of the elliptical zero stress eye, seen in the
images on the right. It then propagates upstream and influences the
upstream stress pattern, producing oscillations similar to those seen
downstream. Flow is from left to right. Apparent wall shear rate
�̇=3.6 s−1; Weissenberg numbers WeR=1.6, Wed=73.
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FIG. 3. Processing stability map of the ratio of relaxation times
with respect to Rouse time Weissenberg number highlighting the
parameter space in which instabilities were observed. Solid symbols
represent unstable flows.
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vector � consists of all the flow variables �u , p ,�i�. The
linearization results in a generalized eigenvalue problem for
��x ,y� and �,

���x,y� = L„�0�x,y�;�x,�y,k…��x,y�

where L is a linear operator acting on the perturbation �.
This is a standard technique; Smith et al. �15� have applied it
to viscoelastic systems using a finite-element solver for the
base flow. We solve the linear system by the shift-invert Ar-
noldi method, looking for the eigenvalues with largest real
part, and the system is unstable if one or more eigenvalue
has a positive real part. The numerical method is described
more fully in �16�; the results we present here are robust to
mesh refinement. The period of oscillation of an unstable
mode is given by 2� / Im��� and the wavelength in the out-
of-plane direction by 	=2� /k.

Both the experimental 7:1:7 and benchmark 8:1:8
contraction-expansion geometries were modeled using a
two-dimensional mesh, and their results are essentially
equivalent. In each case the inlet and outlet regions have
length 17 mm with periodic boundary conditions connecting
the two ends. The highest molecular weight material �523k
MW, with �A� relaxation times �R�1 s and �d�53 s at
170 °C� was used as a case study material for numerical
modeling. Its parameters �C� are

G1 = 1.132 
 105 Pa, G2 = 42250 Pa,

�d,1 = 27.1 s, �d,2 = 2.17 s,

�R,1 = 0.4907 s, �R,2 = 0.1356 s,

� = 9894 Pa s, �* = 0.283.

With this technique an instability was found at a reptation
Weissenberg number �̇�d,1=120, corresponding to an appar-
ent wall shear rate of �̇�4.4 s−1. The same experimental
instability was observed at an apparent wall shear rate of
�̇�1.9 s−1. Partial explanations for this discrepancy are that
the numerical study does not exactly capture the lowest un-
stable flow rate �̇c but instead simply demonstrates instabil-
ity at some flow rate �̇��̇c; or from three-dimensional ef-
fects �as the numerical study assumes a channel of infinite
depth�.

We shifted all time scales and moduli to the experimental
temperature of 180 °C by standard Williams-Landel-Ferry
�WLF� shifting, using WLF parameters for polystyrene taken
from the literature �17,18�; with this method the instability
onset at 180 °C is predicted to be at �̇�12 s−1 compared
with the experimental observation of �̇�3.6 s−1; note that
time-temperature superposition does not work perfectly on
the experimental critical flow rate �the result at 170 °C
would suggest a critical apparent wall shear rate at 180 °C
closer to �̇�9.8 s−1� so we would not expect a perfect match
between idealized numerical calculations and the experi-
ments. Nonetheless these results are impressive: no artificial
adjustments of parameters have been made here, and these
calculations are really ab initio predictions. However, stabil-
ity results can depend in subtle ways on constitutive details

�19� so it is still possible that our computational results are
specific to the Rolie-Poly equation. Nonetheless, our predic-
tion of critical flow rate is relatively good, particularly at
170 °C, as is the form of the unstable flow, as we shall see
later.

The wavelength of the numerically calculated unstable
perturbation in the out-of-plane direction is 	=44 mm, much
longer than any of the characteristic length scales of the
problem, including the experimental slit depth. In essence,
we would expect to see exactly the same mode of instability
if we were to consider a perturbation entirely in the plane of
flow �equivalent to a perturbation having infinite 	 and hence
two-dimensional flow�. This makes it unlikely that the
mechanism of instability is related to the interaction of nor-
mal stresses with curved streamlines �20�, as that well-
characterized instability is fully three dimensional. A recent
paper by Alves and Poole �21� uses scaling laws based on the
curved streamline mechanism to explain a steady, purely
two-dimensional “divergent flow” phenomenon in a smooth
contraction-expansion flow; we believe that the oscillatory
instability we observe is qualitatively different and derives
from a different physical mechanism.

Figure 4�a� shows streamlines for the perturbation flow
just above the critical We. The shading represents the flow in
the direction of the base flow: this is asymmetric across the
slit, indicating a circulation region just downstream of the
contraction. It is the effect of this circulation on the zero-
birefringence point in the flow that causes the experimentally
observed “side-to-side” motion.

The period of oscillations predicted by the numerical
study at 170 °C is around 19 s, which corresponds well with
the value of �13 s seen just above the critical experimental
Weissenberg number. The flow component of the extra stress
from the first Rolie-Poly mode, which is the dominant mode
in this flow, is illustrated for the unstable perturbation in
4�b�. This, too, is antisymmetric across the channel, and the
largest changes in both stress and vertical velocity due to the
instability occur just downstream of the contraction, where
the experimental instabilities are first observed. From this we
conclude that the instabilities observed by our numerical

(a)

(b)

FIG. 4. �Color online� The unstable perturbation flow for the
two-modes plus solvent Rolie-Poly model of the 523k MW fluid at
170 °C, with �̇�d,1=120 and k=0.1. �a� Streamlines and shading
representing the velocity in the principal flow direction; note the
strong circulation region just downstream of the contraction. �b�
Plot of the perturbation to the xx component of the first �dominant�
Rolie-Poly mode. Note again the dominant region downstream of
the contraction.
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technique are physical, as they relate directly to the experi-
mental results.

In order to elucidate the mechanism of the instability, the
computational code was applied to a simpler �B� version of
the 523k MW fluid,

G = 1.104 
 105 Pa, � = 3.070 
 104 Pa s,

�d = 27.1 s, �R = 0.678 s, �* = 1,

for which no instability was found. Probing the numerical
parameter space revealed that instability could be provoked
either by increasing �d /�R by a factor of 20 �consistent with
the trends of Fig. 3, but which would correspond to a much
higher MW than the first unstable experimental material� or
�much more realistically� by reducing the CCR parameter �*

to its �C� value of 0.283. This observation leads us to believe
firstly that, in line with the experiments, this instability is
inherent to entangled melts—i.e., to those with stretch and
orientation processes on different time scales. Secondly, we
believe that the critical physical phenomenon for instability
is the amount of chain stretch �whose relaxation is enhanced
by decreasing �R or by increasing the convective constraint
release by increasing �*�. This mechanism is supported by

the experimental observations that materials with a low ratio
�d /�R, in which relatively little chain stretch occurs, are
stable even at high flow rates. If the molecular weight is too
low, such that the chain stretch relaxes on a time scale simi-
lar to orientation; or in the presence of too much convective
constraint release, then the observed instability does not
manifest itself. These results are a step towards a physical
explanation for the effectiveness of introducing a low-
molecular weight additive into a polymer to increase its pro-
cessability �6�. These molecules effectively increase convec-
tive constraint release of longer molecular weight chains
thereby reducing their chain stretch at a specific flow rate.
The use of molecular constitutive equations of increasing
sophistication together with stability analysis of complex
flow geometries will enable rational process design to avoid
unstable viscoelastic flows.
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