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It is shown that the conventional theory based on the integral equations for the correlation functions of fluid
allows for a reasonable scaling analysis of the critical phenomena. The calculated critical exponents are in
rather good agreement with the experimental data for real media, but some of the exponents �first of all,
Fisher’s exponent �� differ from the values predicted by the three-dimensional Ising model. The possibility to
obtain Ising-like criticality from the statistical theory of fluids means that the latter does not disagree with the
Kadanoff-Wilson-Fisher renormalization group approach.
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The theory of critical phenomena in its modern form ap-
peared after the connection between fluctuations and singu-
larities of thermodynamic functions in the critical point was
established �1–3�, which led to the formulation of the univer-
sality and scaling hypotheses �4,5�. During recent decades,
noticeable successes were achieved in the calculation of the
critical exponents either with the help of the renormalization-
group �RG� and the �-expansion methods �6� �see also the
review article �7�� or by means of numerical calculations for
the three-dimensional �3D� Ising model �see, for example,
�8��. This made it possible to predict, in close agreement with
experiment, the critical behavior of real systems belonging to
the O�1� universality class, which besides the 3D Ising �or
lattice-gas� model includes, in particular, the liquid-gas criti-
cal point and fluid mixture consolute points �see, for ex-
ample, �9��.

However, it seems interesting to develop an approach that
could describe the critical behavior not in the
�4−��-dimensions space �with the extrapolation �→1� but
directly in the 3D space. Although, as long ago as in Ref.
�10�, such an approach was considered actual, at present the
unsolved question is as follows: can we obtain nonclassical
�of Ising-type� critical exponents starting from the integral
equations of the theory of fluids �11�? Moreover, the lack of
progress in attempts to derive the critical scaling character-
istics from these equations led to the appearance of a surpris-
ing statement that the values of the critical exponents are
determined by the behavior of the partition function at small
distances �11�.

In the present paper, we propose an approximate approach
that allows, in principle, to derive the scaling characteristics
of real fluid in the vicinity of its critical point starting from
the equations of the statistical theory of liquids. Here, the
critical exponents are obtained as rational fractions, and their
values �except for Fisher’s exponent �� are in rather good
agreement with the experimental data and with the RG cal-
culations. The results presented below should not be consid-
ered as a suggestion of a new type of critical behavior, but
rather as an analytical investigation of the critical properties
of the systems related to the O�1� universality class that is
sufficiently simple and works directly in 3D space.

As the basis, we shall use the equations �see, for example,
�11��

ln�h�r� + 1� = h�r� − c�r� + B�r� − W�r�/T , �1�

h�r� − c�r� = �� dr�c�r��h��r� − r�� , �2�

which connect the total h�r� and the direct c�r� correlation
functions of a one-component fluid; W�r� is the pair potential
�usually the Lennard-Jones one� of interaction between two
atoms separated by the distance r, T is the temperature, and �
is the atomic density of the fluid. The diagrammatic repre-
sentation of the bridge function B�r� by means of integrals
containing the products of the total correlation functions was
given by Morita and Hiroike �12�. Later on, a number of
approximate expressions for B�r� in a local form were pro-
posed, for example Verlet’s semiempirical closure
B�r�=−�2�r� / �2�1+a��r��� �13�, where a is some empirical
parameter and ��r�	h�r�−c�r� is the so-called indirect cor-
relation function �see also, for example, �11��.

It is obvious, however, that forms of closure such as that
shown above are too simplified. Moreover, even a possibility
to present B�r� near the critical point as a power series over
��r� is a rather essential assumption that is reminiscent of the
Landau expansion with respect to the powers of the order
parameter �14�. But the justification for this assumption is
that by accepting it, we will calculate the nonclassical critical
exponents, the values of which are in agreement with the
experimental ones. Thus, let us represent B�r� as

B�r� = a2�T,���2�r� + a3�T,���3�r� + a4�T,���4�r� + ¯ ,

�3�

where an�T ,�� �n=2,3 ,4 , . . . � are assumed to be some func-
tions of temperature and density.

Equations �1� and �2� together with representation �3� are
enough to analyze the main singularities of the thermody-
namic functions of a one-component fluid in the critical
domain. When approaching the critical point, the asymptotic
�at r→�� behavior of ��r� and h�r� �as well as c�r�� will be
weakly dependent on W�r� �see below�. In this point itself,
i.e., at T=Tc and �=�c �here and below, we designate the
values in the critical point by the subscript “c”�, such a de-
pendence turns out to be absolutely inessential �4,5�; in this*bondvic@mail.ru
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case, the character of the asymptotic behavior of the corre-
lation functions will be determined by the functional form
�3�.

To establish this behavior, let us use the Fourier represen-

tation h̃�k�= �4� /k�
0
�drr sin�kr�h�r� �and, similarly, for c̃�k�

and �̃�k�� in the Ornstein-Zernike equation �2�,

h̃�k� =
c̃�k�

1 − �c̃�k�
. �4�

Now, take into account the fact �see, for example, �15�� that

in the critical point itself h̃c�k� at k→0 diverges as

h̃c�k� =
1

�c
2�c̃c�0� − c̃c�k��

, �5�

whereas c̃c�k� at k→0 tends to the finite value c̃c�0�=1 /�c.
This means that �cc�r� � � �hc�r�� at r→� �15�, so that the
asymptotic expansion �3� in the vicinity of the critical point
will, in fact, be carried out upon the powers of h�r�.

Analyzing Eqs. �1�–�3� in the critical point, we come to
the remarkable conclusion that the slowest—powerlike with
the minimal exponent—asymptotic decay of the function
hc�r� is achieved at quite definite values of the two coeffi-
cients,

a2�Tc,�c� = − 1/2, a3�Tc,�c� = 1/3. �6�

Two conditions �6� corresponding to the vanishing of the
terms �h2�r� and �h3�r� in the asymptotic form of Eq. �1�
allow us to locate, uniquely, the pair of critical values Tc and
�c �cf. �14�, Sec. 143, about the conditions for the isolated
points of a continuous transition in the Landau theory�. An
important feature of our theory is that it actually requires the
coefficient a4�Tc ,�c� not to become −1 /4, unlike the mean-
spherical approximation where B�r�=ln�h�r�+1�−h�r� out-
side the hard-core region of the potential �16�. It is known
�11� that the approximation �16� and others with the state-
independent coefficients �for example, Verlet’s closure,
where a2�T ,��	−1 /2 �13�� do not lead to the Ising-like
critical behavior, whereas the theory developed here does.

Before we address the derivation of the critical exponents,
note the following. The possibility of the realization of con-
ditions �6� means that the form of the surfaces of the corre-
sponding coefficients of expansion �3� in the � ,T space can-
not be absolutely arbitrary. In the opposite case, it could be
that the equations of the theory no longer admit any solution
at some temperature before the coefficients a2�T ,�� and
a3�T ,�� reach the values required by conditions �6�. Al-
though such a case is not excluded, in principle, the experi-
mental fact of the existence of the critical point seems to
support the admissibility of Eq. �6�.

Now, taking into account Eq. �6�, from Eq. �1� one can
easily find the asymptotic behavior,

cc�r� = �a4�Tc,�c� + 1/4�hc
4�r� , �7�

which, as we shall see, is slower than the Lennard-Jones
potential W�r��r−6 at large r. Now, assuming the powerlike
asymptotic dependencies

hc�r� � r−n, cc�r� � r−m, �8�

we obtain the following from Eq. �7�: m=4n �with the sup-
posed m	6, n	3 /2; see below�. On the other hand, at
k→0 we have

h̃c�k� � kn−3, c̃c�0� − c̃c�k� � km−3 �9�

and then Eq. �5� gives m+n=6 �cf. �15��. As a result, we find

n = 6/5, m = 24/5, �10�

which justifies the neglect of W�r� /T when deriving the
asymptotic form of cc�r�.

Thus, the asymptotic behavior of the total correlation
function in the critical point has the form �8� with the expo-
nent n from Eqs. �10� corresponding to Fisher’s critical ex-
ponent

� 	 n − 1 = 1/5, �11�

which we have calculated based, in fact, on representation
�3�.

We emphasize once more that no other pair of values
ai�Tc ,�c�, aj�Tc ,�c� �j
 i=2,3 , . . . � leads to a slower
asymptotic behavior of hc�r� than that corresponding to Eq.
�11�. This means that the pair of values �6� are exceptional
because they must be taking into account the singular char-
acter of the critical point.

As is known �see, for example, �14��, using the relations
between the critical exponents we can express any of them
by means of only two “independent” ones. It is essential that
our approach makes it possible to calculate, independently,
more than two exponents. In order to show this, let us con-
sider our equations at the critical isochore �=�c. Introducing
the designation t	T /Tc−1 and assuming the analytical ex-
pansion of the coefficients in Eq. �3� on t �as in the Landau
theory �14��, we have, to within the main terms,

a2�t,�c� = − 1/2 + â2t, a3�t,�c� = 1/3 + â3t , �12�

where â2 and â3 are some constants. Below, for definiteness,
we shall consider the case t
0.

Let us calculate the critical exponent � characterizing the
temperature dependence of the correlation length rc� t−�.
From Eqs. �1�, �3�, and �12� we find the next asymptotic
form for c�r� at the critical isochore �retaining the main
terms on t→ +0�,

c�r� = â2th2�r� + �a4�Tc,�c� + 1/4�h4�r� . �13�

�Note that a general form of the coefficient at h2�r� in c�r�
had been proposed in Ref. �17�; the structure of the corre-
sponding coefficient in Eq. �13� does not contradict, qualita-
tively, that found in �17�.� Now, as in �14�, we accept
h�r�=hc�r�exp�−r /rc�. Further, from Eq. �4� we have at the
critical isochore for small t,

h̃�0� = −
1

�c
2�c̃�0� − c̃c�0��

. �14�

Because the singular parts of all thermodynamic quantities in
the vicinity of the critical point will be determined by the
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asymptotic behavior of the correlation functions, we obtain
with the help of Eq. �13�

c̃�0� − c̃c�0� = 4��
0

�

dr r2�â2thc
2�r�e−2r/rc

+ �a4�Tc,�c� + 1/4�hc
4�r��e−4r/rc − 1�� .

�15�

It is easy to see that the integral corresponding to the second
term in the curly brackets of the integrand in Eq. �15� is
�1 /rc when rc→�, because 
0

�dr r3hc
4�r� converges at the

upper limit. One can make sure that the integral of the first
term is �trc

3/5. Besides, the explicit calculation gives

h̃�0��rc
9/5. As a result, we have from Eqs. �14� and �15�, to

within the main terms at t→ +0,

rc
−9/5 = Â2trc

3/5 + Â4rc
−1, �16�

where Â2 and Â4 are some constants. From here �assuming
that these constants have opposite signs�, at the critical iso-
chore

rc � t−5/8, �17�

i.e., the critical exponent �=5 /8 �the classical value is 1/2
�14��. Also, taking into account �15� that the isothermal com-

pressibility at t→0 is �T� h̃�0�, we find

�T � t−9/8, �18�

from which the critical exponent �=9 /8 �the classical value
is 1 �14��.

Thus, starting from representation �3�, we have calculated
three critical exponents: �, �, �; in this case, we have not
used any connections between them. The rest of the expo-
nents can be found using the well-known relations �14�;
moreover, our calculated values of �, �, and �, as can be
verified, are consistent with these relations.

In principle, independent calculation of other exponents
can be made within the framework of the approach devel-
oped. This task, however, requires more sophisticated actions
�which will be presented later�.

In Table I, we show the following in conventional nota-
tion: our calculated values of the exponents �those in paren-
theses are recovered using the well-known relations�; the ex-

perimental values for one-component dielectric media �Ar,
Xe, CO2, etc.� and binary critical mixtures; the RG calcula-
tions and the numerical results for the 3D Ising model �8,18�;
and the classical values of the exponents �14�.

First of all, note that our value of � differs sharply from
the value calculated in the framework of the RG approach
�8,18�, but it is within the bounds of the experimental mea-
surements �Table I�. Often, when processing the experimen-
tal data �see, for example, �9,18��, one uses, in particular, the
exponents found for the 3D Ising model, whereas the nu-
merical correction is realized by introducing the additional
�“correction-to-scaling” �7�� terms �38�. In this connection, it
is useful to give a quantitative description of the experimen-
tal data near the critical point of the fluid using only our
values of the critical exponents. In Fig. 1, we show the ex-
perimental values of the light scattering intensity �18� and

their processing by the formula I�t�= I0t−��1+ k̃2t−2��−1+�/2

�18,36� with �=1 /5, �=9 /8, �=5 /8; I0=1.98610−2,

k̃2=1.01210−6 �solid line�.
The analysis of other experiments for fluids �9,18� some-

times demonstrates a tendency to the deviation of the critical
exponents � and � from their values for the 3D Ising model
�see, in particular, Refs. �25,26��.

Thus, in the present paper, based on the assumption that
the bridge function of a fluid can be represented by the
power series over the pair correlation function, we have

TABLE I. The values of the critical exponents.

� � � � � �

This paper �0.125� �0.375� 1.125 �4� 0.2 0.625

Experiment 0.11−0.13a 0.325−0.377b 1.1−1.4c 4.0−4.8d 0.09−0.3e 0.62−0.63f

RG, 3D Ising �0.11 �0.326 �1.24 �4.8 �0.035 �0.63

Classical 0 0.5 1 3 0 0.5

aReferences �9,10,19–22�.
bReferences �9,10,23–30�.
cReferences �9,10,28,29,31,32�.
dReferences �10,23,28–30�.
eReferences �10,23,27,28,31–37�.
fReferences �9,18,22,28,32�.

FIG. 1. The experimental �circles �18�� intensity of light scat-
tered by 3He near the critical temperature; the theoretical curve is
constructed using our exponents �, �, � �see text�.
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demonstrated the calculation of three critical exponents.
Some of the exponents, including those calculated with the
help of the well-known relations, are in close agreement with
the corresponding values for the 3D Ising model; others dif-
fer strongly. Although our calculated value of Fisher’s expo-
nent � deviates noticeably from the prediction of the RG

approach, it is possible to give a good description of the
critical light scattering experiments using the found �. On
the other hand, the possibility to obtain the nonclassical criti-
cal scaling behavior from the theory of fluids means that the
results of this theory do not disagree with the Kadanoff-
Wilson-Fisher RG approach �4,6�.
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