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In this paper the formalism of the electromagnetic inverse source theory is used to investigate radiation
enhancement due to antenna substrates. Particular attention is given to sources that are confined within a
spherical volume and are embedded within two nested spheres of arbitrary materials. Emphasis is given to the
special case when the two nested spheres are made up of materials with oppositely signed constitutive param-
eters. The analysis comprises forward, or radiation, characterization for a given configuration as well as
inverse-theoretic characterization. The forward characterization is focused on the singular-value spectrum of
the linear source-to-field mapping relevant to each configuration while the inverse-theoretic characterization is
performed via the so-called “minimum-energy” sources capable of generating a prescribed exterior field. The
derived formulation is based on constrained optimization and multipole theory. Importantly, it is non-antenna-
specific. Thus, this formulation enables fair comparison of different substrate configurations by comparing
optimal radiation in each configuration �i.e., the “best” in each one�, as governed by a formally tractable
source-energy cost function that is physically motivated by Ohmic loss control. The derived theory is accom-
panied by numerical results illustrating the effects on radiation enhancement of particular substrate designs.
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I. INTRODUCTION

The study of materials exhibiting anomalous responses to
different types of excitation has a long history that dates back
at least to the late part of the nineteenth century �1–3�. How-
ever, it was not until the experimental realization, in 2000, of
a particular type of what are now widely known as metama-
terials, namely, a composite medium exhibiting a negative
index of refraction in the microwave regime �4�, that these
electromagnetically engineered materials really caught the
attention of the scientific and engineering communities.

The utilization of antenna-embedding substrates �and
metamaterials, in particular� to enhance the performance of
an antenna has been investigated by several groups �5–31�.
�An expanded bibliography can be found in Ref. �32�.� Mo-
tivated by the identified possibility of embedding an antenna
in a metamaterial substrate so as to generate a certain field or
performance level that may be unachievable, under compa-
rable physical constraints, i.e., resources, including antenna
size, if radiating in the vacuum, we present in this paper a
non-antenna-specific analysis of radiation and source inver-
sion in substrate media that is a generalization of the scalar
inverse source theory in background media in Ref. �33� and a
continuation and extension of our recent full-vector analysis
in Refs. �34,35�. Unlike Refs. �33–35�, where the focus is
homogeneous substrates, the present study goes a step fur-
ther by addressing an important layered medium that has
been at the heart of key investigations in the field of antenna
substrate enhancement.

In particular, to present our general non-antenna-specific
theory of substrate enhancement in a context that relates to
important work by other groups in this area, particular em-
phasis is given in the following to embedding media formed
by two nested spheres of different materials. This particular
configuration is of great practical importance for both an-
tenna radiation and scattering and hence imaging resolution
enhancement. It enables enhancements that are more dra-

matic than those due to homogeneous substrates. The radia-
tive as well as the scattering properties of a system of two
nested spheres of ordinary materials associated with a dipole
have been considered by several authors �36–39�. These
studies have now been extended to cases where metamateri-
als are present. For instance, Gao and Huang �40� have cal-
culated the extinction efficiency of the core-shell system.
Following the steps of Aden and Kerker �41�, Alù and Eng-
heta �42,43� have looked at the resonant scattering that arises
when the two spheres are constructed by combining a pair of
materials with oppositely signed constitutive parameters. Zi-
olkowski and Kipple �15� have established the reciprocity of
the peculiar scattering properties described by Alù and Eng-
heta �42� and the enhanced radiation power they realized
would occur when an electrically small dipole antenna is
surrounded by a metamaterial shell �9�.

The geometry of the system to be investigated in the fol-
lowing is that of two nested spheres immersed in the vacuum
�refer to Fig. 1�. The inner sphere, of radius a, has relative
electric permittivity �a��sphere /�0 and relative magnetic per-
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FIG. 1. Geometry of the three-region system under consider-
ation. The driving points and material structure of the antenna are
confined within a spherical volume V of radius a. The inner sphere
of radius a has relative permittivity �a and relative permeability �a.
This inner sphere is surrounded by a spherical shell of inner radius
a and outer radius b and has relative permittivity �b and relative
permeability �b. The core-shell system is immersed in the vacuum.
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meability �a��sphere /�0. This inner sphere constitutes the
core of the system and is the smallest spherical volume V
that circumscribes the largest physical dimension of the
original antenna which is treated next, under a suppressed
time dependence e−i�t, as a primary, or impressed, current
density J�r�. The core is surrounded by a spherical shell, of
inner radius a and outer radius b. The relative constitutive
parameters of the shell are relative electric permittivity �b
��shell /�0 and relative magnetic permeability �b��shell /�0.
Thus the resulting three-region system may be characterized
by a total electric permittivity distribution of the form

��r�
�0

= �a��a − r� + �b���r − a���b − r�� + ��r − b� �1�

and a total magnetic permeability distribution of the form

��r�
�0

= �a��a − r� + �b���r − a���b − r�� + ��r − b� ,

�2�

where � denotes Heaviside’s unit step function ���x�=1, for
x�1, otherwise ��x�=0�, and �0 and �0 are, respectively,
the electric permittivity and magnetic permeability of the
vacuum.

The core and the surrounding shell, being assumed to be
generally lossy, are assigned relative constitutive parameters
that are complex. These constitutive parameters are, thus,
assumed to have the generic forms ��=Re����+ i Im���� and
��=Re����+ i Im����, �=a ,b �where a is for the inner
sphere and b is for the outer shell.� Note that the losses are
indicated by the presence of non-negative imaginary parts of
the permittivity and the permeability. �The non-negativity of
Im���� and Im���� is necessary for passive materials.� There
exist different terminologies to describe the different types of
metamaterials, here we adopt the following one: when
Re�����0 and Re�����0 the material is said to be double
positive �DPS�; when Re����	0 and Re����	0 the material
is said to be double negative �DNG�; and when
Re����Re����	0 the material is said to be single negative
�SNG�. �A more detailed terminology labels materials for
which Re����	0 as ENG or �-negative media, and materials
for which Re����	0 as MNG or �-negative media.� These
particular choices for the signs of the constitutive parameters
are required if wave propagation in the medium is to be
causal �44�.

The approach adopted next is to formulate an inverse
source problem in substrate media, whose objective is to
deduce an unknown primary current density J�r� that is con-
tained, along with the substrate, in the spherical volume V,
and that generates a prescribed exterior field for �r��b.
Theoretically, there can be nonradiating source components
�45,46� within the source region. Consequently, if J�r� is a
solution to the inverse source problem then one can add any
nonradiating source to generate another valid solution whose
generated field for �r��b coincides with the desired exterior
field. Thus one must impose additional constraints to guar-
antee the uniqueness of the solution. The most commonly
adopted constraint is that of minimizing the square of the L2

norm of the source �as defined in Eq. �6��, usually termed

“the source energy” in the inverse problems literature. It is at
the heart of the Picard conditions defining the range of the
source-to-field linear mapping from L2 sources to L2 far
fields. It has also been used, recently, in addressing the real-
izability of electromagnetic pulsed beams or wavelet fields
launchable from finite-size sources �47,48�. The solution to
the inverse source problem that minimizes the source energy
is usually termed “the minimum �source� energy solution.” It
is related to the real image field generated by a point-
reference hologram of the field recorded on a closed surface
completely surrounding the source volume �49–51�. The
ability of an antenna to radiate a prescribed field with re-
duced current levels as characterized by this norm is an in-
dication of efficiency which has been used as constraint in
antenna synthesis �52–56�. Reduction of the source energy
also accounts for reduction of Ohmic losses in driving me-
tallic elements, thus this constraint is of both mathematical
convenience as well as physical importance.

A minimized source energy would indicate that the re-
sources of the antenna generating the given field pattern are
optimally used within the prescribed volume of the source.
Furthermore, comparison of the required minimum source
energies for different substrate configurations enables quan-
tification of the enhancement due to such structures. Upon
solving the inverse source problem in these media for the
prescribed exterior fields, one can proceed to tackle the com-
parison of the required resources, embodied in the source
functional energy in the present case, that are needed for the
launching of the given fields. Substrate configurations for
which the required source energy is lower are then more
optimal than alternative configurations which require higher
source energy for the launching of the same fields. This
mathematical framework to characterize substrate enhance-
ment is non-device-specific, in particular, one is then com-
paring the “best” source, which minimizes the required
source energy for the launching of the given field via a given
substrate, versus the “best” source, which minimizes the
source energy for the launching of the same field but at a
different substrate �including the “no-substrate” or free space
case�.

It is important to point out that the present formulation of
the inverse source problem in the two-nested-spheres con-
figuration is also relevant to that of the companion inverse
scattering problem. In fact, it is mathematically equivalent to
that of an inverse scattering problem in which a single inci-
dent field is used as excitation. Hence, the results on the
inverse source problem and on the possibility of extracting
higher spatial frequency information about the unknown ob-
ject thanks to the presence of the embedding medium �33�
also point out the possibility of similarly enhancing imaging
resolution in the associated inverse scattering problem with
helper substrate media. In addressing the inverse source
problem in these media one is automatically paving the way
for inverse scattering formulations in such media. This is
particularly pertinent in the modern context of so-called
qualitative imaging methods based on support estimation of
induced sources and which are noniterative �e.g., linear sam-
pling, factorization method, time-reversal MUSIC, and so
on� �57–59�. Those inverse scattering methods are of the
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so-called “inverse-source” type, in other words, they are
based on a companion inverse source problem.

II. THE RADIATION PROBLEM

The vector wave equation which governs the behavior of
the electric field E�r� produced by a primary current density
J�r� �i.e., the source� confined within the spherical volume V
�of radius a, and centered about the origin� is

� 
 �� 
 E�r�
��r�

� − �2��r�E�r� = i�J�r� . �3�

The outgoing-wave dyadic Green function G�r ,r�� associ-
ated with the partial differential operator in Eq. �3� satisfies,
along with the radiation condition �60�, the differential equa-
tion

� 
 �� 
 G�r,r��
��r�

� − �2��r�G�r,r�� = i���r − r��I ,

�4�

where I denotes the identity dyadic and � the Dirac delta. In
terms of G�r ,r�� the solution of Eq. �3� can be cast in the
form

E�r� = 	
V

dr�G�r,r�� · J�r�� . �5�

It is convenient to define the inner product �f , f��
=
Vdr · f��r� · f��r� where the asterisk � denotes the complex
conjugate, and f and f� are any two functions of position. In
this notation, the square of the L2 norm of the source, also
called “source energy,” is given by

E � �J,J� . �6�

On the other hand, the complex interaction power P �see, for
instance, Refs. �61,62�� is

P = −
1

2
�J,E� . �7�

To formulate the inverse problem for the cases described in
Eqs. �1� and �2� it is necessary to first solve the associated
radiation problem. To accomplish this, we note that in the
exterior region corresponding to �r��b the electric field E�r�
can be represented by the multipole expansion �61,63�

E�r� = �
j=1

2

�
l=1

�

�
m=−l

l

al,m
�j� �l,m

�j� �r� , �8�

where the complex-valued expansion coefficients al,m
�j� are the

multipole moments of the field, and where �l,m
�j� are the mul-

tipole fields given by

�l,m
�j� �r� � �� 
 �hl

�+��k0r�Yl,m�r̂�� , j = 1,

ik0hl
�+��k0r�Yl,m�r̂� , j = 2,


 �9�

where r̂�r /r, hl
�+� denotes the spherical Hankel function of

the first kind and order l �as defined in Ref. �64��, corre-
sponding to outgoing spherical waves, Yl,m is the vector
spherical harmonic of degree l and order m �as defined in
Ref. �63��, and j=1 and j=2 correspond to electric and mag-
netic multipole fields, respectively. Physically, the index l
characterizes the multipolarity �or modal order� of the field;
thus l=1 corresponds to 21-pole �dipole� radiation, l=2 cor-
responds to 22-pole �quadrupole� radiation, l=3 corresponds
to 23-pole �octupole� radiation, and so on. Note that in Eq.
�8� the summation over l starts from l=1 because there are
no vector spherical harmonics of zero degree �63�.

The electric and magnetic multipole moments, al,m
�1� and

al,m
�2�, respectively, are related to the current distribution J by

al,m
�j� = �Bl,m

�j� ,J�, j = 1,2, �10�

i.e., they are the projections of the current distribution J onto
the set of source-free vector fields Bl,m

�j� which need to be
determined for the particular antenna background medium.
These fields are closely related to the familiar source-free
multipole fields that appear in the free-space case �63,65�. It
is shown in the Appendix that for backgrounds whose per-
mittivity and permeability are given by Eqs. �1� and �2� one
has

Bl,m
�j� � �

− 
0

l�l + 1�
Fl

��1� � 
 �jl�ka
�r�Yl,m�r̂�� , j = 1,

− ik0
0

l�l + 1�
Fl

��2�jl�ka
�r�Yl,m�r̂� , j = 2,�

�11�

where jl is the spherical Bessel function of the first kind and
order l �as defined in Ref. �64��, and ka=���a�0�a�0 is the
inner sphere substrate wave number and where we have de-
fined

Fl
�j� � �

− �b

�1k0kba2b2 , j = 1,

− �a�b

�2k0kba2b2 , j = 2,� �12�

where �cf. Equations �26�,�27� in Ref. �41� and Eqs. �8�,�9� in
Refs. �42,43��

�1 = �
0 kbUl�kbb� kbVl�kbb� − k0Vl�k0b�
0 �bjl�kbb� �bhl

�+��kbb� − hl
�+��k0b�

kaUl�kaa� − kbUl�kba� − kbVl�kba� 0

�ajl�kaa� − �bjl�kba� − �bh�+��kba� 0
�

�13�

and
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�2 =�
0 jl�kbb� hl

�+��kbb� − hl
�+��k0b�

0
kb

�b
Ul�kbb�

kb

�b
Vl�kbb� − k0Vl�k0b�

jl�kaa� − jl�kba� − hl
�+��kba� 0

ka

�a
Ul�kaa� −

kb

�b
Ul�kba� −

kb

�b
Vl�kba� 0

�.

�14�

In Eqs. �13� and �14� the quantities Ul and Vl are defined
such that

Ul�kr� �
djl�kr�
d�kr�

+
jl�kr�

kr
�15�

and

Vl�kr� �
dhl

�+��kr�
d�kr�

+
hl

�+��kr�
kr

. �16�

Note that in Eqs. �12�–�14� k0=���0�0 and kb

=���b�0�b�0 are the propagation constants in the vacuum
and in the shell, respectively. Also, it is clear from Eqs.
�12�–�16� that the parameters Fl

�j� are not constants but in fact
functions of several parameters.

It is not hard to show that the terms Fl
�j� reduce to the Mie

amplitudes Fl
�j�, as defined in Refs. �33–35�, when a=b, as

expected. Consequently, they also reduce to unity in the free-
space case, i.e., when a=b, �a=1=�b, and �a=1=�b, caus-
ing Eqs. �11� to reduce to the free-space case equations
�65,66�. Substitution of the associated results into Eq. �10�
completes the description of the forward problem. Armed
with these developments, we are in position to formulate
next the corresponding inverse source problem.

III. INVERSE SOURCE THEORY BASED
ON CONSTRAINED OPTIMIZATION

The inverse source problem of deducing the source J�r�,
confined within V and embedded in a given background me-
dium obeying Eqs. �1� and �2�, from knowledge of the exte-
rior field E�r� for �r��b, or according to the discussion in
Eqs. �A13�–�A16�, the far-field radiation pattern, is seen
from Eqs. �8�, �9�, and �A13�–�A16� to be equivalent to that
of determining the source from knowledge of the multipole
moments, i.e., to that of inverting Eqs. �10�. The respective
inversion is addressed next via a generalization of the free-
space optimization theory in Ref. �67� to nonhomogeneous
backgrounds along lines analogous to those in Refs. �33,34�.
Emphasis is given to the particular case of piecewise-
constant radially symmetric backgrounds, but the derived ex-
pressions apply to more general cases as long as one uses the
appropriate projective wave functions Bl,m

�j� which vary from
a medium type to another.

The problem of determining the minimum-energy source
of support V generating a given exterior field �for �r��b� can
be mathematically cast into an optimization problem whose

solution reduces to the determination of the complex-valued
Lagrange multipliers Cl,m

�j� that extremize the generalized La-
grangian

L = E + 2 Re��
j=1

2

�
l=1

�

�
m=−l

l

Cl,m
�j� �al,m

�j� − �Bl,m
�j� ,J��� , �17�

where the source energy E is defined by Eq. �6�. By requiring
that the first variation of the Lagrangian vanish, one finds
that the minimum-energy source is given by

JME = �
j=1

2

�
l=1

�

�
m=−l

l
al,m

�j�

��l
�j��2Bl,m

�j� �18�

and that the corresponding minimum source energy is

EME = �
j=1

2

�
l=1

�

�
m=−l

l �al,m
�j� �2

��l
�j��2 , �19�

where we have introduced the positive-definite singular val-
ues

��l
�j��2 � �Bl,m

�j� ,Bl,m
�j� � � �Fl

�j��2��l
�j��2, �20�

where

��l
�j��2 ��
0

2	
0

a

dr��jl�kar��2 +
�kar�2

l�l + 1�
�Ul�kar��2� , j = 1,


0
2k0

2

l�l + 1�	0

a

drr2�jl�kar��2, j = 2.�
�21�

In Refs. �34,35� analytical expressions where derived for the
integrals appearing in Eq. �21�, for ka

2�R, by means of Lom-
mel’s second integral. In the general case, however, the com-
plex argument of the Bessel functions makes it necessary to
recur to numerical methods of integration.

We define the dimensionless positive-definite normalized
singular values

��l
�j��2 �

��l
�j��2

��l
�j��free-space case��2 , �22�

where ��l
�j��free-space case��2 are the singular values that

correspond to the free-space case. Subsequently, ��l
�j��2 will

be referred to, simply, as singular values. The free-space case
is defined as the case in which the original antenna, as de-
fined in Sec. I, radiates in the vacuum. Quantitatively this
corresponds to the case a=b , �a=�b=�a=�b=1. In other
words, the reference antenna with respect to which the com-
parisons are carried out is the original antenna without the
shell. This may sound as an unfair comparison, after all the
new antenna, i.e., the core-shell system, represents a totally
new antenna with its own new dimensions and induced cur-
rents due to the addition of the shell to the original antenna.
What is more, we allowed, in the numerical simulations, the
dimensions of the outer shell to be of comparable size to the
core. Consequently, this definition may not sound as the best
definition for a reference or standard antenna to measure the
enhancement with respect to. Nevertheless, this definition is
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underlain by a simple, if not naive, answer to the question of
how the addition of a metamaterial shell would affect the
performance of an existing antenna, or, similarly, how the
embedding of an existing antenna in a given core-shell sys-
tem with oppositely signed constitutive parameters would
affect the performance of the antenna. A more detailed inves-
tigation of the effect of reference antennas on enhancement
level estimates and the issue of fairness in antenna radiation
performance is presented elsewhere �68�.

IV. NUMERICAL RESULTS AND CASE STUDIES

In this section we turn to the application of the theory
exposed above to the elucidation of the effect of embedding
media on antenna radiation performance. The goal is to gain
an understanding of the effect of the antenna substrate on the
minimum source energy for a given radiation pattern. Be-
cause of the dependence of the problem on so many param-
eters we limit ourselves to a few illustrative cases. Three
classes of antennas are investigated: a quarter-wavelength
antenna �i.e., 2a=� /4�, a � /40 antenna �i.e., 2a=� /40�, and
a � /400 antenna �i.e., 2a=� /400�. The driving frequency of
the antenna is set to f =3.75 GHz. This corresponds to a
=1, 0.1, 0.01 cm, for the � /4 antenna, � /40 antenna, and
� /400 antenna, respectively. Needless to say that these par-
ticular choices of the numerical values of f and a are arbi-
trary. However, they lie well within the range of values used
in the scientific and engineering literatures �9,15,16,42,43�.
Particular attention is paid to electrically small antennas.
This is in view of the exciting properties that these antennas
exhibit in the subwavelength limit when embedded in a pair
of oppositely signed materials. We adopt the definition �69�
according to which an electrically small antenna in the
vacuum is defined as an antenna for which k0a=2�a /�
�0.5, where a is the radius of the sphere that encompasses
the entire original antenna. Hence, a more detailed investiga-
tion is carried out for the � /400 multipolar and dipolar an-
tennas. At this point it is appropriate to give one more defi-
nition. In the plots and associated discussion we consider the
normalized wave number defined by xb�kb /�. The normal-
ized wave number xb represents the wave number of the field
in the shell.

It follows from Eqs. �19� and �22� that, generally, the
larger the singular values ��l

�j��2 the smaller the minimum
source energy EME required for the launching of a given ra-
diation pattern with a source of a given size. Therefore the
larger the singular values ��l

�j��2 the greater the associated
enhancement, due to the associated substrates, of radiation of
the lth multipole order field with given resources. It is thus
important to understand the dependence of the singular val-
ues ��l

�j��2 on the several parameters it depends on for both
the electric �j=1� and the magnetic �j=2� cases. Large sin-
gular values, such as resonances or peaks in the plots of the
singular values versus these variables, will indicate enhanced
radiation for such operational modes or conditions, with the
given resources. This aspect is investigated numerically next.
For the sake of conciseness, however, and because of the
noted similarity �see next section� between the behavior of
the electric singular values and the magnetic singular values

we concentrate our attention in what follows on the study of
the electric singular values.

As noted above, there is a tight relationship between the
local behavior of the singular values ��l

�j��2 and the launching
ability of the antenna: any resonant peaks in the spectra of
��l

�j��2 would indicate the presence of local enhancements in
the launching ability of the antenna. Nevertheless, it is well
known �15,42,43� that the core-shell system does possess a
resonant behavior �resonant scattering and resonant radia-
tion� that can be traced back to the presence of the natural
modes �polaritons� in the system. Thus we should anticipate
the occurrence of such resonant behavior in our case too. The
question that arises then is: should they appear, can we as-
cribe the resonant peaks in the spectra of the singular values
��l

�j��2 to the presence of polaritons? The conditions for the
existence of polaritons in the core-shell system are summa-
rized by their dispersion relations �41–43�

�1 = 0 �23�

for the electric modes, where �1 has been defined in Eq.
�13�, and

�2 = 0 �24�

for the magnetic modes, where �2 has been defined in Eq.
�14�. However, the singular values ��l

�j��2 are given by Eqs.
�20�–�22�, i.e., they are composed of two quantities: �Fl

�j��2,
defined in Eq. �12�, and ��l

�j��2, defined in Eq. �21�. It is true
that Eqs. �23� and �24� when substituted in the definition of
amplitudes �Fl

�j��2 �i.e., in Eq. �12�� would provide the reso-
nance conditions �23� and �24� with a very strong effect on
the behavior of the singular values ��l

�j��2. Yet, in order for us
to be able to confidently attribute the resonant peaks to the
presence of polaritons we have to show that the quantities
��l

�j��2 do not exhibit a resonant behavior similar to that of
�Fl

�j��2 that would potentially shift or even kill the peaks cre-
ated by the resonance conditions of the polaritons. Actually
the quantities ��l

�j��2 are essentially nonpathological combi-
nations of the spherical Bessel functions of the first kind jl
and their derivatives which are sufficiently well-behaved for
all integer values of l and complex values of the argument
�70�. Hence, we can confidently claim that the spectrum of
the singular values ��l

�j��2 will indeed exhibit resonant peaks,
and thus maximum enhancements, and that these peaks will
be primarily due to the presence of polaritons as stipulated
by the resonance conditions �23� and �24�. Finally, we point
out that the MATHEMATICA code used for the numerical simu-
lations has been validated against some well-known cases
such as the free-space case �67� and the single spherical sub-
strate case �unpublished numerical study in connection with
our work in Refs. �34,35��.

A. Lossless substrates

1. Vacuum-core-DPS-shell system

We focus on the case of a spherical shell of non-magnetic
lossless DPS material ��b�1, �b=1� surrounding an inner
sphere with no substrate material in it ��a=1=�a�, a system
that we will refer to as a vacuum-core-DPS-shell system. In
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Figs. 2–4 we plot the electric singular values ��l
�1��2 versus

the radii ratio d�b /a, for a quarter-wavelength antenna of
maximum length 2a=2 cm operating at a the frequency f
=3.75 GHz. The plots show that the singular values ��l

�1��2

exhibit a cyclic behavior with resonant peaks, i.e., local en-
hancements, appearing at specified values of the radii ratio d.
�The same behavior is exhibited by the magnetic singular
values ��l

�2��2, though the plots are not shown here.� As men-
tioned above these resonant peaks correspond to an enhance-
ment in the launching ability of the antenna for such opera-
tional modes with the given resources. The plots also show
that for the smaller values of the radii ratio d �by “smaller
values” we mean d�r�xb�, where r�xb� is a value that de-
creases as xb increases� the best local enhancements, though
not always resonant, are observed for the lower multipole
modes starting with the dipolar modes. As the radii ratio
increases the best enhancements shift to the modes with
higher multipolarities: quadrupole, then octupole, and so on.
The explanation of this observation is that the higher the
multipolarity of the mode the more “intricate” is its structure
such that exciting higher multipolarity modes in an efficient
way requires thicker shells i.e., shells that possess a “richer”

charge structure. The peaks become sharper and more packed
as the electromagnetic density �i.e., the wave number� of the
shell material increases. This occurs because as the electro-
magnetic density of the material increases, i.e., as �b in-
creases �since �b=1, in this case�, the ability of a given
thickness of the material to support more natural modes of
oscillation �i.e., polaritons� also increases. For very electro-
magnetically dense materials, however, the heights of the
peaks saturate indicating a saturation in the launching en-
hancement levels and the peaks pile up at almost the same
values of the radii ratio d, which are now closely packed �see
Fig. 4�. These closely packed peaks indicate, on the one
hand, that an enhancement in the launching ability of the
antenna occurs, for high values of the wave number xb, at
almost the same radii ratios for the electromagnetic multipo-
lar modes with a pile up of the resonant peaks at particular
values of the radii ratio that is less pronounced for the mag-
netic modes. On the other hand, this also indicates that the
enhancement in the launching ability of the antenna occurs
for the two types of fields, i.e., electric and magnetic, at
roughly the same values of the radii ratio. Moreover, a closer
examination of the plots in Fig. 4 and its magnetic counter-
part �figure not shown� reveals that for the electric dipolar
mode and its magnetic counterpart, i.e., the magnetic dipolar
mode, in particular the local enhancement peaks appear now
at almost the same values of the radii ratio d�1.2, 1.4, 1.6,
etc.

In Fig. 5 we plot the normalized electric singular values
��l

�1��2 for a � /400 antenna versus the radii ratio d. The sur-
rounding shell is assumed to be a lossless nonmagnetic DPS
medium with xb=150 m−1 �i.e., �b=1 and �b=36�. Figure 5
clearly shows that for an electrically small antenna the reso-
nant peaks disappear over the same range of d values that
had been considered for a quarter-wavelength antenna and
that had in several enhancement peaks present in it in that
case. Furthermore, the numerical simulations show that in-
creasing the wave number of the shell medium not only does
not restore the peaks but may make things even worse in
terms of the launching ability of the antenna with respect to
the free-space case. This is in perfect agreement with the fact
that the actual total physical dimensions of a resonating cav-
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ity made up of ordinary material, in particular a+b in this
case, is the determining factor when it comes to which
modes are supportable by the cavity, and not just the radii
ratio.

2. Vacuum-core-DNG-shell system

The next lossless system we wish to investigate is a
vacuum-core-DNG-shell system, i.e., �a=1=�a, and �b	0,
�b	0 �in fact in all what follows the relative electric per-
mittivity of the surrounding DNG shells is �b=−4 and its
relative magnetic permeability is �b=−1�. The driving fre-
quency is as before set to f =3.75 GHz. In Fig. 6 we plot the
electric singular values ��l

�1��2 versus the radii ratio d for a
quarter-wavelength antenna of maximum length 2a=2 cm,
in Fig. 7 we plot ��l

�1��2 versus d for a � /40 antenna of
maximum length 2a=0.2 cm, and in Fig. 8 we plot ��l

�1��2

versus d for a � /400 antenna of maximum length 2a
=0.02 cm. The simulations show that �see Figs. 6–8� as the
ratio of the length of the antenna to the wavelength of the
radiation in the vacuum, viz., 2a /�, decreases the resonant
peaks, which correspond to a local enhancement in the

launching ability of the antenna for different modes, appear
at certain fixed values of the radii ratio d. This indicates that
for a small enough k0a the enhancement for all the modes
appears at certain specified values of d regardless of the total
physical dimensions of the antenna. This is in total agree-
ment with the reported subwavelength resonator concept
�15,42,43� where the determining parameter for the existence
of a natural mode �polariton�, and thus the occurrence of a
local enhancement in the launching ability of the antenna in
this case, turns out to be the ratio of the two radii rather than
the total physical size of the antenna itself as would be the
case in the presence of only ordinary media. This clearly
shows that encompassing a subwavelength antenna in a ju-
diciously chosen DNG metamaterial shell makes it possible
to distribute the resources of the antenna in a fashion that is
as efficient as that made possible only through the use of a
much larger volume in free space.

A natural continuation to our previous investigation of the
radiation efficiency of an electrically small antenna embed-
ded in a metamaterial substrate is displayed in Fig. 9. In this
figure the normalized singular values ��l

�1��2 for a � /400 an-
tenna have been plotted versus the radii ratio d. The shell
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circumscribing the antenna is assumed to be an ENG mate-
rial with �b=1 and xb= i50 m−1 �i.e., �b=−4�. A comparison
of Figs. 9 and 8 shows that these figures are in fact the same
though they describe two totally different systems. This
clearly demonstrates the fact that one can attain the same
level of performance achieved through the utilization of a
DNG shell by using an SNG �in this case an ENG� shell.
This, too, is in total agreement with the results reported in
the literature ��9,15,16,42,43�,� which stipulate that the use
of DNG media is not really necessary in order to achieve
high performance levels and that similar performance levels
could be achieved by pairing two materials that possess op-
positely signed values of at least one of the constitutive pa-
rameter. �In our case we had on one hand a DPS medium,
i.e., the vacuum core, and on the other hand the ENG shell
such that �b=1=�a while �b=−4=−4�a.� The problem of
pairing other types of substrates, such as an MNG core and
an ENG shell, has also been considered and the obtained
results are consistent with the published literature. Attaining
high performance levels, such as high radiation enhance-
ment, through the utilization of an ENG medium is an inter-
esting possibility since such media exist in nature �plasmonic
materials such as silver, etc.�.

B. Lossy substrates

The case of lossy substrates is illustrated in Fig. 10. In
this figure the normalized electric singular values ��l

�1��2

have been plotted versus the radii ratio d for a � /400 antenna
embedded in a vacuum-core-DNG-shell system. The sur-
rounding DNG shell is assumed to have a magnetic perme-
ability �b=−1 and Re�xb�=−150 m−1 �i.e., Re��b�=−36�.
The investigated cases are �1� lossless case �loss tangent
Im��b� /Re��b�=0�, �2� DNG shell with loss tangent
Im��b� /Re��b��1 /60, and �3� DNG shell with loss tangent
Im��b� /Re��b��1 /20. Figure 10 clearly shows that the in-
clusion of losses simply reduces the heights of the peaks but
does not make the peaks disappear. Also the decrease in the
height of the resonant peaks becomes larger relative to the
lossless cases as the loss tangent of the shell increases. These

findings are not surprising and are in agreement with the
results reported in the literature �15,16,42,43�.

1. Further look at the electric dipole case

We now initiate an investigation focused on the electric
dipole case, i.e., in this case j=1= l. We define the electric
dipole antenna gain as G�EME

�j=1=l��free-space case� /EME
�j=1=l�

= ��1
�1��2. This quantity is plotted next versus the radii ratio d

for some representative systems and some selected values of
the shell wave number xb. The systems considered here are
electric dipoles of different physical sizes embedded in
vacuum-core-DNG-shell systems. As explained above this
means that in all the cases the inner sphere is assumed not to
contain any material, i.e., �a=1=�a, while the outer shell is
made up of a DNG material with �b=−1. The driving fre-
quency f is still set to 3.75 GHz.

In Figs. 11–13 the gain G has been plotted versus the
radii ratio d for a � /4-electric-dipole antenna �a=1 cm�,
a � /40-electric-dipole antenna �a=0.1 cm�, and a
� /400-electric-dipole antenna �a=0.01 cm�. The aim is to
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study the effect of the physical size a on the performance of
the antenna. From Figs. 11–13 we notice that there is some-
thing that is counterintuitive here. It appears that as the
physical size of the dipole antenna becomes smaller the an-
tenna’s ability to optimize the utilization of its resources to
radiate the dipolar field efficiently increases. This is counter-
intuitive because what one would expect is that as the vol-
ume encompassing the antenna decreases it becomes more
difficult to distribute the resources of the antenna so as to
allow the antenna to radiate efficiently �33–35,71,72�. The
explanation of this seemingly counterintuitive situation lies
in the physical interpretation of the resonant peaks. As estab-
lished above the resonant peaks correspond to the presence
of polaritons. These polaritons have a certain dispersion re-
lation, viz., Eq. �23� for the electric modes and Eq. �24� for
the magnetic modes. These dispersion relations, or resonance
conditions, establish a certain relationship between the dif-
ferent parameters relevant to the problem. When all the pa-
rameters are fixed except for the physical size of the antenna,
as is the situation in this case, one should be able, at least
numerically, to solve for the optimum value of the physical
size that would satisfy the resonance condition. This optimal
value of the physical size of the antenna is what we are
dealing with in this case. However, if this is true then values
on both sides of this optimal size should cause a reduction in
the ability of the antenna to radiate the dipolar field which is
no the case. The simulations show that as the physical size of
the antenna is reduced further the resonant peaks remain at
the same location. This objection may be explained away by
invoking the concept of subwavelength resonator �15,42,43�.
Indeed, if the optimal value of the physical size turns out to
satisfy the subwavelength resonator conditions �15,42,43�,
that is, if the size of the core-shell system turns out to be
smaller than the wavelength in all three regions then further
reducing the physical size of the antenna will not affect the
radiation performance of the antenna, as discussed above.

V. CONCLUSION AND FUTURE DIRECTIONS

To conclude, we have investigated, both analytically and
numerically, the effects that the presence of metamaterials

would have on the performance of a general antenna embed-
ded in a generally lossy system of two nested spheres �core-
shell system� in terms of the efficiency with which the avail-
able resources of the antenna could be distributed within a
prescribed volume so as to generate a given radiated field.
The derived developments constitute a fundamental inverse-
source-theoretic framework for analysis and design of differ-
ent substrate structures. This framework also complements in
analytical and computational tools and insight the pioneering
work by some of the leading authors in this area.

The adoption of the inverse-source-theoretic approach is
aimed at enabling intrinsic, i.e., non-antenna-specific, and
fair characterization of different substrate configurations by
comparing optimal radiation in either configuration �i.e., the
“best” in each one�. This characterization is governed by a
formally tractable source-energy cost function that is physi-
cally motivated by Ohmic loss control. Via analytical and
numerical examples we have explained and illustrated im-
portant enhancements due to the presence of metamaterials
in the context of the two-nested-spheres configuration, in
particular for media with oppositely signed constitutive pa-
rameters.

Our study also relates to the inverse scattering investiga-
tions that constitute a subject of interest of our group. In
particular, in this other motivational context, the goal is to
enhance imaging resolution of an object under active inter-
rogation thanks to multiple scattering interactions of the ob-
ject with a helper substrate that acts as a near-field agent �a
“retransmitting station”� that facilitates communication to
the far field of evanescent field information about the object.
In fact, the achieving of super-resolution thanks to multiple
scattering, and the reevaluation of the so-called “diffraction
limit” in imaging, is an area that has been receiving much
attention in recent years, and is closely connected to the de-
velopments in radiation and scattering enhancement due to
metamaterials. As in the metamaterial field, subwavelength
resonances in rather simple multiple scattering systems �in-
cluding systems of only two closely spaced small scatterers�
have also been of interest �73–76�. A natural future direction
for continuation of the research reported in this work is to
expand our analysis to the full inverse scattering problem in
metamaterial substrates including multiple scattering, as well
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as to quantitatively characterize the “enhancement” in imag-
ing in the presence of noise via the fundamental Cramer-Rao
bound along the lines considered in Refs. �75,76� and in the
references therein. As suggested in Ref. �77�, where super-
resolution “intensity-only” �phaseless information� imaging
is investigated, the use of metamaterials can also play a ma-
jor role in optical imaging with phaseless data, particularly in
the imaging with far field data �by acting as “station” captur-
ing evanescent field information�, and this is another inter-
esting open area for further exploration. We plan to address
these and related matters elsewhere.
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APPENDIX: WAVE FUNCTIONS Bl,m
(j) FOR A SYSTEM

OF TWO NESTED SPHERES

The aim of this appendix is to show that the multipole
moments al,m

�j� are given by Eq. �10� with the source-free
wave functions Bl,m

�j� �r� given by Eqs. �11� and �12�. A
straightforward way of arriving at these results would be to
use the dyadic Green’s function that governs the propagation
of electromagnetic radiation between the source-enclosing
inner sphere and the surrounding vacuum in the three-region
geometry under investigation. The spectral-domain electro-
magnetic Green’s function linking the different layers of a
spherically multilayered medium has been calculated by Li
et al. �78�. �For the three-region geometry under consider-
ation the Green function is given in Ref. �78� by Eqs.
�14�,�29a�–�29d�, and the relevant definitions.� Afterwards
one calculates the electric field outside V by means of Eq. �2�
�in Ref. �78��. Finally one uses Eqs. �8� and �9�, in this paper,
to arrive at the desired results, i.e., Eqs. �10�–�12�.

Another way of arriving at Eqs. �10�–�12� is to invoke
Lorentz’s reciprocity theorem and the concept of reaction
�also called coupling�. Here we adopt this approach. One
reason behind this choice is that this latter approach attests to
the visible similarity between the mathematics of the radia-
tion problem at hand and its scattering counterpart �investi-
gated in Ref. �41� for conventional materials and in Ref. �42�
for metamaterials.� The reaction of a field E�r� produced by
a source J�r� on another source J0�r�, is defined as

dr ·E�r� ·J0�r��RE→J0

.The reciprocity theorem can be
stated as follows �see, for instance, Ref. �62��: the reaction of
the field E�r� produced by a source J�r� on another source

J0�r� is equal to the reaction of the field E0�r� produced by
the source J0�r� on the source J�r�, i.e., RE→J0

=RE0→J or,
explicitly,

	 dr · E�r� · J0�r� =	 dr · E0�r� · J�r� . �A1�

To evaluate the field due to a current distribution J�r� that is
embedded in the piecewise-constant background of interest,
we conveniently consider, without loss of generality, the fol-
lowing two classes of canonical sources:

�Jl,m
�1��0�r� = ��r − R�r̂ 
 Yl,m�r̂� �A2�

and

�Jl,m
�2��0�r� = ��r − R�Yl,m�r̂� , �A3�

where in both expressions R�b represents the radius of
the helper source centered around the origin. Ultimately, our
calculation of the multipole moments al,m

�j� will be indepen-
dent of R. The justification for the calculation methodology
based on these helper sources will become evident next, but
here we wish to mention two key facts: �1� the transverse
component of an arbitrary vector field on the spherical sur-
face of radius R�b centered about the origin is uniquely
characterized by its expansion in terms of the vector spheri-
cal harmonics Yl,m�r̂� and their associated vector functions
r̂
Yl,m�r̂� �63� and �2� the multipole moments characteriz-
ing any electric field outside the support of the emitting
source are uniquely determined by the tangential component
of the field on any such spherical surface. Indeed, it can
easily be shown that if R�b is the radius of a sphere cen-
tered about the origin, then

al,m
�j� = �

− i

l�l + 1�k0hl
�+��k0R�

	 Yl,m
� �r̂� · E�Rr̂�dr̂ , j = 1,

1

l�l + 1�k0Vl�k0R�	 r̂ 
 Yl,m
� �r̂� · E�Rr̂�dr̂ , j = 2.�

�A4�

The field �El,m
�j� �inc that would be produced in the vacuum by

the source �Jl,m
�j� �0 �defined in Eq. �A3�� is given by

�El,m
�j� �inc =	 dr�G0�r,r�� · �Jl,m

�j� �0�r�� , �A5�

where G0�r ,r�� is the multipole representation of the free-
space electric dyadic Green function, viz. �79�,

G0�r,r�� = �
l=1

�

�
m=−l

l
− ��0

k0l�l + 1�
�k0

2�jl�k0r	�Yl,m�r̂	���hl
�+��k0r��Yl,m

� �r̂���

+ � 
 �jl�k0r	�Yl,m�r̂	�� � 
 �hl
�+��k0r��Yl,m

� �r̂���� +
i

��0
r̂r̂��r − r�� . �A6�
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The 	 ��� subscript designates the smaller �larger� of r and
r�. This field �El,m

�j� �inc will be referred to as the incident field
in the following.

For r	R the incident field �El,m
�2��inc is found to be given

by

�El,m
�2��inc�r� = �l�k0R�jl�k0r�Yl,m�r̂� , �A7�

where we have introduced �l�k0R��−�k0R�2
0hl
�+��k0R�.

Along analogous lines, the incident field �El,m
�1��inc produced

by the source �Jl,m
�1��0 in Eq. �A2� in free space is found, using

the same route, to be given for r	R by

�El,m
�1��inc�r� = �l�k0,R� � 
 �jl�k0r�Yl,m�r̂�� , �A8�

where we have defined �l�k0 ,R��−
0k0R2Vl�k0R�. The ob-
tainment of the above results requires the use of orthogonal-
ity properties of the vector spherical harmonics Yl,m�r̂� and
the associated vector functions r̂
Yl,m�r̂�.

The total field �El,m
�1��0 must be, due to considerations of

causality in the scattered field and well-behavedness of the
interior field for r	b, of the form

�El,m
�1��0�r� = �� 
 ��l�k0,R�jl�k0r�Yl,m�r̂� + D1hl

�+��k0r�Yl,m�r̂�� , r � b ,

� 
 �B1jl�kbr�Yl,m�r̂� + C1hl
�+��kbr�Yl,m�r̂�� , a 	 r � b ,

A1 � 
 �jl�kar�Yl,m�r̂�� , r � a ,
� �A9�

where A1, B1, C1, and D1 are coefficients that are to be determined by imposing continuity of the tangential components of the
electric and magnetic fields on the inner and outer boundaries of the spherical shell. Analogously, the total field �El,m

�2��0 must
be of the form

�El,m
�2��0�r� = ���l�k0R�jl�k0r� + D2hl

�+��k0r��Yl,m�r̂� , r � b ,

�B2jl�kbr� + C2hl
�+��kbr��Yl,m�r̂� , a 	 r � b ,

A2jl�kar�Yl,m�r̂� , r � a ,
� �A10�

where A2, B2, C2, and D2 are coefficients that need to be
determined from the boundary conditions.

Imposing the abovementioned continuity requirements on
the inner and outer boundaries of the spherical shell, i.e.,
on the spheres of radii a and b, respectively, yields two sys-
tems �one for j=1 and one for j=2� of four equations each
linear in the unknown coefficients. Upon solving the two
linear systems of equations and using the Wronskian relation
for spherical Bessel functions, specifically jl�x�hl�

�+��x�
− jl��x�hl

�+��x�= i
x2 �64�, we find that for j=1

A1

�l�k0,R�
=

�b

�1k0kba2b2 � Fl
�1�, �A11�

where �1 is the determinant given by Eq. �13�. Similarly for
j=2 one obtains

A2

�l�k0R�
=

1

�b�2k0kba2b2 � Fl
�2�, �A12�

where �2 is the determinant given by Eq. �14�. The remain-
ing constants B1, C1, D1, B2, C2, and D2 are straightfor-
wardly obtained; here they are omitted because of their irrel-
evance to the rest of the problem. Along with Eqs. �A9� and
�A10�, Eqs. �A11� and �A12� define the fields �El,m

�2��0 and
�El,m

�2��0 in the region V.
By applying the reciprocity theorem Eq. �A1� to the pre-

ceding results �in particular, Eqs. �A2�, �A3�, and �A9�–
�A12�, one finds that the multipole moments al,m

�j� are indeed

independent of R and given by Eq. �10� with the source-free
wave functions Bl,m

�j� given by Eqs. �11� and �12� where we
have also recalled the multipole expansion for the electric
field E�r� �8� and �9� along with the orthogonality and ana-
lytic continuation properties of the vector spherical harmon-
ics and the analytic continuation property of the spherical
Bessel functions of the first kind, namely, jl

��ka�= jl�k�a�.
An alternative way of arriving at Eq. �10� and Eqs. �11�

and �12� would be to use the far-field expressions instead of
the multipole expansion �8� and �9�. The far-field approxima-
tions for the electric and magnetic fields are expressed as
�71�

E�rr̂� �
k0r�1

eik0r

r
fe�r̂� = 
0� eik0r

r
�r̂ 
 fm�r̂� , �A13�

H�rr̂� �
k0r�1

� eik0r


0r
�r̂ 
 fe�r̂� =

eik0r

r
fm�r̂� , �A14�

where 
0=��0 /�0 is the free-space wave impedance. The
two vector quantities fe�r̂� and fm�r̂� are, respectively, the far
electric field radiation pattern and the far magnetic field ra-
diation pattern. They are given as a function of the observa-
tion direction r̂ by

fe�r̂� = �
l=1

�

�
m=−l

l

�− i�l�al,m
�1� r̂ 
 Yl,m�r̂� + al,m

�2�Yl,m�r̂��

�A15�

and
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fm�r̂� =
1


0
�
l=1

�

�
m=−l

l

�− i�l�− al,m
�1�Yl,m�r̂� + al,m

�2� r̂ 
 Yl,m�r̂�� .

�A16�

It follows from Eqs. �A15� and �A16� and the orthogonality
of the vector spherical harmonics Yl,m�r̂� and the associated
vector functions r̂
Yl,m�r̂� that the multipole moments al,m

�j�

are uniquely defined by projections of the far-field radiation
patterns onto the orthogonal set of functions Yl,m�r̂� and
r̂
Yl,m�r̂� �see, e.g., Ref. �71�, Eq. �7� and the associated

discussion�. Thus either the far fields or the multipole mo-
ments uniquely define each other as well as the exterior field
everywhere outside the source volume V �via Eq. �8��.

In order to arrive at Eq. �10� and Eqs. �11� and �12� we
follow the same procedure as above but instead of the mul-
tipole expansion �8� and �9� we use Eqs. �A14�–�A16�. We
then require that k0R�1 and use the large-argument ap-
proximation for the spherical Hankel function, in particular,
hl

�+��k0R���−i�l+1eik0R / �k0R� �see, for instance, Ref. �64��.
Afterwards one lets k0R→�. Whether one uses this ap-
proach or the previous one, the final results are the same.
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