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Stability of coflowing capillary jets under nonaxisymmetric perturbations
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In this paper, linear hydrodynamic stability analysis is used to study the response of a capillary jet and a
coflowing fluid to both axisymmetric and nonaxisymmetric perturbations. The temporal analysis revealed that
nonaxisymmetric perturbations were damped (or overdamped) within the region of parameter space explored,
which involved equal velocities for the jet and focusing fluid. It is explained how an extension to a spatiotem-
poral analysis implies that those perturbations can yield no transition from convective (jetting) to absolute
(whipping) instability for that parameter region. This result provides a theoretical explanation for the absence
of that kind of transition in most experimental results in the literature.
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Understanding the instability mechanisms that lead to the
breakup of liquid (gas) jets into droplets (bubbles) is of great
interest not only in fluid mechanics, but also in the fields of
industry, medicine, biotechnology, etc. The hydrodynamic
stability theory of spatially developing flows has proven to
be a useful tool to predict and explain the transition from
stable to unstable flow or between different types of instabil-
ity [1,2]. There are two main prerequisites for the results of
that theory to be reliable: the model must include all signifi-
cant effects (viscosity, inertia, interfacial tension forces,...),
and the basic flow around which infinitesimal perturbations
are considered must be realistic. In this context, the jetting-
dripping transition of a liquid [4—6] or gas [7] jet has been
successfully linked to the convective-absolute instability
transition for axisymmetric (m=0) perturbations. Also, whip-
ping instabilities (violent lateral motion) have been observed
experimentally when, for instance, a jet composed of a
highly viscous molten liquid (e.g., a molten glass) is used to
form fibers [8]. Determining the conditions under which
whipping instabilities appear is an interesting problem both
in terms of fundamental physics and technologically. By
drawing an analogy with the explanation of the jetting-
dripping transition, one may assume that the appearance of
whipping instabilities could be explained in terms of a
convective-absolute instability transition for nonaxisymmet-
ric (m=1) modes. To the best of our knowledge, this possi-
bility has not as yet been explored.

Practical problems where the present study is applicable,
among others, are the simple coflow arrangement of Suryo
and Basaran [3] or the double flow focusing arrangement
recently proposed to produce submicrometer liquid jets by
purely hydrodynamic means [9]. Both involve a liquid
stream which envelopes an inner thin capillary jet of a sec-
ond liquid immiscible with the former and moving with its
same velocity. In the second arrangement [9], the enveloping
liquid stream is in turn focused by a third current of a gas
forced through a small round orifice. The basic flow in the
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compound jet issuing from the manifold capillary is charac-
terized by a transversal velocity and pressure nearly constant
once the jet exits through the discharge orifice. The external
layer of the coaxial jet can be considered as infinite in terms
of the inner jet radius. Thus the basic flow to be considered
in the stability analysis is the same for the two examples
referred to above. The stability of the innermost capillary jet
was found to be crucial to ensure its formation down to ex-
tremely small sizes, as shown experimentally and numeri-
cally. An analysis of the convective-absolute instability tran-
sition for axisymmetric (m=0) perturbations in the limit of
small Reynolds number showed that those perturbations are
convected downstream provided that the velocity exceeds a
certain threshold. This threshold depends on the viscosities
and interfacial tension but is independent of the jet radius
(unconditional jetting). This theoretical prediction was con-
firmed by experiments in [9]. The present paper aims at de-
scribing the growth of nonaxisymmetric (m=1,2) perturba-
tions which could potentially yield whipping instabilities of
the basic flow characterizing the proposed double flow fo-
cusing configuration, or any other similar arrangement. To
this end, a three-dimensional hydrodynamic analysis is per-
formed considering the viscosity and inertia of both the inner
jet and coflowing stream. As will be shown, a temporal
analysis allows one to conclude that nonaxisymmetric modes
cannot lead to a global instability (whipping) at least within
the parameter region explored in our study.

Consider the velocity v(r,7)=[u(r,?),v(r,t),w(r,t)] and
pressure p(r,t) fields, and the interface position f(6,z,7). In
what follows, we shall make all the variables dimensionless
using R, V, R/V, and p,V? as the characteristic length, veloc-
ity, time, and pressure, respectively, where R, V, and p, are
the inner jet radius, velocity, and density, respectively. As-
sume that the inner jet and the coflowing fluid move with the
same velocity V [9]. Using a Lagrangian frame of reference
solidly moving with both fluids, we propose the following
dependence for the hydrodynamic fields and the interface
position:

vi(r,t) = e{U(r),V(r), Wi(r)}ei(m€+kz_“”) +c.c., (la)
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pjr,t) - We = gP;(r)e ol tce., (1b)
e

f(6,2,1) = 1 = gFe M0k 4 ¢ ¢, (1c)

where j=1 and 2 stand for the inner jet and coflowing fluid,
respectively, m is the azimuthal wave number, k=k,+ik; the
axial wave number, w=w,+iw; the frequency, We
=p1V2R/ o the Weber number, o the interfacial tension, and
6;j the Kronecker delta.

If one introduces Eq. (la)—(Ic) into the Navier-Stokes
equations and neglects terms in &2, one gets

Ul +Ujr+imV,r+ikW;=0, (2a)

B
Re Ui+ Ujir= (m*+ D)UIr* - KU,
€

- a%ioU;+ Pi=
= 2imV,/r*], (2b)

)
- a%iwV;+imP/r= i—e[v;’ +Vilr=(m*+ )Vir* - KV,
+2imU,r*], (2¢)

)
—aﬂlwW +ikP; —'B—(W"+W/r m2W/r —sz)

(2d)

where a=p,/p;, B= ./ 1, and Re=p,;VR/u, is the Rey-
nolds number. The general solution to Eq. (2a)—(2d), verify-
ing the regularity conditions

U,(0)=V,(0)=W;(0)=0 for m=0, (3a)
U,(0)+iV(0)=W,(0)=0 for m=1, (3b)
U,(0)=V,(0)=W,;(0)=0 for m=2, (3¢)
U,=V,=W,=P,=bounded at r — o, (3d)
can be written as
0, k,;
Ui(r) = icjy®,,(kr) + ic;0,, (k;r) + imcj3Lk(L), (4a)
r
j
0,,(kr) 0,,(kir) ,
Vi(r)==-mcj M kjr] —c;30,,(k;r),
(4b)
mlk;r)
Wi(r) == ¢;,0,,(kr) - cjpk; —kL, (4¢)
a’Pwc;,
Pi(r)= —Lk 0, (kr). (4d)
Here, 0,, is the modified Bessel function of the first kind 7,,

if j=1, and of the second kind K,, if j=2, k
=+ k’—iwRe, ky=Vk’—iw Re o/, and { 11,Cj2,Cj3) are
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six arbitrary constants. It must be noted that Eq. (4a)—(4d) is
symmetric with respect to k;, while the real part of kX must be
positive to satisfy Eq. (3d).

The nonslip condition {U,=U,, V,=V,, W,=W,} at the
interface r=1 yields a linear system of equations that allows
one to obtain {c,;,yy,Cp3} in terms of {cy,¢;2,¢ 13} The con-
dition of dynamical equilibrium at the interface r=1 for the
normal and two tangential components leads to

l(l —mz—kz) 2 ’ ’
Pl—P2+W ]=E(U1_BU2)’ (53)
W, +ikU, = B(W) + ikUs,), (5b)
imU1+V; —V1=B(imU2+V£_V2)7 (SC)

where use has been made of the kinematic compatibility con-
dition F=iU;(1)/w to eliminate F' from Eq. (5a). The set of
Egs. (5a)- (50) constitutes a linear system of equations for
{c11,¢12.¢13}. The solvability condition Det(A;;)=0, with A,
being the 3 X 3 matrix associated with that system of equa-
tions, yields the dispersion relation [10]

S, (k,w,c, 3,Re,We) =0. (6)

We have verified that Eq. (6) reduces to the result obtained
by Rayleigh [1] for m=a=£=0, by Bauer [11] for a=8=0
and m#0, and by Funada and Joseph [12] (or, indepen-
dently, by Gafidn-Calvo and Riesco-Chueca [5]) for m=0
and «,B#0. It can be easily verified that Eq. (6) can be
rewritten in the form

0,,(k,&,a,3,0h) =0, (7)

where @=@,+i@;=We!?w and Oh=We'?/Re is the Ohne-
sorge number. This is equivalent to choosing the capillary
velocity V.= (o/p,R)"? instead of V as the characteristic
velocity, an appropriate choice when the flow is described in
our Lagrangian frame of reference. It must be noted that this
simplification is exclusive to the basic flow considered here,
where both the inner jet and the coflowing fluid move with
the same velocity V, and allows one to study its response to
perturbations over a significant region of parameter space at
a reasonable computational cost: in this work we have ex-
plored the modes m=0,1, and 2, for 0.01=0Oh=10, and
1074=< a,B=10. In particular, for m=0, we have explored
10°=a, B=1,107=We=10% and 1077 =Re=10°.

Let us now calculate the growth factor @; of a perturba-
tion with a real axial wave number k (temporal analysis)
observed from the frame of reference moving with both flu-
ids. Our goal is to obtain the roots of Eq. (7) in the parameter
space {k,®,a,B,0h} for different values of the azimuthal
wave number m. To this end, solutions @ to Eq. (7) in the
complex plane (@,, ®;) were found numerically for fixed val-
ues of the rest of the parameters. Because we were mainly
interested in finding possible transitions from stable (&;
<0) to unstable (@;>0) perturbations, Eq. (7) was carefully
explored close to the w;=0 axis, while less attention was paid
to other regions of the (@,,®;) plane. For nonsurrounded jets
(@=B=0), it is well-known that both axisymmetric (m=0)
[1] and nonaxisymmetric (m#0) [11,13] perturbations are
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FIG. 1. (Color online) Growth factor @; as a function of k for m=0 (left) and m=1,2 (right). The solid and dashed lines in the plots on
the right correspond to m=1 and 2, respectively. The labels on the lines indicate the value of Oh. The black curves correspond to growing
(m=0) and overdamped (m # 0) motions, while the gray (red on-line) curves correspond to oscillatory motions.

stable for k> 1, while for 0 <k<1 the axisymmetric pertur-
bations are unstable and cause the breakup of the jet (col-
umn). For this reason, we compared the growth factors of
focused jets for different values of m within the interval O
=k=1 in the present study. Because of the large size of the
parameter space, it was explored partially by restricting our-
selves to the cases m=0, 1, and 2. The range of Oh values
considered contained those considered in previous experi-
ments [5]. The roots of Eq. (7) were found by means of the
Newton-Raphson method using as an initial guess that ob-
tained from a linear extrapolation of the two previous solu-
tions. To improve the accuracy of the procedure, the function
Q,, was normalized by dividing it by its value at the initial
guess. An additional graphical analysis was eventually re-
quired to discard spurious roots.

Figures 1-4 summarize the results of our analysis. They
show the growth factor in terms of the capillary time ?,
=(p,R?/0)"?. The results for fluids with the same kinematic
viscosity (a=8) and a=1 are plotted in Fig. 1. For m=0,
nonoscillatory (@,=0) perturbations of growing amplitude
(@;>0) were observed, while damped (@,#0 and @;<0)
and overdamped (@,=0 and @;<0) oscillations were found
for m# 0. The black curves correspond to growing (m=0)
and overdamped (m# 0) motions, while the gray (red on-
line) curves correspond to oscillatory motions. The stabiliz-
ing effect of the viscosity can be appreciated: the growth rate
decreases with Oh for the unstable axisymmetric perturba-
tions, while the damping rate increases with Oh for the stable
nonaxisymmetric ones. The bifurcations observed for «
=10"* and Oh=10 at k=0.7, and for a=0Oh=1 at k=0.3, in
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FIG. 2. Real (dashed lines) and imaginary (solid lines) parts of
Ok, i@;,a,3,0h) as a function of @; for a=B=m=0h=1 and k
=0.32 (a) and 0.33 (b), and for a=B=10"*, m=2, and Oh=k=1 (c).

both cases for m=1, correspond to transitions from damped
to overdamped oscillations, for which Eq. (7) admits two
solutions for each value of k. To illustrate this point, Fig. 2
shows the real and imaginary parts of Q,, along the imagi-
nary axis for a=Oh=m=1. A damped oscillation is obtained
for k=0.32, and thus the root of Eq. (7) is not located on the
imaginary axis. On the contrary, for k=0.33 one finds two
roots @;=—0.081 82 and —0.089 43 that correspond to the

0.1,1,10 3
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FIG. 3. (Color online) Growth factor @; as a function of k for
B=0h=1 and for m=0 (a) and m=1 (b). The labels on the lines
indicate the value of a. The black curves correspond to growing
(m=0) and overdamped (m=1) motions, while the gray (red on-
line) curves correspond to oscillatory motions.

PHYSICAL REVIEW E 77, 046301 (2008)

s""':O | | | 3

10 E L 1 L 1 L 1 s 1 .3
0.0 0.2 0.4 0.6 0.8 1.0
(b) k

FIG. 4. (Color online) Growth factor @; as a function of k for
a=0h=1 and for m=0 (a) and m=1 (b). The labels on the lines
indicate the value of B. The black curves correspond to growing
(m=0) and overdamped (m=1) motions, while the gray (red on-
line) curves correspond to oscillatory motions.

dominant and subdominant solutions, respectively. The
curves (a) and (b) apparently vanish at @;=—0.102 and
—0.109, respectively, but these values do not correspond to
true solutions of the dispersion relation within the accuracy
of our numerical calculations. Dominant and subdominant
solutions were also obtained for a=0.1 and 1, m=1, and
Oh=10 in the interval 0=k=1. We found both oscillatory
and overdamped motions with m=2 as well. In the latter
case, only the dominant motions are plotted in the figure. We
only obtained spurious roots for m=2, Oh=1, and a=10"*
and 0.1 within the region of the w plane explored. This result
is also illustrated in Fig. 2. The curve (c) apparently vanishes
at w;=—1, but it does not seem to correspond to a true solu-
tion of the dispersion relation within the accuracy of our
numerical calculations.

Figure 3 shows the influence of the density ratio a on the
growth factor @; for fluids with the same viscosity (B8=1).
For m=0, growing motions (@;>0) were obtained, the influ-
ence of a on w; being small. For m=1, all the perturbations
were stable and the density ratio affected the nature of the
motion. Damped oscillations with very small frequencies
(|@; < 1) were observed for a=10, while (dominant and
subdominant) overdamped motions (@;=0) were obtained for
a=0.1. As mentioned above, the solution for the intermedi-
ate value a=1 exhibits a bifurcation at k==0.3 which corre-
sponds to a transition from oscillatory (k<0.3) to over-
damped (k= 0.3) motions. The growth factors corresponding
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to the oscillatory and subdominant overdamped solutions
practically coincided (for which reason the color cannot be
appreciated in the plot).

Figure 4 illustrates the influence of the viscosity ratio 8
for liquids with the same density (a=1). The viscosity ratio
significantly affects the growth factor for m=0. For m=1,
one finds a scenario similar to that of Fig. 3. In fact, the
oscillatory and subdominant overdamped solutions practi-
cally coincide in both cases. This is because those solutions
depend on « and B essentially through the ratio a/f in k,,
and this ratio takes the same values in both figures.

The most important conclusion drawn from the analysis
of the results shown in Fig. 1 (and others not presented here)
is that nonaxisymmetric perturbations possess negative
growth factors within the region of parametrical space ex-
plored. The same conclusion was obtained in Refs. [11,13]
for other values of k and Oh in the particular case a=£8=0. A
natural question is whether a transition from convective (jet-
ting) to absolute (whipping) instability for m # 0 is compat-
ible with this scenario. To answer this question one should
explore the response of the system to perturbations charac-
terized by a complex axial wave number k (spatiotemporal
analysis), observed by a fixed observer anchored at the
nozzle. To change the frame of reference from a traveling
observer to a fixed one, we just need to replace the wave
frequency w by o’—k in the dispersion relation (6) [5]. It
must be noted that the resulting dispersion relation

R, (k,o',a,B,Re,We) =0 (8)

cannot be rewritten in the form (7), and so the parameter
space becomes {k,w’,a,8,We,Re} in the laboratory frame
of reference. The transition from convective to absolute in-
stability occurs for values of (Re, We) for which there is at
least one solution (k, @) of the dispersion relation (8) sat-
isfying dw’/dk=0 (zero group velocity) with ;=0 [2,5,7].
In addition, the spatial branches departing from that solution
must originate from distinct halves of the k plane [2], which
implies that there must exist at least one solution of the dis-
persion relation with w/=k;=0.

One can find solutions of the problem formulated above
for m=0 [5]. Figure 5(a) shows the transition curves from
jetting to dripping for a=8=107° 1073, and 1. In the limit
Re—0, the transition takes place for critical values of the
Capillary number Ca= (u,u,)"*V/ o, independently of the
jet radius (unconditional jetting) [9]. In Fig. 5(b), we plot the
spatial branches k.(w’) for Re=0.1260 and We=0.02101
that originated from the solution ky=0.5828-0.3921; and
w(=0.5757. As can be observed, the branch k, crosses the k,
axis at k,=1 (Rayleigh stability limit), and thus the condition
o/ =k;=0 mentioned above is verified.

The condition w;=k;=0 cannot be verified for m#0 at
least within the region of parameter space considered in our
temporal analysis (Fig. 1). To demonstrate this assertion, we
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FIG. 5. (a) Transition curves for m=0 and a=8=10, 1073, and
I, and (b) spatial branches k.(w’) for Re=0.1260 and We
=0.02101 that originated from the solution k,=0.5828—-0.3921i and
,=0.5757. In plot (a), the solid and dashed lines correspond to the
transition curves on the (Re,We) and (Re,Ca) planes, respectively.

shall assume that there is a solution of the dispersion relation
(8) with @ =k;=0 for m# 0. As the solutions of Egs. (7) and
(8) are related through the equation @=Re(w’—k), there
would also exist a solution of Eq. (7) with &;=k;=0, in con-
trast to what is shown in Fig. 1. Therefore a transition from
convective to absolute instability cannot take place for m
#0.

The above result constitutes a theoretical explanation of
the absence of transition from jetting to whipping in most of
the experiments conducted so far. This explanation pos-
sesses, however, two main limitations. First, the basic flow
around which perturbations were considered must corre-
spond to the experimental flow. This can be assumed for the
double focusing arrangement recently proposed to produce
monodisperse submicrometer liquid droplets [9]; and second,
our conclusions might not be valid for other choices of the
experimental parameters «, 8, and Oh.
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