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The van der Pol attractor exhibits a wide variety of behavior depending on the control parameter values:
limit cycles, quasiperiodic motion on a torus, mode locking, period doubling, banded chaos, boundary crises,
torus wrinkling, breakup of a torus, and toroidal chaos. The organization of these phenomena with respect to
each other is well described by studying a partition of the control parameter plane of the Curry-Yorke map.
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I. INTRODUCTION

The periodically driven van der Pol oscillator �1,2� can
exhibit a large variety of complicated behavior, ranging from
simple limit cycles, mode-locked limit cycles, quasiperiodic
motion, banded chaotic attractors, and chaotic toroidal attrac-
tors.

The transition from quasiperiodic motion on a torus to
chaotic behavior occurs by breakup of the torus. The breakup
of the torus manifests itself in several different ways. One
path to chaos involves a period-doubling cascade that occurs
within a mode-locked tongue. This leads to a banded chaotic
attractor, which evolves into a wrinkled fractal toroidal at-
tractor following one or more boundary crises. Another path
to a chaotic toroidal attractor involves wrinkling of the torus
until a structurally stable heteroclinic invariant set is created.
When this occurs inside a mode-locked tongue the hetero-
clinic invariant set is dynamically unstable and essentially
invisible until the edge of the tongue is crossed. Then the
mode-locked behavior suddenly disappears and is replaced
by a chaotic toroidal attractor in a “hard” transition to chaos.
This wrinkling can also take place outside an Arnol’d
tongue. In this case the transition to chaos is “soft.”

We investigate the sequence of transitions among these
types of behaviors through intersections of the attracting set
with a Poincaré surface of section and bifurcation diagrams
of these attracting sets. This is most easily done by studying
the properties of return maps onto the Poincaré section.
Since it is not possible to compute an analytic form for the
return map of the van der Pol oscillator onto a Poincaré
surface of section, we use as a surrogate one of the standard
well-known maps, the Curry-Yorke map �3�. Both the peri-
odically driven van der Pol oscillator and the Curry Yorke
map satisfy the conditions of the Afraimovich-Shilnikov
theorem �4–6�, which describes the spectrum of possible
routes from quasiperiodicity through torus breakup to toroi-
dal chaos. Other maps, such as the Zaslavsky map �7,8�, can
be used. We have used the Curry-Yorke map because it is
among the simplest invertible maps R2→R2 that depend on
two control parameters, so that is it possible to follow non-
trivial paths through the control parameter plane. One control
parameter is insufficient to illustrate this spectrum of behav-
iors, and two are necessary and also sufficient to exhibit all
the phenomena that are observed �4–6�, while three or more

�as in the van der Pol system itself or the Zaslavsky map�
simply complicate this study.

In Sec. II we introduce a version of the van der Pol dy-
namical system. The behavior of this system is studied
through a set of bifurcation diagrams in the Poincaré section
defined by �t=0mod 2�. Several types of behavior are illus-
trated for this system. The organization of this behavior is
clarified in Sec. III. There we introduce the Curry-Yorke
map, exhibit the decomposition of its control parameter
space into various important regions �cf. Fig. 5�, and follow
two different paths through the control parameter space.
Along each we describe the changes that are encountered by
showing phase-space portraits that occur along these paths.
The phase-space portraits of the Curry-Yorke map are to be
compared with intersections of the van der Pol attractor with
a Poincaré section. By inspection of the decomposition of the
control parameter space it is possible to devise paths for
scenarios involving transitions among different types of be-
havior, including limit cycle, quasiperiodic, mode-locked,
banded chaos, and toroidal chaos behaviors. Many of the
phenomena exhibited in the transition to chaos are conse-
quences of the Afraimovich-Shilnikov theorem, which we
summarize in Sec. IV. This theorem is local and does not
describe phenomena related to coexisting basins of attrac-
tion. We point out these additional consequences and show
similarities in the behavior of the van der Pol flow and the
Curry-Yorke map in this section. We summarize our findings
in the Conclusion.

II. van der POL SYSTEM

A. Equations

Ueda and co-workers �1,2� were among the first to study
the chaotic behavior generated by the van der Pol dynamical
system. They studied the following equation:

ẍ − ��1 − �x2�ẋ + x3 = B cos��t� . �1�

This can be expressed as a nonautonomous dynamical sys-
tem in the form

ẋ = y ,
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ẏ = ��1 − �x2�y − x3 + B cos��t� . �2�

The phase space for this dynamical system is D2�S1, where
D2�R2 is a disk of finite diameter in R2 and S1 describes
motion around the torus in terms of an angle �
=�t mod 2�. The behavior exhibited by this dynamical sys-
tem depends on the control parameters �� ,� ,B ,��. This set
of equations has a twofold internal symmetry under �x ,y , t�
→ �−x ,−y , t+ 1

2T�, where �T=2�. This symmetry has the
following consequence. If symmetry-related initial condi-
tions �x ,y , t� and �−x ,−y , t+ 1

2T� are on a periodic orbit, ei-
ther they are on the same orbit �called a symmetric orbit� or
else they are on two different orbits that form a symmetry-
related pair of orbits. A symmetric orbit cannot undergo a
period-doubling bifurcation �9�. As a result, any orbit that
undergoes a period-doubling bifurcation is not symmetric
and has a symmetry-related partner that also undergoes a
period-doubling bifurcation.

The equation can also be rewritten as a set of four first-
order autonomous ordinary differential equations

ẋ = y, u̇ = v ,

ẏ = ��1 − �x2�y − x3 + u, v̇ = − �2u . �3�

This version of Eq. �1� depends on the control parameters
�� ,� ,�� and initial conditions �u ,v�= �B ,0�. We point out
here that when the van der Pol system is expressed as an
autonomous dynamical system, the parameter B clearly ap-
pears as an initial condition and not as a bifurcation param-
eter. This explains why “bifurcation diagrams” parametrized
in terms of B are usually so difficult to interpret �10�.

The van der Pol system �3� is equivariant under an inver-
sion symmetry �x ,y ,u ,v�→ �−x ,−y ,−u ,−v�. The twofold
symmetry will present a slight complication in comparing
the behavior in the return map on a Poincaré section with the
behavior of the Curry-Yorke map.

This system is often used as a benchmark model for torus
breakdown and for investigating some bifurcation diagrams
with mode-locking and period-doubling cascades �11–14�.

B. Bifurcation behavior and phase portraits

In the absence of periodic forcing �B=0 or �u ,v�= �0,0��
the origin �x ,y�= �0,0� is a fixed point. As � becomes posi-
tive, a Hopf bifurcation occurs that creates a stable limit
cycle as the fixed point at the origin becomes unstable.

When the forcing is turned on �B�0�, the stable fixed
point at the origin of R4 for ��0 becomes a stable period-1
orbit. As � increases above zero, this period-1 orbit loses its
stability, giving rise to quasiperiodic motion on a torus that
surrounds the unstable limit cycle. Another way to view this
is that the unstable fixed point at the origin and the stable
limit cycle that exist in the x-y plane for �	0 and B=0
evolve, for B�0, to an unstable limit cycle and a torus on
which the phase space trajectory moves in D2�S1. While the
torus exists, the motion on it alternates between quasiperi-
odic and periodic �mode-locked� motion as the control pa-
rameters vary.

Figure 1 shows a bifurcation diagram for Eq. �2�. The
diagram is constructed by recording the value of y at each

intersection with a Poincaré section, defined by �t
=0mod 2�. Sweeps that were made for � ascending and �
descending show hysteresis because of the multistability ex-
hibited by this system. For each change in the value of � the
initial conditions used for the new iteration were the final
values for the previous.

On the ascending sweep �black� there is a mixture of cha-
otic and periodic behavior up to �=11.0. From �=11.0 to
�=11.3 there is an attractor with two bands. The intersec-
tions of these attractors with a Poincaré section is shown in
Fig. 2. For �=10.97, just below the merging crisis, the at-
tractor exhibits toroidal chaotic behavior �Fig. 2�a��. For �
=11.03, just above this crisis, the bifurcation diagram shows
an attractor with two bands. The bands are formed after ac-
cumulation of a period-doubling cascade with � decreasing
through 11.3. The period-doubling cascade shown in the bi-
furcation diagram occurs on one of a pair of symmetry-
related period-2 orbits. Each creates an attractor with two
bands. The two-band attractors associated with each of the
symmetry-related orbits are shown in Fig. 2�b�. A period-2
orbit appears at �=13.0 and coexists with other attractors
until it is destroyed in an inverse saddle-node bifurcation at
�=16.2. The attractor shown in the bifurcation diagram is
quasiperiodic from �=16.2 to �=16.4, where an inverse
Hopf bifurcation destroys quasiperiodicity and replaces it
with a stable period-1 orbit.

In the bifurcation diagram the period-2 orbits are repre-
sented by two points for any value of � and quasiperiodic
behavior appears as a small range of intersections around
yn=−0.35. In Fig. 3 we show phase portraits of the attractors
encountered along the ascending path. Figure 3�a� shows the
period-2 orbit that is represented in the bifurcation diagram
at �=13.026 �plotted in black� as well as its symmetry-
related partner, plotted in red. This partner orbit is not seen in
the bifurcation diagram. Both orbits are stable and each is
associated with it an unstable period-2 saddle. The phase
portrait of the quasiperiodic trajectory at �=16.2 is shown in
Fig. 3�b�. This shrinks down to a roughly circular period-1
orbit �not shown� for �	16.4.

On the descending sweep some differences are apparent.
For �=17 there is a stable period-1 orbit. A Hopf bifurcation
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FIG. 1. �Color online� Bifurcation diagram versus � for the van
der Pol system studied by Ueda. Dark, � increasing; light, � de-
creasing. Hysteresis reveals multistability. Other parameter values:
�=0.2, B=0.35, and �=1.018.
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at �=16.4 changes the stability of this orbit and creates a
stable quasiperiodic attractor. This exists �alternating with
mode locking� and is followed in the bifurcation diagram
down to �=13.9 where a saddle-node bifurcation on the in-
variant torus creates a stable period-2 orbit that is not related
to the larger period-2 orbit followed along the path of �
increasing. The period-2 orbit undergoes a period-doubling
cascade and eventually produces a two-band attractor at �
=11.3. This is different from the pair of two-band attractors
seen in the Poincaré section shown in Fig. 2�b�. At �=11.3 a
crisis creates a toroidal chaotic attractor. Hysteresis is appar-
ent in the range 11.0���16.2. In the range 11.0��
�13.9 at least four basins of attraction coexist. Two
surround each of the symmetry-related period-2 orbits,
one of which is tracked for � increasing, and two surround
each of the symmetry-related pair on the invariant torus,
one of which is tracked for � decreasing. These two
pairs of symmetry-related orbits undergo period doubling

bifurcations at values of � that are not the same, despite
appearances in Fig. 1.

Toroidal chaos can be reached without going through the
period-doubling cascade and the banded attractor phase. This
is shown in Fig. 4. As � increases above 9.1, it enters a
period-2 mode-locked tongue. A period doubling bifurcation
occurs at �=9.3, followed by a period-halving bifurcation at
�=11.8, a brief interval of quasiperiodicity around �=15.9,
and a stable period-1 limit cycle for �	16.0. The initiation
and reversal of period-doubling cascades is a common fea-
ture of nonlinear oscillators and is commonly referred to as
“period bubbling” �11,15–17�. On decreasing through �
=9.1 there is a “hard” transition to chaos. The “hard” transi-
tion is one of the three routes to toroidal chaos predicted by
the Afraimovich-Shilnikov theorem �4–6�.

It should be emphasized that the van der Pol oscillator
supports coexisting basins of attraction �10,18�, as shown in
Figs. 1–3.
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FIG. 2. �Color online� Chaotic behavior of the van der Pol sys-
tem on a Poincaré section. �a� Toroidal chaotic behavior. �b� Banded
chaotic behavior. The two pairs of period-2 points shown corre-
spond to period-2 stable limit cycles at �=13.026 �dark trace�. A
boundary crisis separates banded chaos from toroidal chaos. �a� �
=10.97 and �b� �=11.03. Other parameter values: �=0.2, B=0.35,
and �=1.018.
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FIG. 3. �Color online� Phase-space plots of solutions to the van
der Pol system. �a� Two coexisting stable period-2 limit cycles ��
=13.026�. They are symmetry related, one being mapped to the
other under the inversion symmetry. Only one is indicated in the
bifurcation diagram of Fig. 1 on the ascending path. �b� Quasiperi-
odic solution ��=16.2�. Other parameter values: �=0.2, B=0.35,
and �=1.018.
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III. CURRY-YORKE MAP

The rich behavior seen in the van der Pol dynamical sys-
tem corresponds closely to the rich behavior exhibited by the
Curry-Yorke map. The principal difference between the two
is that one is a flow and the other is a map. We use this map
as a model for the return flow onto a Poincaré section. A
second difference is that the flow exhibits a twofold symme-
try in the phase space while the map does not.

A. Map

A homeomorphism on R2 is a function that is continuous
and has a continuous inverse. The mapping 
 proposed by
Curry and Yorke is the composition of two simple homeo-
morphisms 
1 and 
2. The homeomorphism 
1 is defined
in polar coordinates by


1 � ��n+1 = � ln�1 + �n� ,


n+1 = 
n + 
0,
� �4�

where ��0 and 
0 are control parameters to be chosen. The
homeomorphism 
2 is defined in Cartesian coordinates by


2 � �xn+1 = xn,

yn+1 = xn
2 + yn.

� �5�

The Curry-Yorke map is the composition of these two maps:

=
2 �
1.

This map can be expressed in simpler form in Cartesian
coordinates as follows:

�x

y
�

n+1
=

�

��
ln�1 + ����cos 
0 − sin 
0

sin 
0 cos 
0
�� x

y + x2�
n
, �6�

where ��2=x2+ �y+x2�2.
For all values of the control parameters there is a period-1

orbit �fixed point� at the origin. This fixed point is stable for
���1=1 and unstable for �	1. The origin becomes an un-
stable focus for �	�1 via a Hopf bifurcation. Immediately
after the Hopf bifurcation the iterates of an arbitrary initial
condition follow a roughly circular quasiperiodic trajectory
after the transients have died out. The radius �s of this tra-

jectory is approximated by �s=� ln�1+�s�. The radius grows
linearly with the difference �−�1 like �s	2��−�1� /� for
small �−�1.

Another stable period-1 orbit �and partner saddle� is cre-
ated in a saddle-node bifurcation for sufficiently large values
of �. Its location is determined by fixing 
0 and looking for a
real doubly degenerate solution for the fixed-point equation
arising from the first return map, Eq. �6�. This defines a curve
�2= f�
0� in the control parameter plane. Above this curve
there is only one stable attractor of period 1.

B. Control parameter space

Figure 5 provides an overview of the dynamical behavior
over an important part of the control parameter space. The
figure shows that the parameter space is divided into three
important regions: two boundary regions defined by ���1
and �	�2 in which only one stable period-1 orbit is observed
and an intermediate region showing very complicated behav-
ior. This behavior includes quasiperiodic motion, mode-
locked periodic motion, and chaotic motion. The chaotic be-
havior can be either banded or toroidal. Multistability occurs
in this region of the control parameter plane. The partition of
the control plane was created by scanning 
0 from left to
right and, for a fixed value of 
0, scanning � from below �1 to
above �2, using final values of the previous scan as initial
conditions for the next.

It is a simple matter to distinguish periodic from quasi-
periodic behavior. In the former case the limit

1

2�
lim
n→�


n

n
= �rotation number� �7�

is a rational fraction p /q, where p and q are relatively prime
integers. This signifies that the trajectory goes around the
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FIG. 4. Bifurcation diagram versus parameter � for the van der
Pol system. For � decreasing the period-doubling cascade begins
and is reversed, followed by a sudden �“hard”� transition to toroidal
chaos. Other parameter values: �=0.2, B=0.35, and �=1.014.

0.15 0.2 0.25 0.3 0.35 0.4 0.45
Frequency ratio θ0 / 2π

1

1.5

2

2.5

3

A
m

pl
itu

de
ε

q=1

q=2

q=3
q=4
q=5

q=6
q=7

q=8

q=9

q=10

q=11

q=12

q=13

q=14

FIG. 5. �Color� Parameter space for the Curry-Yorke map.
Arnol’d tongues associated with mode locking are attached to the

0 /2� axis at p /q and are clearly visible for p=1 and q=3,4 ,5 ,6.
Tongues are generally three sided, bounded by saddle-node bifurca-
tion curves along their outer edges that are joined at a vertex on the
line �=�1 and by the beginnings of period-doubling cascades oppo-
site the vertex. Intersections of the heteroclinic connection curve
�Sec. IV� with the saddle node edges of the 1/3 tongue are shown
with an x.
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meridian �short circle in the Poincaré surface� of the torus p
times and the longitude �long circle� of the torus q times
before closing up. This type of behavior is called mode lock-
ing. If the rotation number is irrational, the trajectory is qua-
siperiodic.

The parts of the control parameter space that support pe-
riodic behavior are color coded in Fig. 5 up to q=14. These
regions form Arnol’d tongues �19� that are attached to the
curve �=�1=1 at 
0 /2�= p /q. The two boundaries of the
Arnol’d tongues that touch the curve �=�1=1 define the lo-
cus of saddle-node bifurcations. Tongues show a third
boundary “opposite” the contact point on the �=1 axis. This
curve is a boundary that defines the beginning of a period-
doubling cascade.

The Curry-Yorke map possesses coexisting basins of at-
traction, in the same way that the van der Pol oscillator ex-
hibits multistability �cf. Figs. 1 and 3�. This is shown clearly
in Fig. 6. This figure shows the intertwined basins of attrac-
tion for coexisting stable period-3 �black� and period-4
�white� orbits for a control parameter value �� ,
0 /2��
= �1.7,0.334� in the intersection of the period-3 and period-4
windows. Multistability �coexisting basins� is a general fea-
ture of overlapping windows in invertible maps.

C. Bifurcation diagrams and phase portraits

In this section we construct two bifurcation diagrams
along vertical lines that straddle the point at which the
Arnol’d tongue with p /q=1 /3 intersects the line �=1 in Fig.
5. We choose 
0 /2�=1 /3�0.015. For each bifurcation dia-
gram we also plot the rotation number in the region between
the two boundary curves �=�1 and �2= f�
0�.

Figure 7 presents the bifurcation diagram along a path
obtained by fixing 
0=2, so that 
0 /2�=0.318=1 /3−0.015,
varying �, and plotting yn as a function of �. Also presented
in this figure is a plot of rotation number along this path.
For ��1 there is a fixed point with yn=0. As � increases
above 1 the path enters the white region of Fig. 5 above

0 /2�=0.318. This white region describes quasiperiodic
behavior. The path enters the Arnol’d tongue that describes
the 1/3-locked mode and remains in this tongue for

�� �1.273;1.396�. This is shown by the period-3 window in
Fig. 7. On entering this tongue a saddle-node bifurcation
creates a stable node and its partner saddle, both of period 3.
On leaving this tongue these two orbits self-destruct through
an inverse saddle-node bifurcation. The path enters the
tongue below the point of intersection with the heteroclinic
connection curve and leaves above this point. The sequence
quasiperiodicity → mode-locked period 3 → toroidal chaos
is observed.

In the range �� �1.396;2.00� the path in parameter space
enters and leaves many other Arnol’d tongues. In particular,
the path transits a number of larger-q tongues before entering
a period-4 tongue at �	1.56. The path enters this tongue
through its right-hand edge, but leaves through the boundary
on the “third side.” This boundary separates period-4 behav-
ior from period-8 behavior and indicates the beginning of a
period-doubling cascade to chaos. Similar behavior is subse-
quently seen for period-5 behavior, period-6 behavior, etc.
Mode locking is clearly shown in the bifurcation diagram
and by the horizontal steps in this devil-like staircase that
appears in the rotation number diagram. We point out that the
rotation number reaches its maximum value in the period-3
mode-locked window and decreases along this path as the
two period-1 regions are approached. At the left edge the
rotation number approaches 
0 as �→�1, and at the right
edge the rotation number approaches 0 as �→�2.

Phase portraits of the attractor in phase space along this
parameter path are shown in Fig. 8. In the quasiperiodic re-
gion for 1.0���1.27 the trajectory is an ellipse that be-
comes increasingly deformed as � approaches the 1/3
Arnol’d tongue. Just before reaching the tongue a ghost
period-3 orbit makes its presence felt, as indicated in Fig.
8�a�. The location of the impending saddle-node bifurcation
is indicated by the three large points in this figure. These are
responsible for deforming the ellipse into a “triangle.” After
the saddle-node bifurcation and the metastable quasiperiodic
transients have died out, the phase-space portrait is boring:
consisting of only three points that remain in place, moving
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FIG. 6. Multistability in the Curry-Yorke map. Coexisting inter-
twined basins of attraction of the stable period-3 �black� and
period-4 �white� orbits for control parameters �� ,
0�= �1.7,2.1� in
the intersection of the period-3 and period-4 windows.

0

0.1

0.2

0.3

0.4

R
ot

at
io

n
nu

m
be

r

1 1.2 1.4 1.6 1.8 2
Bifurcation parameter ε

0

5

10

15

20

y
n

FIG. 7. Bifurcation diagram and rotation number diagram versus
� for the Curry-Yorke map. After the Hopf bifurcation, the torus
grows in size. Then a period-3 window is observed. It is created and
destroyed in saddle-node bifurcations. Other parameter value:

0 /2�=2.0 /2�=1 /3−0.015.
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only slightly as the path traverses the Arnol’d tongue. Un-
seen in this figure is the transition of the path past the het-
eroclinic tangency curve. The inverse saddle-node bifurca-
tion at �=1.396 leaves a heteroclinic structure that looks like
a wrinkled torus as the only local attracting set. It is no
longer smooth. This represents a “hard” transition to chaos
�cf. Fig. 4 at �=9.1�. This wrinkled torus is shown in Fig.
8�b� for �=1.40. In this figure we approximate the location
of the ghost period-3 orbit by the location of the stable
period-3 orbit �circles� for nearby control parameter values.
The generally triangular trajectory is now wrinkled, espe-
cially in the neighborhood of these phantom fixed points.
This is shown clearly in the enlargements in this figure. Tem-
poral evolution of this attracting set exhibits intermittency.
As � continues to increase, the attractor becomes increas-
ingly distorted, while it exists. Such increasing distortions
are shown in Fig. 8�c� for �=1.52.

We encounter remarkably different behavior by following
a path on the other side of the contact point for the mode-
locked region with p /q=1 /3. Figure 9 presents a bifurcation
diagram and rotation number diagram obtained by fixing

0 /2�=1 /3+0.015. As � increases above 1, the behavior is
quasiperiodic with small values of y. The path enters the
Arnol’d tongue that describes the 1/3-locked mode, but this
time through the right-hand saddle-node boundary and below
the heteroclinic curve. The path now exits the period-3
mode-locked region through the “third side” of the Arnol’d
tongue. A period-doubling cascade is initiated at �
1.64,
producing a period-6 limit cycle. The period-doubling cas-
cade reaches the accumulation point at �
1.722. For larger
values of � chaotic behavior is seen, interrupted by crossings
of Arnol’d tongues of the form 1 /n, with n=4,5 , . . .. The
first tongues encountered exhibit a period-doubling cascade
to chaos.

Phase portraits along this path are shown in Fig. 10. Be-
fore the period-3 window is encountered the behavior is qua-
siperiodic with small radius. As the period-3 saddle node
bifurcation is approached the quasiperiodic orbit is deformed
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FIG. 8. �Color online� Phase portraits of the Curry-Yorke map
along a path with 
0=2 /2�. �a� Quasiperiodic behavior along a
triangular trajectory just before entering the 1/3 Arnol’d tongue be-
low the heteroclinic tangency point ��=1.27�. �b� Toroidal chaotic
behavior in a “hard” transition to chaos just after leaving the tongue
above the heteroclinic tangency point ��=1.40�. �c� Increased fold-
ing of the toroidal attractor with increasing nonlinearity ��=1.52�.
The period-3 points are shown for �a� �=1.273 and �b� �=1.39.
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FIG. 9. Bifurcation diagram versus � for the Curry-Yorke map.
After the Hopf bifurcation, the torus grows in size. Then a period-3
window is observed before the first foldings occur on the torus.
Other parameter value: 
0= 2�

3 +0.1.
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into the shape of a triangle �q=3�, shown in Fig. 10�a� along
with the ghost saddle-node orbit pair. Beyond the accumula-
tion at �
1.722, there is a unimodal fold in the neighbor-
hood of each ghost period-3 point, shown in Fig. 10�b� �cf.
Fig. 2�b��. This is similar to what is observed after a period-
doubling cascade in a Rössler-like system. The chaotic at-
tractor in R3 can thus be visualized as a chaotic band with
three successive stretching-and-squeezing processes. It is
only for �
1.76 that a crisis occurs, leading to a bifurcation
from a banded chaotic attractor to a toroidal chaotic attractor
�Fig. 10�c��. At this stage, the chaotic attractor is similar to
the toroidal chaotic attractor obtained along the curve

0 /2�=1 /3−0.015 �compare Fig. 10�c� with Fig. 8�c��. The
attractor becomes increasingly deformed as � continues to
increase.

The bifurcation diagram obtained for 
0 /2�=1 /3+0.015
is roughly similar, beyond the period-3 window, to the bifur-
cation diagram obtained for 
0 /2�=1 /3−0.015. The minor
differences concern the lengths of the periodic windows,
which are slightly larger for the former value of 
0 because
of the shape of the deformed mode-locked region. The rota-
tion number diagram in Fig. 9 shows one difference from
that shown for �= 1

3 −0.015 in Fig. 7. The left-hand edge, at
�=1, is the limit on 
0. For this reason, on approaching the
period-3 window, the rotation number rises to 1

3 in Fig. 7 and
decreases to 1

3 in Fig. 9. In all cases the rotation number
approaches zero as the path approaches the upper boundary
�2= f�
0�.

The behavior along paths near other tongues is similar. In
the neighborhood of a saddle-node boundary below the het-
eroclinic intersection the attractor is quasiperiodic and ap-
proximates a q-gon for a p /q tongue. Above the heteroclinic
intersection the torus is no longer smooth: the invariant set is
a toroidal chaotic attractor. Inside a tongue the attractor is a
limit cycle of period q.

IV. SUMMARY OF THE TORUS BREAKDOWN THEOREM

Both the van der Pol flow and the Curry-Yorke map sat-
isfy the conditions of the Afraimovich-Shilnikov theorem
�4–6�. That is, there exists a smooth invariant torus �an in-
variant set homeomorphic with a circle for the Curry-Yorke
map� for some control parameter values and for others the
torus �circle� has been destroyed. When these conditions are
satisfied there are three routes to toroidal chaos: by period-
doubling bifurcations, by torus wrinkling, and by creation of
a homoclinic connection of a saddle cycle.

Mode-locked regions are organized by Arnol’d tongues.
Within each tongue there are two curves that describe het-
eroclinic tangencies between the stable and unstable mani-
folds of the saddle partner orbit from different sides. These
two curves connect the first period-doubling curve within a
tongue and each of the two saddle-node boundary curves.
The invariant torus exists within the pentagonal-shaped re-
gion bounded by these five curve segments. In this region it
is structurally stable and dynamically unstable. It breaks
down on crossing either of the heteroclinic curves or the first
period-doubling curve. A path in control parameter space that
leaves a tongue through the “third side” leads, after the
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FIG. 10. �Color online� Phase portraits of the Curry-Yorke map
along a path with 
0 /2�=1 /3+0.015. �a� Quasiperiodic behavior
along a triangular trajectory just before entering the 1/3 Arnol’d
tongue below the heteroclinic tangency point ��=1.139�. �b�
Banded chaotic attractor after passing out of the period-doubling
cascade on the “third side” of the Arnol’d tongue ��=1.74�. �c�
Chaotic toroidal attractor after a crisis ��=1.76�. The period-3
points are shown for �a� �=1.140 and �b� �=1.63.
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period-doubling cascade, to banded chaotic behavior fol-
lowed by toroidal chaotic behavior after a series of inverse
noisy period-halving bifurcations, as in Fig. 1 at �=11.0 and
Fig. 10. A path leaving the tongue through a saddle-node
edge leads to different types of attractors depending on
whether it leaves �a� below or �b� above the intersection
point of the heteroclinic curve with the saddle-node curve
�shown by � for the 1/3 tongue in Fig. 5�: �a� quasiperiodic
behavior if it exits below, as in Fig. 1 at �=13.9, or �b�
directly to toroidal chaotic behavior in a “hard” transition to
chaos, as in Fig. 4 at �=9.1 and Fig. 8. Outside a tongue the
invariant torus is destroyed when it loses its smoothness with
increasing �. This is the “soft” transition to chaos.

The boundaries of a p /q tongue are determined by search-
ing for q doubly degenerate real solutions of the qth iterate
of the first return map Eq. �6�. Just inside the boundary of a
tongue each doubly degenerate solution splits into two
nearby nondegenerate real solutions. One q-tuple of solu-
tions describes a stable period-q orbit while the other de-
scribes its saddle partner. Just outside the boundary of a
tongue each doubly degenerate solution splits into two com-
plex conjugate solutions. These are “ghost” fixed points.
They play a significant role in the dynamics. The ghost fixed
points are responsible for creating a large invariant density
on the attractor in the neighborhood of their real parts, with
the density narrowing and increasing as the imaginary part of
the solution decreases �20,21�.

In the context of the Afraimovitch-Shilnikov theorem, on
crossing the saddle-node boundary of an Arnol’d tongue,
there is no hysteresis between the attractor inside the tongue
�a period-q orbit� and the attractor outside �a quasiperiodic or
toroidal chaotic attractor�. However, there are remarkable
differences in the dynamics. On entering the tongue above
the heteroclinic point an initial transient will follow the path
of the heteroclinic tangle for a long time before settling
down to the stable periodic orbit �metastable chaos�. On en-
tering the tongue below the heteroclinic point an initial tran-
sient will outline the quasiperiodic attractor that exists just
outside the boundary before settling down to the stable peri-
odic orbit �metastable quasiperiodicity�. On leaving the
tongue above the heteroclinic point an initial condition will
evolve in the neighborhood of the ghost period q orbit for a
long time before exhibiting chaotic behavior and then return-
ing to nearly periodic behavior �chaotic intermittency �22��.
On leaving the tongue below the heteroclinic point the cha-
otic bursts are replaced by quasiperiodic bursts to account for
phase slippage. Intermittency and metastability are opposite
sides of the same coin.

The Afraimovich-Shilnikov theorem is local in the sense
that it describes torus breakdown associated with a single
Arnol’d tongue. It does not deal at all with coexisting attrac-
tors, multiple overlapping tongues, and hysteresis. All these
features are intrinsic to the van der Pol flow and the Curry-
Yorke map. While the Afraimovich-Shilnikov theorem is
useful in interpreting the behavior seen in these systems, it
does not provide a complete description of these phenomena.

As examples of the additional complexity in these dy-
namical systems that is not a consequence of this theorem,
we point out that hysteresis is clearly shown for the van der
Pol oscillator in Fig. 1 and for the Curry-Yorke map in Fig.

11. Multistabilty for the van der Pol oscillator is apparent in
Figs. 1–3 and for the Curry-Yorke map in Figs. 5, 6, and 11.
Alternation of periodic windows with chaotic behavior is
shown in Figs. 1 and 12 for the van der Pol oscillator and in
Figs. 7 and 9 for the Curry-Yorke map.

V. CONCLUSION

In this paper we showed how the complexity inherent in
behavior exhibited by the van der Pol dynamical system can
be interpreted in terms of the Curry-Yorke map. We have
used this map as a surrogate for the return map of the van der
Pol attractor onto a Poincaré surface of section. The corre-
spondence here is not one to one because we have not re-
moved the twofold internal symmetry of the van der Pol
attractor by a standard “modding out” process �9�. If this is
done, at the cost of making this paper slightly more compli-
cated, the correspondence is yet closer.

When ��1 and ��0 the return maps exhibit a simple
fixed point. As the respective thresholds are crossed, the
fixed point becomes unstable and, for �−�1�1,��1, the
unstable fixed point is surrounded by a roughly circular tra-
jectory in the plane. As the ratio of the natural to the driving
frequency is changed for the van der Pol system or the angle

0 is swept in the Curry-Yorke map, this roughly circular
trajectory is deformed. As the path in the control parameter
space approaches a p /q Arnol’d tongue below the hetero-
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FIG. 11. Bifurcation diagram for the Curry-Yorke map showing
hysteresis between the period-3 and period-5 tongues. Compare
with Fig. 1 for the van der Pol oscillator. Parameter values: 
0

=2.12 and �=1.52.
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FIG. 12. Bifurcation diagram for the van der Pol oscillator
showing alternation of periodic windows and chaotic behavior.
Compare with Figs. 7 and 9 for the Curry-Yorke map. Parameter
values: �=0.2, �=1.268, and �=8.
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clinic intersection, the quasiperiodic trajectory approaches
the shape of a “q-gon” �cf. Figs. 8�a� and 10�a��. On entering
a tongue, the attractor is a stable limit cycle of period q. If
the tongue exits through either of the saddle-node edges be-
low the heteroclinic intersection point, the periodic behavior
is terminated in a saddle-node bifurcation and the attractor
assumes its roughly q-sided shape and quasiperiodic nature.
If the path leaves the tongue above the heteroclinic intersec-
tion, there is a “hard” transition to toroidal chaos when the
period-q limit cycle is destroyed. If the path in the control
parameter space exits the tongue through the “third side,” a
period-doubling cascade begins. If the cascade proceeds
past accumulation, a banded chaotic attractor with rotation
number p /q will be formed. After a series of noisy period-

halving bifurcations, a chaotic toroidal attractor will be
formed. On the other hand, if the path reenters the tongue
through the “third side,” period bubbling will be seen in the
bifurcation diagram. Many vertical paths in Fig. 5 exhibit
both these types of behavior.

If a path with � in the control space follows a saddle-node
edge just outside a p /q Arnol’d tongue, the phase-space tra-
jectory will be a smooth “q-gon” that becomes increasingly
deformed and finally loses its smoothness in a “soft” transi-
tion from quasiperiodicity to toroidal chaos. The curve de-
fining such transitions can be constructed by “connecting the
dots,” describing the heteroclinic intersections along the
tongues. In regions of overlapping tongues, multistability
and hysteresis occur.
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