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A statistical analysis of the eigenfrequencies of two sets of superconducting microwave billiards, one with
mushroomlike shape and the other from the family of the Limaçon billiards, is presented. These billiards have
mixed regular-chaotic dynamics but different structures in their classical phase spaces. The spectrum of each
billiard is represented as a time series where the level order plays the role of time. Two most important findings
follow from the time series analysis. First, the spectra can be characterized by two distinct relaxation lengths.
This is a prerequisite for the validity of the superstatistical approach, which is based on the folding of two
distribution functions. Second, the shape of the resulting probability density function of the so-called super-
statistical parameter is reasonably approximated by an inverse �2 distribution. This distribution is used to
compute nearest-neighbor spacing distributions and compare them with those of the resonance frequencies of
billiards with mixed dynamics within the framework of superstatistics. The obtained spacing distribution is
found to present a good description of the experimental ones and is of the same or even better quality as a
number of other spacing distributions, including the one from Berry and Robnik. However, in contrast to other
approaches toward a theoretical description of spectral properties of systems with mixed dynamics, supersta-
tistics also provides a description of properties of the eigenfunctions in terms of a superstatistical generalization
of the Porter-Thomas distribution. Indeed, the inverse �2 parameter distribution is found suitable for the
analysis of experimental resonance strengths in the Limaçon billiards within the framework of superstatistics.
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I. INTRODUCTION

Integrable Hamiltonian dynamics is characterized by the
existence of as many conserved quantities as degrees of free-
dom. Each trajectory evolves on an invariant hypertorus in
the phase space �1,2�. In contrast, chaotic systems are er-
godic; almost all orbits fill the energy shell in a uniform way.
Physical systems with integrable and fully chaotic dynamics,
respectively, are, however, exceptional. A typical Hamil-
tonian system shows a phase space in which regions of regu-
lar motion and chaotic dynamics coexist. These systems are
known as mixed systems. Their dynamical behavior is by no
means universal, as is the case for fully regular and fully
chaotic systems. If we perturb an integrable system, most of
the periodic orbits on tori with rational frequencies disap-
pear. However, some of these orbits persist. Elliptic periodic
orbits appear surrounded by islands. They correspond to li-
brational motions around these periodic orbits and reflect
their stability. The Kolmogorov-Arnold-Moser �KAM� theo-
rem states that invariant tori with a sufficiently incommen-
surate frequency vector are stable with respect to small per-
turbations. Numerical simulations show that when the
perturbation increases more and more tori are destroyed. For
large enough perturbations, there are locally no tori in the
considered region of phase space. The breakup of invariant
tori leads to a loss of stability of the system, that is, to chaos.
There are three main scenarios of transition to global chaos
in finite-dimensional �nonextended� dynamical systems, one
via a cascade of period-doubling bifurcations, a Lorenz-
system-like transition via Hopf and Shil’nikov bifurcations,
and the transition to chaos via intermittency �3,4�. It is natu-
ral to expect that there are other �presumably many more�

such scenarios in extended �infinite-dimensional� dynamical
systems.

In quantum mechanics, the specification of a wave func-
tion is always related to a certain basis. In integrable systems
the number of conserved quantum numbers equals the num-
ber of degrees of freedom. The corresponding Schrödinger
equation is solvable in principle, at least numerically. The
solutions form a well-defined basis in which the Hamiltonian
is diagonal. That obviously indicates the absence of com-
plexity. In the nearly ordered regime, mixing of quantum
states belonging to adjacent levels can be ignored and the
energy levels are uncorrelated. The level-spacing distribution
is well described by that for random numbers generated by a
Poissonian process, exp�−s�, where s is the spacing between
adjacent energy levels rescaled to unit mean spacing D. For a
Hamiltonian with a chaotic classical limit, on the other hand,
the wave function components are on average uniformly dis-
tributed over the whole basis. Berry �5� conjectured that the
wave functions of chaotic quantum systems can be repre-
sented as a formal sum over elementary solutions of the
Laplace equation in which the real and imaginary parts of the
coefficients are independent identically distributed Gaussian
random variables with zero mean and variance computed
from the normalization. Bohigas et al. �6� put forward a con-
jecture �strongly supported by accumulated numerical and
experimental evidence and also by recent advances toward a
proof of this conjecture �7�� that the spectral statistics of
chaotic systems follow random-matrix theory �RMT; see
�8,9��. The properties of a chaotic Hamilton operator can
thus be modeled by an ensemble of random Hermitian ma-
trices H that belongs to one of three universality classes,
either the orthogonal, the unitary or the symplectic one, and
is called the Gaussian orthogonal �GOE�, unitary �GUE�, and
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symplectic �GSE� ensemble, respectively. The theory is
based on two main assumptions: the matrix elements are
independent identically distributed random variables and
their distribution is invariant under unitary transformations.
This leads to the Gaussian probability density distribution for
the matrix elements,

P�H� =
1

Z���
exp�− � Tr�H†H�� , �1�

where Z���=�exp�−� Tr�H†H��dH is the normalization con-
stant. The Gaussian distribution is also obtained by maximiz-
ing the Shannon entropy with the constraints of normaliza-
tion and existence of the expectation value of Tr�H†H�; see,
e.g. �8,10�. Information about the statistical properties of the
eigenvalues and/or eigenvectors of the matrix H can be ob-
tained by integrating over the undesired variables. There is
strong evidence by now that indeed the spectral correlation
functions of a chaotic system are well described by those
obtained from Eq. �1� and determined solely by the global
symmetries of the system such as time-reversal invariance
and the value of the spin. Among the measures representing
spectral correlations, the nearest-neighbor level-spacing
distribution p�s� has been studied extensively so far. For the
random matrix ensembles Eq. �1� it is well approximated
by the Wigner-Dyson distribution, namely, p��s�=a�s�

exp�−b�s2�, where � �=1, 2, and 4 for the orthogonal, the
unitary, and the symplectic ensembles, respectively� charac-
terizes the universality classes. The coefficients a� and b� are
determined by the normalization conditions �0

�p��s�ds
=�0

�sp��s�ds=1 �8�. For s�1, the distribution function is
proportional to s�, which implies that adjacent energy levels
repel each other. This behavior may be attributed to the mix-
ing between the two states related with these levels.

So far in the literature there is to our knowledge no rig-
orous statistical description for the transition from integrabil-
ity to chaos. The nature of the stochastic transition is more
obscure in quantum than in classical mechanics, as the as-
sumptions that lead to the RMT description do not apply to
mixed systems. The Hamiltonian of a typical mixed system
can be described as a random matrix where some of its ele-
ments are randomly distributed and some of them might be
nonrandom. Moreover, the matrix elements need not all have
the same distributions and may or may not be correlated.
Thus, the RMT approach is a difficult route to follow. Com-
prehensive semiclassical computations have been carried out
for Hamiltonian quantum systems, which on the classical
level have a mixed phase space dynamics �see, e.g., �11� and
references therein�. There have been several proposals for
phenomenological random-matrix theories that interpolate
between the Wigner-Dyson RMT and banded random matri-
ces with an almost Poissonian spectral statistics. The stan-
dard route for the derivation is to sacrifice basis invariance
but keep matrix-element independence. The first work in this
direction is due to Rosenzweig and Porter �12�. They model
the Hamiltonian of a mixed system by a superposition of a
diagonal matrix with random elements and a matrix drawn
from a GOE. Accordingly, the variances of the diagonal ele-
ments of the total Hamiltonian are not twice those of the

off-diagonal ones, as in the GOE case. Hussein and Pato �13�
used the maximum entropy principle to construct such en-
sembles by imposing additional constraints. Also, ensembles
of banded random matrices whose entries are equal to zero
outside a band of width b along the principal diagonal have
been used to model mixed systems �14–18�.

A route for generalizing RMT concerning statistical prop-
erties of the eigenvalues is to conserve base invariance but
allow for the correlation of matrix elements. This has been
achieved by maximizing nonextensive entropies subject to
the constraint of a fixed expectation value of Tr�H†H�; see
�19–25�. Recently, an equivalent approach was presented in
�26,27�, which is based on the method of superstatistics �sta-
tistics of a statistics� proposed by Beck and Cohen �28�. This
formalism has been elaborated and applied successfully to a
wide variety of physical problems, e.g., in �29–36�. In ther-
mostatics, superstatistics arises from weighted averages of
ordinary statistics �the Boltzmann factor� due to fluctuations
of one or more intensive parameters �e.g., the inverse tem-
perature�. Its application to RMT assumes the spectrum of a
mixed system as made up of many smaller cells that are
temporarily in a chaotic phase. Each cell is large enough to
obey the statistical requirements of RMT but is associated
with a different distribution of the parameter � in Eq. �1�
according to a probability density f���. Consequently, the
superstatistical random-matrix ensemble used for the de-
scription of statistical properties of the eigenvalues of a
mixed system consists of a superposition of Gaussian en-
sembles. Its joint probability density distribution of the ma-
trix elements is obtained by integrating the distribution given
in Eq. �1� over all positive values of � with a statistical
weight f���,

P�H� = �
0

�

f���
exp�− � Tr�H†H��

Z���
d� . �2�

Despite the fact that it is hard to make this picture rigorous,
there is indeed a representation which comes close to this
idea �37,38�.

The great advantage of the method of superstatistics is
that we can similarly apply it to calculate the distribution of
the eigenvector components of a Hamiltonian describing a
mixed system in which the spectrum is composed of sub-
spectra associated with levels following Poissonian and GOE
statistics �39�. For a chaotic system the squared eigenvector
components follow the Porter-Thomas distribution

PPT�t� =� �

�t
e−�t, �3�

where � is a constant parameter related to the mean value
�40�. In �39� superstatistics of the transition matrix elements
was introduced by representing the transition intensity distri-
bution as a superposition of Porter-Thomas distributions with
different values for the parameter �. Similarly, in a super-
statistical description of the squared eigenvector components
of the Hamilton operator or equivalently the partial widths of
the resonances of a microwave resonator, the parameter � in
Eq. �3� is no longer considered to be a constant but allowed
to fluctuate according to a distribution f���. Then, in analogy
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to the superstatistical approach Eq. �2� toward the description
of statistical properties of the eigenvalues, the superstatistical
distribution of the squared eigenvector components is given
by

Psst�t� = �
0

�

f���� �

�t
e−�td� . �4�

The present paper is concerned with a justification for the use
of the above-mentioned superstatistical generalizations of
RMT in the study of mixed systems, based on the represen-
tation of their energy spectra in the form of discrete time
series in which the level order plays the role of time. The
representation of the suitably transformed eigenvalues of a
quantum system as a time series has recently allowed deter-
mination of the degree of chaoticity of the dynamics of the
system �41–45�. We have thus been motivated by the work of
Beck, Cohen, and Swinney �46� concerning the derivation of
superstatistics starting from time series. Superstatistical ther-
mostatics results as a convolution of two statistics, one char-
acterized by the Boltzmann factor and the other correspond-
ing to inverse-temperature fluctuations. This requires the
existence of two relaxation times. We apply the arguments of
�46� by representing the spectra of mixed systems as discrete
time series in which the role of time is played by the level
ordering. In Sec. II, we consider two billiards with
mushroom-shaped boundaries as representatives of systems
with mixed regular-chaotic dynamics and three with the
shape of Limaçon billiards, one of them of chaotic and two
of mixed dynamics. The quantum eigenvalues and statistical
properties of the eigenfunctions were obtained experimen-
tally by exploiting the equivalence of the Schrödinger equa-
tion of a plane quantum billiard and the Helmholtz equation
for the electric field strength in a cylindrical microwave reso-
nator for wavelengths longer than twice the height of the
resonator. The billiards with mixed dynamics have classical
phase spaces of different structures for the two families of
billiards. The “time series” analysis of their spectra described
in Sec. III manifests the existence of two relaxation lengths,
a short one defined as the average length over which energy
fluctuations are correlated, and a long one that characterizes
the typical linear size of the heterogeneous domains of the
total spectrum. It is performed in an attempt to clarify the
physical origin of the heterogeneity of the matrix-element
space, which justifies the superstatistical approach to RMT.
The second main result of this section is to derive a param-
eter distribution f���, which is introduced in Eq. �2�. This
paves the way for the generalization of the Wigner surmise to
superstatistics concerning the nearest-neighbor spacing dis-
tribution �NNSD�. We then apply the deduced generalized
Wigner surmise in a phenomenological analysis of the
NNSD to the measured resonance frequencies of the micro-
wave resonators. In Sec. IV, starting from the superstatistical
generalization �Eq. �4�� for the Porter-Thomas distribution,
we analyze the experimental resonance-strength distributions
in the mixed Limaçon billiards. A brief summary of the main
results is given in Sec. V.

II. MUSHROOM AND LIMAÇON BILLIARDS

Billiards can be used as simple models in the study of
Hamiltonian systems. They consist of a point particle which
is confined to a container of some shape and reflected elas-
tically on impact with the boundary. The shape determines
whether the dynamics inside the billiard is regular, chaotic or
mixed. The best-known examples of chaotic billiards are the
Sinai billiard, a square table with a circular barrier at its
center, and the Bunimovich stadium, a rectangle with two
circular caps �47�. Neighboring parallel orbits diverge when
they collide with dispersing components of the billiard
boundary. In chaotic focusing billiards, neighboring parallel
orbits converge at first, but divergence prevails over conver-
gence on average. Divergence and convergence are balanced
in integrable billiards such as circles and ellipses.

Recently Bunimovich introduced the so-called mushroom
billiard �48� with the novel feature of a well-understood di-
vided phase space comprising a single integrable region and
a single ergodic one. We restrict ourselves here to mushroom
billiards which consist of a semicircular region, the “hat,”
and a “stem,” which is symmetrically attached to its base. As
the width of the stem varies from zero to the diameter of the
hat, there is a continuous transition from integrability �the
semicircle billiard� to ergodicity �in the case of a rectangular
stem, the stadium billiard�. In mushroom billiards, the regu-
lar region has a well-defined semicircular border about the
center of the hat with radius equal to half the width of the
stem. It is composed of those trajectories in the hat that never
cross this border and therefore remain in the hat forever.
Their integrability is due to the conservation of the reflection
angle for collisions with the semicircular boundary. The cha-
otic component consists of trajectories that enter the stem of
the mushroom billiard. In contrast to most other mixed sys-
tems, the dynamics of mushroom billiards is free of the usual
hierarchies of KAM islands about integrable islands in phase
space. Because of its sharply divided phase space, mushroom
billiards can be thought of as an ideal model for the under-
standing of mixed dynamics. They have indeed already been
under active research �49–53�.

The Limaçon billiard is a closed billiard whose boundary
is defined by the quadratic conformal map of the unit circle z
to w,

w = z + �z2, �z� = 1. �5�

The shape of the billiard is controlled by a single parameter
� with �=0 corresponding to the circle and �=1 /2 to the
cardioid billiard �54�. For 0	�
1 /4, the Limaçon billiard
has a continuous and convex boundary with a strictly posi-
tive curvature and a collection of caustics near the boundary
�55,56�. At �=1 /4, the boundary has zero curvature at its
point of intersection with the negative real axis, which turns
into a discontinuity for ��1 /4. Accordingly, there the caus-
tics no longer persist �11�. The classical dynamics of this
system and the corresponding quantum billiard have been
extensively investigated by Robnik and collaborators
�55,57�. They concluded that the dynamics in the Limaçon
billiard undergoes a smooth transition from integrable mo-
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tion at �=0 via a soft chaos KAM regime to a strongly
chaotic dynamics for �=1 /2.

Both families of systems have been studied experimen-
tally in the quantum limit exploiting the analogy between a
quantum billiard and a flat cylindrical microwave billiard
�52,58,59�. The electromagnetic resonances in a flat micro-
wave cavity can directly be associated with quantum states in
a quantum billiard of the same geometry. For the evaluation
of statistical measures, a sufficiently large number of reso-
nances is needed. Experimentally, this is not trivial since
each resonance has a finite width, and as the level density
increases with frequency, single resonances can be resolved
only up to a certain frequency. Hence, to measure as many
states as possible, one has to reduce the width of the reso-
nances by reducing the loss mechanisms. This is achieved by
the use of superconducting cavities, which are cooled down
to the temperature of liquid helium, T=4.2 K, in a bath cry-
ostat. The cavities are made either of niobium or of copper
plates, which have been galvanically covered with a layer of
lead, whose thickness is several penetration depths of the
electromagnetic field.

Electric field oscillations in the interior of the cavity can
be excited via antennas. Using a vectorial network analyzer,
the complex amplitude ratio of input to output signal from
the cavity can be measured. Peaks in the modulus of the
amplitude are found at resonance frequencies, corresponding
to eigenmodes of the system. There, the wave field forms a
standing wave. It can be excited only when the antennas used
in the measurement process are not near nodal lines of the
wave function, where the amplitude is very small. Thus, usu-
ally several antennas are used to measure different spectra,
enabling to identify all resonances up to a certain frequency.
For flat resonators of a length scale of 30 cm, one collects
approximately the first 800 eigenvalues with a very high pre-
cision. Experimental data of both kinds of systems consid-
ered in this paper have been obtained via this procedure �60�.

Two mushroom billiards have been recently investigated
experimentally. In order to avoid symmetry effects and
bouncing ball orbits between parallel walls in the stem, their
shape is of a half mushroom with a slant stem �see inset of
Fig. 1�. The ratio of the width of the stem to the diameter of
the hat is 1:3 �2:3� for the small �large� mushroom billiard.
The degree of chaos, which is the measure of all chaotic
parts of the phase space, is 45.5% �82.9%�, and the first 780
�938� resonances could be detected. In Fig. 1 we show a part
of the spectra of the small and large mushroom billiards,
respectively. Details of the experiment with the larger mush-
room billiard can be found in �52�. Three desymmetrized
cavities with the shape of billiards from the family of
Limaçon billiards have been constructed for the values �
=0.125,0.150,0.300, and the first 1163, 1173, and 942 ei-
genvalues were measured, respectively. More details on
these experiments are given in �58,59�. To compare the sta-
tistical properties of the eigenvalues with universal predic-
tions considered in the present paper, they have to be res-
caled to unit mean spacing. This is done by an unfolding
procedure using Weyl’s formula �61�, which relates the bil-
liard area and circumference to the number of resonance fre-
quencies below a given one.

As outlined above, the phase space structure of the bil-
liards with mixed dynamics are different for the two families

under consideration. The experimental NNSD of the larger of
the two mushroom billiards exhibits �52� a statistically sig-
nificant dip at s	0.7. It vanishes when the contribution of
the two shortest periodic orbits is subtracted. Such a dip has
never been observed in the spectra of other billiards with
mixed dynamics, including the Limaçon billiards considered
here. We shall show below that nevertheless the statistical
properties of the Limaçon billiards are indistinguishable
from those of the mushroom billiards after removal of the
contribution of these periodic orbits, in spite of the difference
of their phase space structure.

III. TIME SERIES REPRESENTATION

In this section, the time series method used for the study
of the fluctuations of the resonance spectra of the mushroom
billiards is introduced. Representation of energy levels of a
quantum system as a discrete time series has been probed in
a number of recent publications. Relaño et al. �41� consid-
ered a sequence of energy levels as a discrete time series in
which the energy played the role of time. They conjectured
that the power spectra of chaotic quantum systems are char-
acterized by 1 / f noise, whereas integrable quantum systems
exhibit 1 / f2 noise. This conjecture was supported by numeri-
cal experiments which involved classical random-matrix en-
sembles and atomic nuclei. Moreover, the power spectrum of
an experimentally modeled quantum Sinai billiard exhibits a
clear 1 / f noise through almost the whole frequency domain.
Mixed systems, on the other hand, like the Limaçon billiard,
the quartic coupled oscillator, and the kicked top, are char-
acterized by a 1 / f� noise �42,43�. In all these cases, the
exponent � was related to the degree of chaos. Manimaran et
al. �44� recently developed a wavelet-based approach to dis-
crete time series and employed it to characterize the scaling
behavior of spectral fluctuations of random-matrix en-
sembles, as well as complex atomic systems. Santhanam et
al. �45� studied the spectra of atoms and Gaussian ensembles

FIG. 1. Part of the transmission spectrum of the small �upper
panel� and large �lower panel� mushroom billiard. The insets show
the geometry of the billiards.
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using the detrended fluctuation analysis, which is a popular
tool to study long-range correlations in time series �62�. They
showed that this analysis is related to the 3 statistics of
RMT.

Here we apply the time series analysis to the study of the
energy spectra of mixed systems from another point of view.
Our goal is to test the hypothesis that quantum systems can
be modeled by a generalization of RMT �26,27� based on the
concept of superstatistics �28�. We follow an approach re-
cently proposed by Beck, Cohen, and Swinney �46�, which
describes how to proceed from a given experimental time
series to a superstatistical description. This approach allows
one to check whether a time series contains two separate
time scales, and also to extract the relevant probability den-
sities of superstatistical parameters from the time series.

A. Spectral relaxation lengths

Superstatistical RMT assumes that the space of matrix
elements consists of many spatial cells with different values
of some intensive parameter, e.g., the inverse variance �. In
systems with mixed regular-chaotic dynamics, the origin of
this spectral heterogeneity is the possible partial conservation
of an unknown or ignored symmetry. In the space of matrix
elements each heterogeneous domain comprises those matrix
elements that couple states, which have similar properties
with respect to this symmetry, where the typical size of the
heterogeneous cells T measures the correlation length in that
space. The heterogeneity of the space of matrix elements
presumably causes one in the structure of the spectrum. Each
cell is assumed to reach local equilibrium very fast, i.e., the
associated relaxation length �, which is defined as that length
scale over which energy fluctuations are correlated, is short.
It may also be regarded as an operational definition for the
average energy separation between levels due to level repul-
sion. In the long term, the stationary distributions of this
inhomogeneous system arise as a superposition of the “Bolt-
zmann factors” of the standard RMT, i.e., e−� Tr H2

. The pa-
rameter � is approximately constant in each cell for an ei-
genvalue interval of length T. In superstatistics this
superposition is performed by weighting the stationary dis-
tribution of each cell with the probability density f��� to
observe some value � in a randomly chosen cell and inte-
grating over �. Of course, a necessary condition for a super-
statistical description to make sense is the condition ��T,
because otherwise the system is not able to reach local equi-
librium before the next change takes place.

Our goal is to show that the behavior of a fictitious time
series formed by the 780 and 938 resonances, respectively, in
the two mushroom billiards and the approximately 1100
resonances in each of the three Limaçon billiards is consis-
tent with superstatistics. For this purpose the distribution
f��� is derived by proceeding as in �46�. We extract the
relaxation lengths �times� to local equilibrium � and the large
length scale T on which the intensive parameter fluctuates
and show that there is a clear scale separation of the spectral
correlations in each billiard.

First, let us determine the long time scale T. For this we
divide the spacings series into N equal level-number inter-

vals of size n. The total length of the spectrum is Nn. We
then define the mean local kurtosis ��n� of a spacing interval
of length n by

��n� =
1

N


i=1

N
��s − s̄�4�i,n

��s − s̄�2�i,n
2 . �6�

Here �¯�i,n=
k=�i−1�·n+1
i·n

¯ denotes a summation over an in-
terval of length n starting at level spacing in, and s̄ is either
the local average spacing in each spacing interval or the glo-
bal average s̄=1 over the entire spacing series. We chose the
latter. As in �46�, we define the superstatistical level-number
scale T by the condition

��T� = 3, �7�

that is, we look for the simplest superstatistics, a superposi-
tion of local Gaussians. In probability theory and statistics,
kurtosis is a measure for the “flatness” of the probability
distribution of a real-valued random variable. Higher kurto-
sis means that a larger part of the contributions to the vari-
ance is due to infrequent extreme deviations, as opposed to
frequent modestly sized ones. Figure 2 shows the depen-
dence of the local flatness of a spacing interval on its length
for the two mushroom and the three Limaçon billiards. In the
case of the chaotic Limaçon billiard, in which �=0.300, the
quantity � does not cross the line of �=3 for the considered
values of n. It is expected that T=N in this case, since the
fluctuations in a chaotic �unfolded� spectrum are uniform.
The values of T for the mixed billiards are given in Table I.

(a)

(b)

FIG. 2. Local kurtosis of the spacing intervals of the mushroom
�upper panel� and Limaçon �lower panel� billiards.
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The short time scale, that is, the relaxation time associated
with each of the N intervals, was estimated in �46� from the
small-argument exponential decay of the autocorrelation
function

Cs�n� =
s�i�s�i + n� − 1

s2 − 1
�8�

of the time series s�t� under consideration. Figure 3 shows
the behavior of the autocorrelation functions for the series of
resonance spacings of the two families of billiards.

Quite frequently, the autocorrelation function shows
single-exponential decays C�n�=e−n/�, where ��0 defines a
relaxation “time.” A typical example is the velocity correla-

tion of Brownian motion �63�. The autocorrelation functions
studied here clearly do not follow this trend. In an attempt to
quantify the dependence of Cs on n, we parametrized its
empirical value in the form of a superposition of two expo-
nentially decaying functions

Cs�n� = A1e−n/�1 + A2e−n/�2 �9�

and �arbitrarily� fixed the superposition coefficient as A1
=1.5 and A2=−0.5. The curves in Fig. 3 show the resulting
parametrization. The best-fit parameters are given in Table I.
We may estimate � as the mean value of �1 and �2 and con-
clude that � has a value slightly larger than 1 for each bil-
liard. This is sufficient to conclude that the ratio T /� is large
enough in each billiard to claim two well-separated time
scales in the level-spacing series, which justifies describing
them within the framework of superstatistics.

Both Figs. 2 and 3 as well as Table I suggest that the
evolution of the quantities ��n� and Cs�n� along the time
series for the two billiard families is the same despite the
different behavior of their classical dynamics.

B. Estimation of the parameter distribution

The distribution f��� is determined by the spatiotemporal
dynamics of the entire system under consideration. Beck et
al. �46� have argued that typical experimental data are de-
scribed by one of three superstatistical universality classes,
namely, �2, inverse �2, or log-normal superstatistics. Let us
assume that � has contributions from � Gaussian random
variables X1 , . . . ,X�. Then a positive � is obtained by setting
�=
i=1

� Xi
2 and f�����0� is a �2 distribution with degree �.

Here, the average of � is �0=�0
��f�����0�d�. If �−1 rather

than � equals the sum of several squared Gaussian random
variables, the resulting distribution f�����0� is the inverse �2

distribution. Instead of being a sum of many contributions,
the random variable � may be generated by multiplicative
random processes. Then ln �=
i=1

� ln Xi is the sum of the
logarithms of Gaussian random variables. Thus it is log-
normally distributed. Explicit expressions for the three dis-
tributions can be found in �46�.

Next, we need to determine which of these distributions
fits best that of the slowly varying stochastic process ��t�
described by the experimental data. Since the variance of
superimposed local Gaussians �see the remark after Eq. �7��
is given by �−1, we may determine the process ��t� from the
series

TABLE I. Correlation lengths estimated from the time series representing the frequency spectra of the
mushroom and Limaçon billiards.

Mushroom Limaçon

Small Large �=0.125 �=0.150 �=0.300

Long-range correlation time

T 12.2 23.5 12.3 15.4 large

Short-range correlation times

�1 0.40 0.03 0.51 0.44 0.02

�2 .55 1.12 1.9 2.01 1.36

(a)

(b)

FIG. 3. Autocorrelation of the spacings within spectral intervals
for the mushroom �upper panel� and Limaçon �lower panel�
billiards.
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��i� =
1

�s2�i,T − �s�i,T
2 . �10�

The experimental distributions of the ��i� are shown in Fig.
4. We compared them with the log-normal, the �2, and the
inverse �2 distributions with the same mean ��� and variance
��2�− ���2. The inverse �2 distribution fits the data signifi-
cantly better than the other two distributions.

IV. NEAREST-NEIGHBOR SPACING DISTRIBUTION

This section focuses on the question whether the inverse
�2 distribution of the superstatistical parameter � is suitable
for describing the NNSD of systems in the transition out of
chaos within the superstatistical approach to RMT. As men-
tioned above, the NNSD of a chaotic system is well de-
scribed by that of random matrices from the GOE, the
Wigner surmise, if the system is chaotic and by that for Pois-
son statistics if it is integrable. Numerous interpolation for-
mulas describing the intermediate situation between integra-
bility and chaos have been proposed �9�. One of the most
popular ones is that introduced by Brody �64� although it is
purely phenomenological. This distribution coincides with
the Wigner distribution for a fully chaotic and with Poisson’s

for an integrable system. It is known to provide an excellent
description for the NNSDs of numerous mixed systems. An-
other phenomenological distribution was proposed in �14�
and its usefulness was demonstrated for band random matri-
ces. Lenz and Haake �65� derived a distribution based on the
model of additive random matrices. Finally, Berry and Rob-
nik elaborated a NNSD for mixed systems based on the as-
sumption that semiclassically the eigenfunctions and the as-
sociated Wigner functions are localized either in classically
regular or chaotic regions in phase space �66�. Accordingly,
the sequences of eigenvalues connected with these regions
are assumed to be statistically independent, and their mean
spacing is determined by the invariant measure of the corre-
sponding regions in phase space. The largest discrepancy be-
tween the Brody and the Berry-Robnik distributions is ob-
served for level spacings s close to zero. While the former
vanishes for s=0, the latter approaches a constant and non-
vanishing value for s→0. The observed deviations are asso-
ciated with localization and tunneling effects �67�. In �52,59�
the experimental NNSDs for the measured resonance fre-
quencies of the mushroom and the Limaçon billiards, respec-
tively, were compared to the Berry-Robnik �BR� distribution.

It follows from Eq. �2� that the statistical measures of the
eigenvalues of the superstatistical ensemble are obtained as
an average of the corresponding �-dependent ones of stan-
dard RMT weighted with the parameter distribution f�����0�.
In particular, the superstatistical NNSD is given by �26� as

p�s� = �
0

�

f�����0�pW��,s�d� , �11�

where pW�� ,s� is the Wigner surmise for the Gaussian or-
thogonal ensemble with the mean spacing depending on the
parameter �,

pW��,s� = �s exp−
1

2
�s2� . �12�

For a �2 distribution of the superstatistical parameter � the
resulting NNSD is given by

p�2��,s� =
�0s

�1 + �0s2/��1+�/2 . �13�

The parameter �0 is fixed by requiring that the mean level
spacing �s� equals unity, yielding

�0 =
��

4
��� − 1

2
�� ��

2
��2

. �14�

For an inverse �2 distribution of � one obtains

pinv�2��,s� =
2�0s

���/2�
���0�s/2��/2K�/2���0�s� , �15�

where Km�x� is a modified Bessel function �68� and �0 again
is determined by the requirement that the mean level spacing
�s� equals unity,

(a)

(b)

FIG. 4. Estimation of the parameter distribution for the super-
statistical description of spectra of the mushroom �upper panel� and
two Limaçon �lower panel� billiards. The solid lines represent the
�2, the dotted lines the inverse �2, and the dashed lines the log-
normal distribution.
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�0 =
4�

�3 ��3 + �

2
�� ��

2
��2

. �16�

Finally, if the parameter � has a log-normal distribution, then
the NNSD can only be evaluated numerically.

We compared the resulting NNSDs given in Eqs. �13� and
�15� and that for a log-normally distributed � with the ex-
perimental ones for the mushroom billiards and the two
Limaçon billiards with mixed dynamics. In Fig. 5 the experi-
mental results are shown together with the superstatistical
and the BR distributions. The best-fit values of the param-
eters are given in Table II. We in addition used the relative
entropy �40,69�

S��P�p� = −� P�x�ln
P�x�
p�x�

dx �17�

to express the difference between the theoretical Ansatz p�x�
and the experimental distribution P�x�. Such a reference term
has been discussed in the literature in the context of going
from a discrete to a continuous system and is proportional to
the limiting density of discrete points �70�. As is well known,
the relative entropy S��P�p� is negative everywhere except at
its maximum, where it equals zero and P�x�= p�x�. One can
use this fact to find the value of the parameter of a theoretical
distribution that has the least distance from the experimental
distribution. The resulting best-fit values of the parameters
are given in Table III. Figure 5 and Tables II and III suggest
the validity of the superstatistical distribution, especially for
the nearly chaotic billiards. The figure clearly shows that the
NNSD for the inverse �2 distribution pinv�2�� ,s� agrees with
the experimental ones as well as, or, especially for small
spacings, even better than the others, including the Brody
�not shown� and the BR distributions.

The distribution pinv�2�� ,s� given in Eq. �15� coincides
with the Wigner distribution in the limit of �→�. As � de-
creases, the distribution evolves toward a well-defined limit,
but this limiting case does not resemble the Poisson distribu-
tion as one would expect. To demonstrate this behavior and
give a feeling for the size of the tuning parameter �, we
evaluate its value corresponding to the minimal deviation
from a BR distribution with a given degree of chaoticity q.
For this we define a measure

(a)

(b)

FIG. 5. Experimental NNSDs for the mushroom �upper panel�
and Limaçon �lower panel� billiards compared with the superstatis-
tical distributions. The solid lines represent the �2, the dashed lines
the inverse �2, the dashed lines the log-normal, and the short-
dashed lines the Berry-Robnik distribution.

TABLE II. Best-fit parameters for the experimental NNSD and resonance-strength distributions in the
mixed billiards. The corresponding �2 values are given in parentheses.

Mushroom Limaçon

Distribution Small Large �=0.125 �=0.150

NNSD

�2 �=2.95 �0.0189� �=6.03 �0.0031� �=2.57 �0.0133� �=2.63 �0.0097�
Inverse-�2 �=0.00 �0.0042� �=2.31 �0.0018� �=0.00 �0.0031� �=0.00 �0.0021�
Log-normal v=1.41 �0.0129� v=0.96 �0.0033� v=1.23 �0.0104� v=1.17 �0.0078�
Berry-Robnik q=0.24 �0.0007� q=0.87 �0.0027� q=0.58 �0.0020� q=0.62 �0.0034�

Resonance-strength distribution

�2 �=2.66 �0.00142� �=3.47 �0.00035�
Inverse �2 �=0.50 �0.00030� �=0.98 �0.00045

� �=0.76 �0.00120� �=0.81 �0.00131�
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dinv�2,BR��� = min
q
�

0

�

�pinv�2��,s� − pBR�q,s��2ds . �18�

The distance dinv�2,BR��� between the two distributions
equals zero for q=1 and �→�, where both distributions co-
incide with the Wigner distribution. Its value increases on
departure from these parameter values, has a maximum value
of 0.0030 for �=1, and then decreases to a value of 0.0025 at
�=0. The measure dinv�2,BR��� yields a relation between the
BR distribution and the superstatistical parameter �, which is
shown in Fig. 6. The figure suggests that pinv�2�� ,s� can de-
scribe only the initial stage of the transition from chaos to
regularity. One can find a BR distribution that agrees well
with pinv�2 until an intermediate situation in which the NNSD
corresponds to a Berry-Robnik parameter q=0.83. The fail-
ure of spacing distributions interpolating between those de-
scribing chaotic and regular systems in the limit of near in-
tegrability is common in different RMT descriptions based
on generalized statistical mechanics, e.g., in �19–24�. As
mentioned above, the superstatistical random-matrix en-
semble is base invariant. The Hamiltonian of an integrable
system, on the other hand, by definition, has a well-defined
complete set of eigenstates, which constitutes a preferred ba-
sis. The RMT approach to mixed systems cannot depart far
from the state of chaos without breaking base invariance.

The variance �2 of the NNSD is often regarded as a one-
parameter interpolation between chaos and order because it
monotonically increases from �4 /�−1��0.273 for the
Wigner distribution to 1 for the Poissonian. At �=0, the su-

perstatistical distribution in Eq. �15� has a variance �2

= �16 /�2−1��0.621. This value is slightly larger than 0.5,
which is exactly the variance of the semi-Poisson distribu-
tion

pSP�s� = 4s exp�− 2s� . �19�

The semi-Poisson distribution was suggested to describe a
narrow intermediate region between insulating and conduct-
ing regimes exemplified by the Anderson localization model
�71�, with the two limiting cases being described by Poisson
and Wigner statistics, respectively. It was introduced to
mimic new seemingly universal properties in certain classes
of systems, in particular, characteristics of the “critical quan-
tum chaos.” Figure 7 compares the limiting superstatistical
distribution pinv�2�0,s� with the semi-Poisson distribution.
We see from the figure that the two distributions are quite
similar in shape; the superstatistical distribution seems to just
have passed the semi-Poissonian before reaching its final
shape for �=0. Therefore it is worth in the present context
using the semi-Poisson statistics as a reference distribution
marking the limit of validity of the base-invariant random-
matrix description of mixed systems.

V. RESONANCE STRENGTH

In the preceding section, we saw that superstatistics yields
a theoretical description of statistical properties of the eigen-
values of a quantum system with mixed classical dynamics,
which is of similar quality to existing ones, such as, e.g., the
Brody and the BR Ansätze. In this section we will investigate

TABLE III. Best-fit parameters obtained by extremizing the relative entropy for the experimental NNSDs
of the mixed billiards. The corresponding values of the relative entropy are given in parentheses.

Mushroom Limaçon

Small Large �=0.125 �=0.150

NNSD

�2 �=2.67 �−0.0920� �=7.93 �−0.0232� �=2.62 �−0.0909� �=2.69 �−0.0827�
Inverse �2 �=0.01 �−0.0353� �=3.14 �−0.0175� �=0.01 �−0.0341� �=0.01 �−0.0362�
Log-normal v=1.31 �−0.0568� v=0.60 �−0.0206� v=1.33 �−0.0533� v=1.26 �−0.0537�
Berry-Robnik q=0.55 �−0.0289� q=0.87 �−0.0203� q=0.57 �−0.0293� q=0.58 �−0.0378�

FIG. 6. Relation between the tuning parameters q and � of the
Berry-Robnik and superstatistical NNSDs, respectively.

FIG. 7. Superstatistical NNSD pinv�2�0,s� compared with the
semi-Poisson distribution PSP.
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its extension �Eq. �4�� to the description of statistical proper-
ties of the eigenfunctions. The distribution of the parameter
� was determined in �39� using maximum entropy arguments
�33�. There, the resulting expression for the transition inten-
sity distribution was fitted to the distributions of the experi-
mental reduced transition probabilities in 26Al and 30P nuclei
�72,73�. It fits the data much better than a �2 distribution
with � degrees of freedom and �0=1, which has been pro-
posed by Alhassid and Novoselsky �74� and frequently used
for describing the deviation of partial width distributions
from the Porter-Thomas distribution. The superstatistical dis-
tributions obtained from Eq. �4� for a �2 and an inverse �2

distribution, respectively, read

P�2��,t� =
�� �+1

2 �
��� − 2��t��v/2�

 t

� − 2
+ 1�−��+1�/2

, �20�

Pinv�2��,t� =
2�1+��/2�� + 2�
������/2�

�t�� + 2����−1�/4K�1+��/2��t�� + 2�� ,

�21�

where K��z� is a modified Bessel function �68�. Unfortu-
nately, for a log-normal distribution the integral has to be
evaluated numerically.

In �75�, a new statistics, the resonance strength distribu-
tion, was introduced. For each resonance, a measurement of
the transmission of microwave power from one antenna to
another provides the product of the two partial widths related
to the antenna “channels.” This product has been named the
strength of the resonance with respect to the transmission
between the antenna channels. In Ref. �75�, the strength dis-
tribution was investigated experimentally for all three
Limaçon billiards. Altogether four antennas were attached to
each of the microwave billiards and the transmission spectra
between pairs of antennas �a ,b� were measured for all six
possible antenna combinations. An analytic expression for
the strength distribution of a pair of partial widths with dis-
tributions Pa and Pb is obtained as

P�y� = �
0

�

Pa�ta�Pb�tb���y − tatb�dtadtb. �22�

The distribution of the partial widths of a chaotic microwave
billiard is well described by the Porter-Thomas distribution
Eq. �3�, and the corresponding resonance strength distribu-
tion is given as

PGOE�y� =
K0��y�

��y
. �23�

More generally, if the partial width distribution is a �2 dis-
tribution with � degrees of freedom as proposed by Alhassid
and Novoselsky, then Eq. �22� yields

PAlh-Nov��,y� =
21−����y��K0���y�

y�2��/2�
. �24�

The superstatistical resonance-strength distributions are ob-
tained by substituting the corresponding partial-width distri-
butions �Eqs. �20� and �21�� into Eq. �22�. If the parameter �

has a log-normal distribution, this leads to a double integral
which is not easy to calculate. For the case of a �2 distribu-
tion, the resonance-strength distribution is given by

P�2��,y� =
1

�� − 2���y�2��/2�
 y

�� − 2�2�−��+1�/2

�G22
22�� y

�� − 2�2� 1,1

� + 1

2
,
� + 1

2
� �25�

where Gpq
mn��x�

a1,. . .,ap

b1,. . .,bq

� is Meijer’s G function �68,76,77�. On

the other hand, if the parameter � has an inverse �2 distribu-
tion, one obtains

Pinv�2��,y�

=
�� + 2�2

4��2�2��/2�
G04

40� 1

16
�� + 2�2y� −

1

2
,−

1

2
,
�

2
,
�

2
� .

�26�

Figure 8 compares the experimental resonance-strength dis-
tributions for the two mixed Limaçon billiards, expressed as
functions of z=log10 y, with the corresponding distribution
given in Eqs. �24�–�26�. The best-fit values of the parameters
are given in Table II. Both cases demonstrate the superiority
of the superstatistical inverse �2 distribution.

VI. DISCUSSION AND SUMMARY

Superstatistics has been applied to the study of a wide
range of phenomena from turbulence to topics in econophys-
ics. RMT of the Gaussian ensembles is among these. In its
application, the variance of the distribution of the matrix
elements is chosen as a parameter whose distribution is ob-
tained by assuming a suitable form or applying the principle
of maximum entropy. In this paper, we use the time series

FIG. 8. Resonance strength distributions in the mixed Limaçon
billiards compared with the predictions of different superstatistics.
The solid lines represent the �2 and the dashed lines the inverse �2

distribution, while the short-dashed line corresponds to the case in
which the strengths have a �2 distribution.
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method to show that the spectra of mixed systems have two
correlation scales, as required for the validity of the super-
statistical approach. The time series analysis also shows that
the best choice of the superstatistical parameter distribution
for a mixed system is an inverse �2 distribution. The dynami-
cal origin of relevance of this distribution in the present con-
text is the following. The inverse �2 distribution describes
the fluctuations of the inverse of the sum of squares of
Gaussian random numbers. In RMT, all the Hamiltonian ma-
trix elements Hij are assumed to have the same variance �ij

2

�8�. As the system departs from chaos, this assumption will
no longer hold due to the approximate restoration of some
symmetries. Accordingly, the variances are replaced by
Gaussian random numbers, and �see Eq. �2��
exp�−
Hij

2 /2�ij
2 ��exp�−�
Hij

2 �, where �=N−2
1 /2�ij
2 ,

with N the dimension of H, is treated as a random variable,
thus obtaining an inverse �2 distribution.

Based on this superstatistical approach, we computed the
NNSD of the energy levels and compared it with the spec-
trum of two microwave resonators of mushroom-shaped
boundaries and two of the family of Limaçon billiards,
which exhibit mixed regular-chaotic dynamics. The agree-

ment is found to be similar to that with all the other consid-
ered well-established distributions including the BR distribu-
tion. The method of superstatics also provides a description
of statistical properties of the eigenfunctions of a system
with mixed classical dynamics. Thus, the resonance-strength
distributions for the Limaçon billiards could be analyzed.
The agreement with the experimental resonance-strength dis-
tributions is better than for that derived from the Alhassid-
Novoselsky �2 distribution of transition intensities.
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