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An analytical approach to determining the mean avalanche size in a broad class of dynamical models on

random networks is introduced. Previous results on percolation transitions and epidemic sizes are shown to be
special cases of the method. The time-dependence of cascades and extensions to networks with community
structure or degree-degree correlations are discussed. Analytical results for the rate of spread of innovations in
a modular network and for the size of k cores in networks with degree-degree correlations are confirmed with

numerical simulations.
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I. INTRODUCTION

Network models are used to examine the underlying
structure of complex systems ranging from the Internet to
patterns of social interaction; see the reviews [1-3] and ref-
erences therein. In certain circumstances, interactions be-
tween the nodes (vertices) of the network may cause initially
localized effects to propagate throughout the whole network.
Such avalanches or cascades occur, for example, in the
transmission of infectious diseases through communities and
of computer viruses over email networks. The adoption of
innovations and the spread of fads may be modeled as cas-
cade processes on social networks, with the aim of viral mar-
keting being the creation of global cascades on these net-
works.

The dynamics of cascades are strongly dependent upon
the topological structure of the underlying network and on
the details of how the cascade spreads among the nodes of
the network [4—15]. In the class of examples considered in
this paper, each node of the network can be in one of two
states: either active (also termed damaged or infected) or
inactive (undamaged or susceptible), with nodes updating
their states depending on the number and state of the node’s
immediate neighbors in the (undirected) network. Networks
are chosen from an ensemble of graphs with specified degree
distribution (i.e., using the configuration model [16]), and
both synchronous and asynchronous updating may be con-
sidered. In this paper we show that for a class of such models
the average cascade size may be determined analytically (av-
erages being taken over an ensemble of realizations). This
basic model is also extended to networks with strong com-
munity structure or with degree-degree correlations. Previous
results on percolation and k-core sizes are shown to be spe-
cial cases of our general approach.

We consider undirected networks of N binary-valued
nodes in the N—oo limit, where the probability of a node
being activated depends only on its degree k and the number
m of its neighbors who are already active. Denoting this
probability by F(m,k) (termed the neighborhood influence
response function [17,18]) we require that (i) for any fixed &,
F(m,k) is nondecreasing with m, and (ii) once active, a node
cannot become deactivated. These requirements mean that
increasing the number of active neighbors of a given node
will increase (or at least not decrease) the probability of the
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chosen node itself becoming activated. This type of positive
feedback mechanism (known in the sociological literature as
“positive externalities”) ensures that the number of active
nodes in a given realization is nondecreasing with time, and
enables us to use analytical methods to calculate the mean
avalanche size on locally treelike (vanishing clustering) ran-
dom networks.

A broad range of dynamical problems on random undi-
rected networks can be shown (see Sec. II) to obey condi-
tions (i) and (ii), including Watts’ model of threshold dynam-
ics [13], k-core size calculations [19], site and bond
percolation problems [20], and (under certain types of exter-
nal field) zero-temperature random-field Ising models [21].
Susceptible-infected-recovered (SIR) disease transmission
models may be mapped to the bond percolation problem (in
steady state) [22], and so are also included in the class of
problems solvable using our methods. Methods for calculat-
ing avalanche sizes on directed networks have also been ex-
amined recently [23]; here we restrict our attention to undi-
rected networks.

Our analytical approach builds on methods introduced to
study the zero-temperature random-field Ising model
[21,24,25]. The main assumption is that the network may be
approximated by a tree structure, and so networks with non-
zero clustering (i.e., with short loops or cycles in the graph)
or disconnected segments may not be considered. Generating
function methods have been used to determine expected
sizes of clusters (cascades) in percolation problems, and can
in fact give the whole distribution of cascade sizes [1,16,20].
However, the generating function approach is not directly
applicable to the wider class of models we consider here.
Moreover, we believe the relative simplicity of our method
makes the calculation of mean cascade sizes more intuitive
even in those problems where generating functions have
been applied.

The remainder of this paper is structured as follows. In
Sec. II we show that an analytical approach introduced to
find the mean cascade size in Watts’ model of threshold dy-
namics may easily be generalized to a wide class of network
problems exhibiting cascades. Connections to existing results
on percolation, giant components, and k cores are high-
lighted. The time dependence of mean cascade sizes for both
synchronous and asynchronous updating is considered in
Sec. III. Extensions of the basic theory to model networks
with community structure or degree-degree correlations are
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derived in Secs. IV and V, and examples of time-dependent
infection in community-structure networks and k-core sizes
in correlated graphs demonstrate the excellent agreement of
theory with numerical simulations. Appendixes A and B ad-
dress the effects of single-seed activations, and the simplifi-
cation of the equations under special assumptions.

II. GENERALIZED MODEL

In this section we briefly review our earlier work on
Watts’ model, and then demonstrate how analytical results
for the mean cascade size may also be found for a variety of
other cases of interest. The response functions introduced
here form the basis for extending the theory to time-
dependent cases on modular or correlated networks in Secs.
HI-v.

A. Watts’ model

In our recent paper [26] we derived analytical expressions
for the mean avalanche size in Watts’” model of threshold
dynamics [13]. In this model, each node of the network is
assigned a random (frozen) threshold r from a specified dis-
tribution, and when updated, the node (of degree k, say) be-
comes active if the fraction m/k of its neighbors which are
active exceeds r. Cascades are initiated by randomly activat-
ing a seed fraction p, of the nodes.

By approximating the random network by a tree structure
and then defining the probability ¢, that a random node at
level n of the tree is active, conditional on its parent in the
tree being inactive, we derived the following iteration equa-
tion:

ko k-1
G =po+ (1= pp) 2 ~pr > ( )q’n”(l — ¢, E(m, k)
k=1 %  m=0 m
= g(g,). (1)

Here p, is the degree distribution (probability that a node has
k neighbors) of the configuration-model network, z is the
mean degree Xkp,, and the response function is

F(m,k) = c(%) , (2)

where C is the cumulative distribution function (cdf) of the
thresholds. If, for example, all nodes have the same threshold
R, the response function is

{O if m =Rk,
Fimk)=1 . 3)
1 if m > Rk.

The derivation of Eq. (1) uses the fact that the
degree distribution of nearest neighbors on a tree is
kp/z, and also that a node with k—1 n-level children of
which m are active becomes active itself with probability
(“1g"(1-g,)"""F(m k). As discussed in detail in [26], it
is crucial that the state of each node may be altered at most
once—it is this property that allows us to ignore propagation
of activity away from the central node of the tree and treat
each node as activated from its children.
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Given an initial random fraction p, of active nodes, we
iterate Eq. (1) from go=p, to convergence to determine q.,
=lim,,_,., g,, and then find the expected steady-state density
of active nodes in the network as

[ k k
p=po+(1=po) 2 pi 2 ( )q';zu — )M F(m,k) = h(q..).
k=0 m=0 \IM

(4)

To derive Eq. (4) we examine the central node of the tree,
which has k children with probability p; [26]. The quantity p
is the average (over an ensemble of realizations) of the
steady-state cascade size in networks characterized by p;,
with dynamics specified by F(m,k).

The only feature of the response function F that is crucial
to our derivations is that it is a nondecreasing function of m
for any fixed k. It is therefore straightforward to generalize
our approach to calculate the expected cascade size in a va-
riety of dynamical problems which also obey this condition
(and in which nodes, once activated, remain permanently
active). Note that the use of the tree structure in this deriva-
tion assumes that the fraction p, of seed nodes is nonvanish-
ing. Cases where cascades are initialized by single-node
seeds (i.e., pp=1/N) require further consideration; see Ap-
pendix A.

B. Other models
1. Absolute number of active neighbors

In their recent paper [27], Galstyan and Cohen examine a
version of Watts’ model in which the absolute number of
active neighbors, rather than the fraction of the total number
as in [13], is compared with the nodes’ thresholds to deter-
mine the subsequent states. The corresponding response
function for Egs. (1) and (4) is thus

F(m,k)=C(m), (5)

with C being the cdf of thresholds as before. We consider
this example in some detail in Sec. IV below, where the fact
that the response function is independent of the nodal degree
k will lead to significant simplification.

2. Site and bond percolation

Percolation on random networks has been extensively
studied [20,28-30] and formulas for the size of the giant
connected component have been determined using generat-
ing function methods [20] and applied to study network re-
silience and epidemic thresholds. Here we point out that
these are special cases of our general approach, correspond-
ing to suitable choices for the response function in Egs. (1)
and (4).

In the bond percolation problem, network edges are occu-
pied with probability p and nodes become infected (active) if
they are linked to an infected node by an occupied edge.
Thus with m active neighbors, a node has probability
(I—=p)™ of not becoming infected, so the response function
for this case is
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Flm.0) 0 if m=0, ©)
S =p)y it m>o0.
Taking the py—0 limit in Egs. (1) and (4) reproduces the
equations for the size of the giant component (epidemic size)
[20] given, for example, in Egs. (8.11) of [1], by applying the
following result for the response function (6):

k

k
> (m)qm(l - )" F(m,k) =1- (1 - pg)*. (7)

m=0

For site percolation, nodes of degree k are occupied with
probability Q, and occupied nodes become active if they
have one or more active neighbors. Unoccupied nodes can
never become active. The response function for site percola-
tion is therefore

Flm.0) 0 if m=0, ®)
"= 0, it m>o0.
Using this in the p,— 0 limit of Egs. (1) and (4), and noting
that for this response function we have

k

> (’I; )q’"(l — )" Fm, k) = [1-(1-¢)1, (9

m=0

we reproduce Egs. (8.5) of [1] for the size of the giant com-
ponent.

3. K-core sizes

The k core of a network is the largest subgraph whose
nodes have degree at least k [31]. Study of k-core decompo-
sitions gives insights into the topology of interconnected
parts of real-world networks such as the Internet [32]. Re-
cently analytical descriptions of the k-core sizes were found
for random uncorrelated networks [19,31]. As discussed in
[19], the size of the k core may be calculated as the steady
state of a cascade process—at each iteration all nodes with
less than k (undamaged) neighbors are removed from the
network (or, equivalently, are labeled as damaged them-
selves). In the steady-state limit of this cascade process, only
nodes in the k core remain undamaged.

To calculate the k-core size for k=K, we label damaged
nodes as active (i.e., “active” nodes=damaged or removed
nodes), and allow an initial random fraction p, to be dam-
aged. A node of degree k becomes damaged if the number m
of its damaged neighbors is greater than k—K, i.e., if less
than K of its neighbors are undamaged. Hence we set the
response function to be

{0 if m=k-K,

F(m,k) = i (10)
1 if m>k-K

in Eq. (1).

The final density p of damaged nodes then gives a size
1—p for the undamaged k core for k=K as a fraction of the
total (undamaged) network size. It is straightforward to con-
firm that the k-core size in uncorrelated networks (as given in
Egs. (1) and (2) of [19]) is given by our Egs. (1) and (4)
using Eq. (10) as above. In Sec. V we extend the method to
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find interesting results on k-core sizes in networks with
degree-degree correlations.

C. Cascade condition

For all the examples considered above, a cascade condi-
tion may be derived which determines whether an infinitesi-
mally small seed fraction p, of activated nodes will generate
a nonvanishing mean cascade size. The criterion is that the
iteration of Eq. (1) must cause an infinitesimally small value
of go=p, to grow; examining the derivative of the right hand
side of Eq. (1) with respect to ¢, at ¢,=0 gives the condition
for cascades to occur:

> ]i(k—l)pk[F(1,k)—F(o,k)]> 1. (11)
k

Use of the response functions (6) or (8) in Eq. (11) yields
well-known conditions for critical percolation previously de-
rived using other approaches [33], including the Molloy-
Reed criterion for existence of a giant connected component
[34]. The cascade condition derived by Watts for his model
of threshold dynamics [13] is also given by Eq. (11); note
that for this case we have recently extended the cascade con-
dition to cases where p, is small but nonvanishing [26]. In
Secs. IV and V we will extend the cascade condition (11) to
modular and correlated networks.

III. TIME-DEPENDENT SOLUTIONS

In this section we consider how the analytical solution (1)
and (4) may be extended to give the time-dependence of the
fraction p of active nodes as well as its steady-state value.
Using the appropriate response function [e.g., Egs. (2), (5),
(6), (8), and (10)] immediately allows these results to apply
also to the percolation, k-core, and other problems consid-
ered in Sec. II.

In the case where all N nodes are updated synchronously
the tree level n used in the derivation of Egs. (1) and (4) may
be mapped directly to the time step n. Then the expected
fraction ¢,,; of nodes with inactive parents at time step n
+1 depends on the value at the previous time step as given
by the function g of Eq. (1):

Gne1=8(qy). (12)

The total fraction of active nodes at time step n+1 is denoted
by p,.; and its value is given in terms of g, as

Pr+1 Zh(qn)s (13)

with 7 as defined in Eq. (4). Note that the steady-state solu-
tion of [26] given in Eq. (4) follows by taking the limit
n—o in Eq. (13). The time dependence of the synchro-
nously updated bond percolation problem has recently been
considered in the context of epidemic dynamics [35].

So far we have considered only synchronous updating,
i.e., all N network nodes are updated simultaneously at each
time step. In various applications (such as [27]) it is appro-
priate instead to update only a (randomly chosen) fraction f
of the N nodes at each time step. Thus the case f=1/N cor-
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responds to updating a single node at each time step (i.e.,
standard asynchronous updating), while f=1 reduces to the
synchronous updating case studied above. It may be shown
[36] that both synchronous and asynchronous updating lead
to the same steady state results, but of course the transient
behavior may be very different for the two cases.

For sufficiently low values of f the asynchronously up-
dated nodes are so sparse in the network that they may be
considered to be independent of each other, and the time
dependence of the averaged network quantities may be ap-
proximated as continuous: we introduce the obvious notation
q(t) and p(r). To understand this asynchronous limit we note
that the fraction of nodes which would be activated if updat-
ing were synchronous is [from Eq. (1)] g(¢(?)). Thus a frac-
tion g(q(t))—q(z) (assuming this is non-negative) of the net-
work nodes is available for activation, and a randomly
selected fraction f of these is updated, leading to (for f<<1)
the following evolution equation for ¢(z):

1D _ fetq) -0, (14)

with initial condition ¢(0)=p, and the notation [-]* standing
for max(0,-).

The density of active nodes at time ¢ is similarly denoted
p(t) and is well approximated by the solution of

PO fin(q(0) - o) (15)

with p(0)=p, and the function & as given in Eq. (4).

As shall be shown in the following sections, appropriate
vector-valued generalizations of both the synchronous and
asynchronous updating cases may be derived using similar
arguments to those introduced here, and show good agree-
ment with numerical simulations (see Fig. 2, for example).

IV. MODULAR NETWORKS

Motivated by sociological and epidemiological data, there
has been significant recent research interest in the study of
dynamics on networks composed of two or more modules (or
communities) of nodes [27,37]. The nodes in each module
share similar characteristics (e.g., having the same degree
distribution, threshold distribution, or response function) but
these may vary dramatically from community to community.
Typically nodes forming a community have a higher density
of links within the group than to outside communities. The
communities are linked to each other to form the overall
network, but global properties may depend strongly on the
heterogeneity of the network. It is therefore of interest to
contrast the dynamics on networks with this community
structure with the more homogeneous networks of the previ-
ous sections.

The effects of modularity upon percolation on networks
was examined in [37] and here we adopt the same model for
the network topology while generalizing the dynamics to the
variety of response functions outlined in Sec. II, for which
the generating function approach of [37] is not generally ap-
plicable. We will also compare our results with those of the
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specific bimodular network examined in [27].

Consider a network of N nodes divided into d communi-
ties labeled i=1,2,...,d. Each node is a member of one
community, and we will refer to the members of community
i as “i-type” nodes. The i-type nodes draw their degrees k
from the community-specific degree distribution p}?; there
may be a different distribution for each community. Each
edge from an i-type node may link to a j-type node with a
fixed probability. These probabilities are described conve-
niently by the d X d mixing matrix e [37], with e;; defined as
the probability that a randomly chosen edge in the network
connects a node of type i to a node of type j. We denote by
N the number of i-type nodes in the network, and note that
e will depend on the distribution of node types.

It is relatively straightforward to generalize the derivation
of Egs. (1) and (4) to a system of equations describing the
modular case. Again, we stress that the conditions (i) and (ii)
discussed in Sec. I (i.e., F(m,k) nondecreasing with m and
permanently activated nodes) are necessary requirements for
our derivation to apply. Given an inactive i-type node and
conditioning on its parent being inactive, the probability that
each of its children is active at (synchronous) time step n is
denoted by g\, with

()
q(i) _ 2 qun (16)

2 j €ij
and the updating equation for each type takes the form
T
di=pb + (1= >>2 P ( )(qﬁ;hm
m=0 m
X(1=gPy=t=mp ">(m,k), (17)

with q(’)— p(’) Here z) is the mean degree (z'= Ekp(’)) p
the initial seed fraction, and F (l)(m k) the response function,
of the i-type nodes. As an obvious generalization of Eq. (12)
we write this as

q), = g(g?). (18)

The density of active i-type nodes at time step n+1 is given
by

k
k : A
it =+ (=) 2 P 2 (m )(qf:))m(l /R
m=0

h(i)(qni))_ (19)

Finally, the total fraction of active nodes across the network
is given by

FO(m,k) =

N© (@)

Py = 2 NP (20)

As in Sec. III these synchronous-update equations may be
adapted for asynchronous updating, provided that the frac-
tion f of nodes updated at each time step is sufficiently small.
The resulting system of differential equations takes the form
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dq" (1) o A
7 =1e"@" (1) - 4" O], (21)
with
E ; eiqu(f)
7=——. (22)
:Sjeﬁ
and q(i)(0)=p8). The density equations are
dp(t o A
0 1n0 g0 - o0 (23)
with p®(0)=p!, and the overall density is given by
N
p() =2 Wp(’)(t)- (24)

i

Cascade conditions were discussed for the d=1 homoge-
neous network case in Sec. II C. The generalization to modu-
lar networks is most easily derived by considering a pertur-
bation of the asynchronous-updating case about the steady
state with ¢)=0 for all i. Linearization of Eq. (21) using Eq.
(22) yields the approximation

dg" (1) ‘
d sz (A= 51‘]‘)670)([), (25)
! j
with the entries of the d X d matrix A given by
g k o '
A= S (= DpPTFO (1K) - FO(0,0].
Ee (7 k2
(26)

Infinitesimally small seed fractions may only grow to glo-
bal cascades if at least one eigenvalue of the matrix A-1 is
positive—equivalently, if an eigenvalue of A is greater than
1. This matrix cascade condition is the natural generalization
of Eq. (11) to the d>1 case, and includes the phase transi-
tion condition for the emergence of the giant component
found in [37] as a special case, using the bond percolation
response function (6) in Eq. (26).

As an example of an asynchronously updated modular
network we consider d=4 communities with links between
them as denoted schematically in Fig. 1. Type 1 and type 2
nodes both have Poisson degree distributions with respective
means z'=5.8 and z?=8, while type 3 and type 4 nodes
have regular degree distributions, i.e., each node has exactly
7¥=7"=8 neighbors. The communities are all of equal size,
so NO=N/4 for i=1-4. Connections between the different
types of nodes are quantified by the mixing matrix e:

55 015 0.5 0
1 o015 77 0 015
““2s8l015 0 77 015
0 015 015 7.7

(27)

The zero elements of this matrix indicate that type 1 nodes
have no direct link to type 4 nodes, and similarly there are no
direct links between nodes in modules 2 and 3.
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FIG. 1. (Color online) Schematic showing the d=4 communities
with intermodule links described by the mixing matrix of Eq. (27).

We use asynchronous updatin§ (with £=0.01) and initially
activate only type 1 nodes, so pO’)=0 for i=2,3,4, with p(()l)
=0.01. It is interesting to observe the dynamics of the cas-
cade process as the intercommunity links depicted in Fig. 1
facilitate the spread of the contagion. Here, unlike [27], we
use Watts’ original cascade model (3) with uniform threshold
R=0.18.

Symbols show numerical results averaged over ten real-
izations with N=5X 10° nodes and curves are the outputs of
Egs. (21)—(24). In Fig. 2(a) we show the time-dependent
density p(z) of active nodes in the whole network. The rate of
activation, dp(z)/dt, is plotted in Fig. 2(b), and clearly shows
the effects of the community structure in the network. The
ordering of the various community activations is highlighted
in Fig. 2(c) by splitting the rate of activation into its four
constituent parts dp®/dt.

The initialization targets type 1 nodes, with this commu-
nity (dashed curve) activated almost entirely before the other
communities are appreciably affected. Although module 1 is
linked equally strongly to both type 2 and type 3 nodes, the
fact that these communities have difference internal degree
distributions causes module 2 (solid curve) to activate sig-
nificantly earlier than module 3 (dash-dot curve). Type 3
nodes are then closely followed by type 4 (dotted) nodes, so
that the final two peaks in Fig. 2(b) show relatively little
separation. In all cases we find the theoretical results match
the numerical simulations very well.

Perhaps surprisingly, if the initial activation targets type 4
nodes (instead of type 1 nodes as shown here) the cascade
process does not spread beyond the tiny fraction of type 4
nodes and overall the network remains uninfected. This
subtle effect is due to the different resiliences of the two
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FIG. 2. (Color online) Numerical simulation results (symbols)
and theoretical predictions of Egs. (21)—(24) (curves) for Watts’
threshold dynamics model with uniform thresholds R=0.18 on the
modular network shown schematically in Fig. 1. A fraction
f=0.01 of all nodes are updated at each time step, and the cascade
is initialized by a seed fraction p{,”:0.0l of type 1 nodes. (a) Den-
sity of active nodes p(r) for whole network; (b) rate of activation
dp/dt in whole network; (c) rates of activation dp'?/dt for each
community: i=1 (dashed), i=2 (solid); i=3 (dash-dot), i=4
(dotted). Numerical simulations show average values over ten real-
izations of networks with N=5 X 10° nodes.

communities, and may prove important in, for example, ap-
plications to viral marketing strategies. It is also interesting
to note that the cascade condition on the matrix (26) is not
satisfied in this example (the largest eigenvalue of A is ap-
proximately 0.935), despite the fact that type 1 seed fractions
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as low as pf)l)z 10 are observed to generate cascades. The
linearization used in the derivation of Eq. (26) from the fully
nonlinear equations is valid only for vanishingly small seed
fractions. However, this example is one of the many realistic
situations with small seed fractions where nonlinear effects
are dominant, as demonstrated in [26] for the d=1 case.

Galstyan and Cohen [27] have recently considered cas-
cade dynamics in networks composed of two modules, in the
special case where each community has a Poisson degree
distribution. In Appendix B we show that the general system
of Egs. (21)—(24) reduces to the simpler system of [27] pro-
vided that (i) each response function F)(m, k) is independent
of k, and (ii) each community has a Poisson degree distribu-
tion.

V. DEGREE-DEGREE CORRELATIONS

To extend our analytical solutions beyond the case of un-
correlated networks we adopt the approach used in [37,38]
for percolation problems on networks with degree-degree
correlations and again extend to the wide class of possible
dynamics described in Sec. II.

Let P(k,k") be the joint probability distribution function
(pdf) for the degrees k and k' of end vertices of a randomly
chosen edge of the graph. In uncorrelated networks P(k,k’)
factors as kpk' pyr/z* since the degrees of nodes at either end
of an edge are independent. In the more general case the
Pearson correlation coefficient r may be defined as in [38]:

2 o kK P~ [Ek,k, kP(k,k’)]2 08)
r= , 28
3, Pk [ 2, kP k)]

so that r=0 for the uncorrelated case. Networks with positive
correlation & (0,1) are termed “assortative” and those with
negative values r € (—1,0) are termed “disassortative.” New-
man has determined that r typically is positive in social in-
teraction networks, while many technological networks such
as the Internet (at autonomous systems level) show disassor-
tative mixing [38].

Our analytical solution method may be extended to corre-
lated networks in a similar fashion as for the modular net-
works seen in Sec. IV. Define qflk) as the probability, at
(synchronous-updating) time step n, that a node of degree k
is active, conditional on its parent being inactive. Similarly,
writing qu‘) for the probability at time step n that a child of an
inactive node of degree k is active, we have

, P,k gk

o 2 PkK)q)
2, Plk.k')

[since a neighbor of the degree-k node has degree k’ with

probability P(k,k’)/Z P(k,k")]. Then, similar to Eq. (17),
the probabilities for each degree are updated as

k-1
k-1
a=py)+ (1= pp) 2 ( . )(6?,,"))’"
m=0

X (1= gPy=1="F(m, k), (30)

(29)

where pif) is the fraction of nodes of degree k which are
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initially activated and initial conditions are g{'=p{®. The
unconditional density of active k-degree nodes is given by

k
k
=+ =S (g - goymrons,
m=0
(31)
with the overall network density being equal to
pu= 2 Dip}) . (32)
k

Corresponding equations for the case of asynchronous updat-
ing may be derived exactly as was done in Sec. IV.

The condition which allows cascades from infinitesimal
seeds is that at least one eigenvalue of B should exceed 1,
where B is defined as

G-1 . . ,
Byj= o Pk)IF(1,j) - FO,)].  (33)
>, PkK)

This generalizes the p=1 bond percolation case (and giant
component existence criterion) given in [38] to the broad
class of applications with response functions listed in Sec. II.

An important example of the application of our method is
the calculation of k-core sizes in networks with degree-
degree correlations. As noted in Sec. II above, k cores in
uncorrelated networks have been determined in [19,31], us-
ing an approach which may be viewed as an example of our
generalized method for the specific response function (10).
The approach of the current section is therefore applied to
examine the effect of nonzero correlations upon k-core sizes,
using the steady-state predictions of Egs. (30)—(32), and not-
ing that the final size of the k core is given by 1—p... Initial
random damage of a fraction Q of nodes may be included in
our calculations.

We concentrate on the k=7 core in a network with Pois-
son degree distribution of mean z=10. Degree-degree corre-
lated networks are created as described in [33] by starting
with pairs (k,k") of end-vertex degree values, drawn from an
appropriate joint distribution, i.e., k and k' are the degrees of
nodes at either end of a random edge in the graph. End
vertices with the same k values are then collected together
into random bunches of k nodes and identified with a single
network node. When the network is sufficiently large (we use
5% 10° edges, giving 10° nodes) we find that the effect of
errors due to mismatched ends of links is negligibly small
[37].

To generate the correlated pairs (k,k’) we use a transfor-
mation method sometimes known as the Gaussian copula
model [39]. For each pair we draw three numbers M, y;, and
v, from independent zero-mean, unit-variance, Gaussian dis-
tributions and combine them to form correlated unit-variance
Gaussian variables x; and x, as follows:

x1=\’/mM+ VI=[olyy,

X, = sgn(V)V|v|M + V1 = |v]y,, (34)

where vE(-1,1) is a copula correlation parameter, which is
closely related to, though not identical to, the correlation
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coefficient r of Eq. (28). Defining G(x) as the cumulative
distribution function (cdf) of x; (or x,),

1 1 X
G(x) = 5 + Eerf<\T§> , (35)

and C(k) as the cdf for the degree of end-vertices of a ran-
dom edge,

k.
ch=>"%p, (36)
=02

the values of (x;,x,) are transformed to the degrees (k,k’)
via

k=CG(x)], K =CT[G)]. (37)

The joint pdf P(k,k’) of the degrees of end vertices is given
by the double integral over the correlated joint-Gaussian dis-
tribution:

1 GCk+1)] [GTCK +1)]
Plk+1,k'+1)=

|
21 = v Joicwny Joirewn

(X3 +x3 — 2vx,x,)

2(1-17) )dxldxz’

Xexp(—
(38)

and may be used in Egs. (30)—(32) to determine the theoret-
ical results.

The correlation coefficient r resulting from a given value
v of the copula correlation parameter is calculated directly
using Egs. (28) and (38). For the cases considered here we
find that the value of r is very close to the input value of v;
specifically, for the values of v=-0.5 and 0.98 reported be-
low we find r=-0.49 and 0.97, respectively. Accordingly we
quote only values of the copula correlation parameter v in
the following.

Figure 3 shows the effect of correlation values in the
range vE(—1,1) on the size of the undamaged (Q=0) k=7
core in the Poisson random graph with z=10. Compared to
the uncorrelated case, it is clear that the size of the k core
grows in disassortative networks, and decreases (with a sharp
transition) for positive correlation values. The behavior near
v==*1 is rather pathological: as v approaches 1, for ex-
ample, the network fragments into subnetworks of regular
degree in order to become completely assortative, so the
k-core size approaches a limit of E_f:kp ;- The approach to this
state as v increases is through a series of plateaus which are
well reproduced in both numerical simulations (symbols) and
theoretical results (curve).

The dependence of the k-core size upon the initially dam-
aged fraction Q of nodes is shown in Fig. 4. Assuming non-
targeted damage [20] we take p{'=Q for all degrees k and
compare disassortative (v=-0.5, dotted line) and strongly
assortative (»=0.98, solid line) networks with the neutral
(v=0, dashed line) case. Again, the effects of degree-degree
correlations upon the k-core size and upon the transitions
observed is quite dramatic, while the agreement between
theory and numerics is excellent. Equations (30)—(32) may
be used to understand the complex relationships among the
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FIG. 3. (Color online) Average size of k=7 core in a z=10
undamaged Poisson random graph with degree-degree correlations,
as a function of the copula correlation parameter v. Symbols denote
the average over ten realizations of networks with N~ 10 nodes;
the curve shows the theoretical prediction, using the matrix (38) in
Egs. (30)—(32).

parameters in correlated networks, and hopefully facilitate
comparison with measurement of k cores in real-world net-
works [19], and assist in k-core-based modeling of the Inter-
net [32].

VI. CONCLUSIONS

We have shown that a class of problems on networks,
which includes Watts’ dynamical model [13] as well as sev-
eral well-studied (static) network properties, such as perco-
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FIG. 4. (Color online) Size of k=7 cores in Poisson random
graphs with z=10 as a function of initial damage Q, for copula
correlation parameter v=-0.5 (dotted), =0 (dashed), and v=0.98
(solid). Curves show theoretical predictions, and symbols denote
numerical results over ten realizations of networks with N=10°
nodes.
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lation transitions and k-core sizes, may be considered as spe-
cial cases of a generalized model exhibiting cascade
dynamics. The steady-state mean cascade size for this class
of models is found analytically through Egs. (1) and (4), and
its time dependence under synchronous and asynchronous
updating is considered in Sec. IIl. Further extensions to
modular and degree-correlated networks (Secs. IV and V)
are based upon network constructions introduced in New-
man’s study [37] of percolation dynamics, which may be
viewed as a special case of our model.

As well as providing a general framework for understand-
ing several apparently different network problems, we have
shown examples where our approach yields fresh insights.
The spread of infection within Watts’ threshold dynamics
model through a population of multiple distinct types has
attracted recent interest [27], with existing results limited to
two modules with Poisson degree distributions. Our analysis
demonstrates how the general case of d types with arbitrary
degree distributions may be solved; see Fig. 2. Our second
example is the calculation of k-core sizes in networks with
arbitrary degree-degree correlations (see Figs. 3 and 4), ex-
tending results previously limited to uncorrelated networks
[19,31], and of special relevance for models of the Internet
based on k cores [32].

We anticipate further study of cascade dynamics based on
the analytical approach introduced here. In particular we
highlight the interesting (numerical) results on the role of
particularly influential seeds in a marketing context [18], the
important role of k cores in the correlated network that is the
Internet [32], and the possibility of extending our methods to
include networks with nonzero clustering coefficients [40].
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APPENDIX A: SINGLE-SEED INITIALIZATION

An implicit assumption of the derivations used in the
main body of this paper (and in [26]) is that the initial seed
fraction p, activates sufficiently many nodes for the tree
structure used to be a valid approximation to the original
network. For single seeds with py=1/N (or other cases with
poN relatively small) the probability of this approximation
being invalid in any given realization is non-negligible. In
Watts’ original paper [13] this single-seed effect was recog-
nized and quantified in terms of the size S, of the vulnerable
cluster, and the size S, of the extended vulnerable cluster.

The vulnerable cluster consists of all nodes which will
activate if a single neighbor is activated, while the extended
vulnerable cluster includes the vulnerable nodes, plus those
nodes immediately adjacent to the vulnerable cluster. Thus a
single-node seed will initiate a cascade (of expected size p as
per the theory of Sec. II) if it is located in the extended
vulnerable cluster but otherwise no global cascade will oc-
cur.
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Taking the size of the extended vulnerable cluster as S,
and with [ pyV/| initial seed nodes, the probability that none of
these fall within the extended vulnerable cluster is
(1-5,)PoNl Therefore the probability that a cascade occurs in
a given realization is 1—(1-5,) and the average size of
occurring cascades is p, so a (rather crude) approximation to
the expected avalanche size over an ensemble of realizations
may be found by multiplying these probabilities:

§=p[1-(1-5,)\eM].

When p, is independent of N (as assumed in most of our
work), the exponent |pyN] in this expression grows with N
and the expected avalanche size approaches p as
N — oo—this justifies the approach in the main body of this
paper. However, for single-seed activation we have pyN=1
and the avalanche size is p with an adjustment factor S, to
give

(A1)

Ssmgle seed pS (AZ)

It remains only to calculate the size S, of the extended
vulnerable cluster. This was determined numerically in [13];
here we demonstrate how it may be calculated as an appli-
cation of our general method. First, note (as was done in
[13]) that the vulnerable cluster may be calculated as a site
percolation problem with degree-dependent occupation prob-
ability Q,=F(1,k): using Eq. (9) in Eq. (4) we find

o0

Sy= 2 pil1 = (1= g IF(1,k), (A3)
k=0

where ¢.. is found by iterating to steady state the relation
from Eq. (1):

Gus1 =2 pk[l — (1= g,) " F(1,k).
k= 1

(A4)

These equations reproduce the results of Egs. (3a) and
(3b) of [13] for the size of the vulnerable cluster. We can also
find the size S, of the extended vulnerable cluster analyti-
cally (this was done only numerically in [13]). We simply
alter the central-node relation (A3) so that all nodes with at
least one child in the vulnerable cluster (each child having
probability g., of being vulnerable) are included in the ex-
tended vulnerable cluster, thus giving

Se= 2 pil 1= (1-g.)"]. (A5)
k=0

This equation is similar to Eq. (A3) but with the F(1,k) term
replaced with 1, while still using the same ¢., from Eq. (A4).

Figure 5 shows comparisons of the corrected mean ava-
lanche size (A1) with numerical simulations for single-node
and two-node initial seeds (i.e., py=1/N and py=2/N, re-
spectively) in Watts” model with response function (3) and
uniform threshold level R=0.18 [cf. Fig. 2(b) of [13]]. De-
spite the fact that the approximation (A1) is not expected to
be valid near the percolation transition, we see rather good
agreement with the numerical simulations. In the main body
of this paper we take p, to be independent of N as N—
(numerics use seed fractions several magnitudes larger than

PHYSICAL REVIEW E 77, 046117 (2008)
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FIG. 5. (Color online) Average cascade size in Watts’ model
with uniform threshold R=0.18 on Poisson random graphs with
mean degree z. Solid line shows single-seed (py=1/N) and dashed
line shows double-seed (py=2/N) predictions of Egs. (Al) and
(A5); symbols show results of numerical simulations on networks
of size N=10°, averaged over 10° realizations.

1/N) so that p gives an excellent approximation to the mea-
sured mean cascade size, but note that (A1) should be em-
ployed in cases where pyN is sufficiently small.

APPENDIX B: DERIVATION OF POISSON RANDOM
GRAPH RESULT FROM [27]

The recent paper [27] examines cascades in the modified
Watts model of Sec. II B 1 on modular networks with d=2
communities. Each community has a Poisson degree distri-
bution, and a pair of differential equations are derived to
determine the size of network cascades. Here we demon-
strate that the general asynchronous Egs. (21)—(24) reduce to
those in [27] under the assumptions used in that paper.

Exchanging the order of the k and m summations in the
function g defined in Eqs. (18) and (17), and dropping the
time step index for convenience, we obtain

—1)
g7 = p(’)+(1—p<’))2 E (,)p;(f)( . )(ci(’))’"

m=0 k=m+1 <

X(1 =g m k). (B1)
If F9(m,k) happens to be independent of k we may take it
outside the k summation and then use the following result for

the Poisson degree distribution p(’)—e‘z i)(z(i))k/k!:
ok ofk=1\ oo ke lom _ (g" (’))'"
> (@")"(1-q")

Z m

k=m+1 m!

OR0)

(B2)

to obtain
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m
¢g)=pf + (1= p) X FOm) e (B3)
m=0 m:
with x=g"z". For step function F) as in [27] the sum over
m may be written in terms of the regularized incomplete
gamma function.

Under the same assumptions on F) and p(i) it follows that
the updating function 4 for the density p® is identical to

PHYSICAL REVIEW E 77, 046117 (2008)

the function g(i) above, and hence in the special case studied
in [27] we have the relationship ¢'?=p"”. This enables the
solutions for p'’(r) (in the asynchronous updating case) to be
determined by solving only d nonlinear differential equa-
tions, whereas the general case of arbitrary degree distribu-
tion and/or k-dependent response functions requires the so-
lution of 2d equations for the ¢)(r) and p(¢) functions, as
given by Egs. (21)—(24).
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