
Dumbbell diffusion in a spatially periodic potential

Jochen Bammert, Steffen Schreiber, and Walter Zimmermann
Theoretische Physik I, Universität Bayreuth, D-95440 Bayreuth, Germany

�Received 2 October 2007; published 21 April 2008�

We present a numerical investigation of the Brownian motion and diffusion of a dumbbell in a two-
dimensional periodic potential. Its dynamics is described by a Langevin model including the hydrodynamic
interaction. With increasing values of the amplitude of the potential we find along the modulated spatial
directions a reduction of the diffusion constant and of the impact of the hydrodynamic interaction. For modu-
lation amplitudes of the potential in the range of the thermal energy the dumbbell diffusion exhibits a pro-
nounced local maximum at a wavelength of about 3/2 of the dumbbell extension. This is especially emphasized
for stiff springs connecting the two beads.
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Investigations of the diffusion of different colloidal par-
ticles in a homogeneous solvent have a long history �1,2�,
while studies of the diffusion of small spheres, dimers, and
polymers in different potentials attracted considerable inter-
est only for a short time �3–9�. Laser-tweezer arrays are a
new powerful tool for generating the desired spatially peri-
odic, correlated, or unstructured potentials in order to study
the effects of inhomogeneous potential landscapes on the
motion of colloidal particles �3–5,10�. Furthermore, recent
studies of dumbbells and polymers in random potentials have
created exciting results in statistical physics �11,12�.

Several of these investigations are motivated by possible
applications like particle sorting in inhomogeneous poten-
tials. For example, cross-streamline migration of colloidal
particles has been found in a flow through an optically in-
duced periodic potential. Since this migration depends on the
extent of the colloidal particles, the laser-tweezer array has
been successfully used for sorting particles with respect to
their size �4,10�.

We investigate Brownian motion and the diffusion of
dumbbells through a two-dimensional periodic potential,
which is described by a Langevin model. In doing so we
include the effects of the hydrodynamic interaction between
the two beads of the dumbbell and focus on the interplay
between the dumbbell extension b and the wavelength � of
the spatially periodic potential. In the context of this work
the dumbbell may be considered as a simple model for an-
isotropic colloids �13� pom-pom polymers �14� or two
spheres which are connected either by a rather flexible
�-DNA molecule or by a semi-flexible actin filament.

Our numerical studies reveal a significant dependence of
the dumbbell diffusion on the ratio � /b. With the potential
amplitude V0 of the order of the thermal excitation energy
kBT we find a remarkable maximum of the dumbbell diffu-
sion constant in the range of ��3b /2. The height of this
diffusion maximum increases with the stiffness of the spring
connecting the two beads of the dumbbell. Another remark-
able effect is the reduction of the influence of the hydrody-
namic interaction with increasing potential amplitude.

We describe the Brownian motion of a dumbbell in a
two-dimensional periodic potential by the Langevin equation
�without inertia�

ṙi = Hij�F j
� + F j

V� + Fi
S �i, j = 1,2� �1�

for the bead positions ri= �xi ,yi ,zi�. The linear spring force
Fi

� between them is determined by the harmonic potential

��r1,r2� =
k

2
�b − �r1 − r2��2, �2�

with the equilibrium length b of the spring and the corre-
sponding spring constant k. The spatially periodic force
Fi

V=−�V�ri� is derived from the two-dimensional potential
in the xy plane,

V�ri� = 2V0 cos� xi + yi

�
��cos� xi − yi

�
�� , �3�

which can be realized in experiments by a laser-tweezer ar-
ray. Its amplitude V0 may be changed by varying the inten-
sity of the laser light. The same wavelength � is chosen in
the x and y directions.

In the absence of hydrodynamic interactions �HI� between
the beads the mobility matrix H is a diagonal matrix
�Hii=

1
� I, Hij=0 for i� j� being inversely proportional to the

Stokes friction coefficient �=6��a which depends on the
solvent viscosity � as well as on the effective hydrodynamic
bead radius a. The HI between the two beads is taken into
account by the Rotne-Prager tensor �15� where the mobility
matrix for i� j has the following structure:

Hij =
1

8��rij
	�1 +

2

3

a2

rij
2 �I + �1 − 2

a2

rij
2 �r̂ijr̂ij

T
 . �4�

Note that rij =ri−r j is the distance vector between the beads
and rij is its norm.

The stochastic forces Fi
S caused by the thermal heat bath

are related to the dissipative drag by the fluctuation dissipa-
tion theorem which ensures the correct equilibrium proper-
ties. They can be combined to a single supervector
FS= �F1

S ,F2
S�, which reads

FS = �2kBTH� . �5�

T is the temperature, kB the Boltzmann constant, and ��t� is
the uncorrelated Gaussian white-noise vector with zero mean
and unit variance:
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���t�
 = 0, �6�

���t��T�t��
 = ��t − t��I . �7�

The fixed parameters in our simulations are b=1 for the typi-
cal length scale and kBT=1 which determines the energy
scale. If not stated otherwise, we use a

b = 1
5 , �=1. k deter-

mines the binding energy of the spring in units of the thermal
energy kb2

kBT . Most of our results were observed after averaging
over more than 104 ensembles.

A typical trajectory of the center of mass �c.m.� of the
dumbbell, R= �r1+r2� /2, in the xy plane is shown in Fig. 1
for k=10, �=2b, and V0=2kBT. It passes the saddles be-
tween the maxima of the potential, and accordingly the tra-
jectory adapts to the quadratic structure of the potential land-
scape. If one of the two parameters k or � /b is reduced,
larger excursions of the c.m. away from the potential minima
occur and more diagonal jumps between the valleys are
found.

The mean-square displacement �Rl
2�t�
=2Dlt �l=x ,y ,z�

increases linearly in time along each spatial direction as
shown for one parameter set in Fig. 2. This behavior is typi-
cal for normal diffusion. Parallel to the z direction one has an
undisturbed diffusion and therefore the mean-square dis-
placement and thus Dz are much larger than in the modulated
x and y directions. Along these two directions the saddles
and the local maxima between neighboring potential valleys
act as barriers for the dumbbell motion and therefore Dx
�equal to Dy� is smaller than Dz. Moreover, for a dumbbell in
a solvent the HI between the two beads comes into play,
which in general enhances the diffusion as can be seen by the
shift between the solid and dashed lines in Fig. 2.

The decay of the dumbbell diffusion as a function of the
ratio between the modulation amplitude of the potential and
the thermal energy V0 /kBT is shown in Fig. 3 for one param-
eter set with HI �solid line� and without HI �dashed line�
between the beads. The decay of Dx is similar to the results
described in Refs. �6,7� on the diffusion of point like par-

ticles. The difference between the two cases with and with-
out HI is shrinking with an increasing modulation amplitude
of the potential, because the higher diffusivity caused by HI
becomes less important with increasing potential barriers.
Accordingly, the ratio Dx /Dz between the diffusion along
one modulated direction and the unmodulated direction is
smaller with HI than for the case without HI, as shown in
Fig. 3.

In contrast to the diffusion of point particles the diffusion
of a dumbbell along one modulated direction also depends
on the interplay between the two length scales: namely, the
bead distance b and the wavelength � of the periodic poten-
tial modulation. A typical functional dependence of the
dumbbell diffusion on the ratio � /b is shown in Fig. 4, where
the diffusion is remarkably enhanced for � close to �1
=3b /2. Further beyond this value the dumbbell diffusion de-
creases with increasing values of the wavelength up to a
minimum Dx��2�, which is at about �2�6b for the given
parameters �not shown in Fig. 4�. The decay of Dx in the
range �1����2 can be explained in the following way. For
increasing values �	�1 the beads become essentially caged
within one single potential valley and an escape from such a
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FIG. 1. The trajectory of the c.m. of the dumbbell in the xy
plane follows predominantly along the saddles between the minima
of the potential. Parameters: k=10, V0 /kBT=2, and �=2b.
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FIG. 2. The mean-square displacement of the c.m. of the dumb-
bell is shown along the x and y directions �lower lines� and along
the z direction �upper lines� with HI between the beads �solid lines�
and without �dashed lines�. The parameters are the same as in Fig.
1.
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FIG. 3. The diffusion Dx �=Dy� in the x direction is normalized
by the free diffusion Dz in the z direction and plotted as a function
of V0 /kBT for the case with HI �solid line� and without HI �dashed
line�. The following parameters have been used: k=10 and �=2b.
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trap gets more and more unlikely �see right inset in Fig. 4�. If
the wavelength � is increased further beyond �2, the mean-
square displacement and the dumbbell diffusion increase
again and finally approach the value of the unmodulated
case, because for large wavelengths the dumbbell does not
feel the potential anymore.

If on the other hand the modulation wavelength is reduced
below �2, the distance from the potential minimum to a
saddle is shortened. In such a case it becomes more likely
that the dumbbell is kicked over a saddle to a neighboring
potential valley. So the diffusion Dx increases with decreas-
ing values in the range �1����2.

Near the maximum of the diffusion constant at ���1 an
additional effect comes into play which supports a dumbbell
movement from one potential valley to another and accord-
ingly enhances the dumbbell diffusion. In this range the two
beads hardly fit into one single potential valley as indicated
by the middle inset in Fig. 4. Moreover, for a rather stiff
spring both beads cannot reach the minima of two neighbor-
ing potential valleys simultaneously. So the required excita-
tion energy is smaller than V0 and for this reason the diffu-
sive motion is enhanced.

In the range �
b the dumbbell easily finds an orientation
in the potential plane where the two beads are located in two
distinct minima; cf. the left inset of Fig. 4. Only one bead
needs to be kicked to another valley in order to make
progress for the c.m. of the dumbbell. Therefore, irrespective
whether the two beads belong to nearest neighbor valleys or
not, the required excitation energy for a shift of the c.m.
depends only weakly on �. This is the origin of the small
variations of Dx in the range ��b.

The explanation given for the local maximum of the dif-
fusion constant in the range of �1 in Fig. 4 is supported by
the influence of the spring constant k on the height of Dx��1�
and on the mean distance �r12
. The local maximum of Dx is
especially pronounced in the case of a rather stiff dumbbell
�see Fig. 5� where the distribution of the bead distance ��r12�
is not changed by the periodic potential �see Fig. 6�. On the
other hand, for smaller values of k the maximum of ��r12� is

more and more shifted from b to �. In this case the beads
relax down to the potential valleys, so a higher excitation
energy is required for a shift of the c.m., which results in a
smaller diffusion constant as indicated by the solid line in
Fig. 5.

The distance between the potential valleys depends on the
direction in the xy plane, and therefore the orientational dis-
tribution of the dumbbell axis ���� in Fig. 7 provides a
complementary piece of information to ��r12�. The two beads
of the dumbbell may relax more easily to the potential
minima in the case of a soft spring �cf. solid lines in Fig. 7�
compared to a stiff spring �cf. dashed lines�. So the orienta-
tional distribution of the dumbbell axis in the xy plane
shows, besides the maxima along the x and y directions, a
local maximum for a diagonal orientation of the dumbbell
axis. This is displayed in Fig. 7�a�. If the wavelength is re-
duced to �=b, one finds, in addition to the maximum in the
diagonal direction �11�, local maxima along the �21� and �12�
directions, as indicated by Fig. 7�b�.

The Brownian motion of a dumbbell in a two-dimensional
periodic potential has been investigated in terms of a
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FIG. 4. The normalized diffusion constant Dx /Dz �=Dy /Dz� of
the dumbbell is shown as a function of the ratio between the equi-
librium bead distance b and the wavelength � for the case with HI
�solid line� and without HI �dashed line�. The insets illustrate pos-
sible locations of the dumbbell with respect to the periodic potential
for different values of � /b. The parameters are V0 /kBT=2 and k
=10.
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FIG. 5. The ratio between the diffusion constants Dx /Dz of the
dumbbell is shown for three different values of the spring constant
�solid line, k=0.1; dash-dotted line, k=1; dashed line, k=10� as a
function of the ratio � /b. The potential amplitude is V0=2kBT.
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FIG. 6. The distribution ��r12� of the bead distances is shown
for two different values of the spring constant, k=10 �solid line� and
k=1 �dashed line�, and for the parameters V0 /kBT=2 and
� /b=3 /2.
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Langevin model. For an increasing barrier height between
the potential minima, we find a decreasing diffusion constant
for the center of mass along the modulated spatial directions
as well as a reduction of the influence of the hydrodynamic
interaction. For stiff springs the diffusion additionally de-

pends on the ratio between the wavelength � of the potential
modulation and the equilibrium dumbbell extension b. In the
range ��3b /2 this interplay is especially pronounced, be-
cause the two beads do not fit into one single or two neigh-
boring potential minima anymore and this mismatch causes a
reduced effective barrier height and thus an enhanced diffu-
sion constant. If the spring constant is small, the beads can
relax down to the potential minima over a wide range of �,
which results in a diffusion constant that is rather indepen-
dent from � in this domain. So the height of the maximum of
the diffusion constant at ��3b /2 increases with the spring
stiffness. For modulation wavelengths further beyond 3b /2
the diffusion constant decays monotonically until some mini-
mum is reached. In this range the dumbbell is essentially
caged in one single potential valley and it is rather unlikely
that it escapes. Beyond this minimum as � goes to infinity
the diffusion constant grows until the free diffusion limit is
reached.

According to the dependence of the dumbbell diffusion on
the ratio � /b different values of the modulation wavelength
� in x and y directions cause an anisotropic diffusion behav-
ior. In addition, the results presented may be useful for sort-
ing polydisperse particle mixtures with respect to the par-
ticles’ elasticity and size.
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FIG. 7. The orientational distribution ���� of the dumbbell axis
in the xy plane is shown for two different values of the spring
constant �solid line, k=1; dashed line, k=10� and for V0 /kBT=2.
The angle � is measured with respect to the x axis, and the ratio
between the wavelength � and the bead distance b is �a� � /b=2 and
�b� � /b=1.
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