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Kinetic theory for neuronal networks with fast and slow excitatory conductances driven
by the same spike train
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We present a kinetic theory for all-to-all coupled networks of identical, linear, integrate-and-fire, excitatory
point neurons in which a fast and a slow excitatory conductance are driven by the same spike train in the
presence of synaptic failure. The maximal-entropy principle guides us in deriving a set of three
(1+1)-dimensional kinetic moment equations from a Boltzmann-like equation describing the evolution of the
one-neuron probability density function. We explain the emergence of correlation terms in the kinetic moment
and Boltzmann-like equations as a consequence of simultaneous activation of both the fast and slow excitatory
conductances and furnish numerical evidence for their importance in correctly describing the coarse-grained

dynamics of the underlying neuronal network.
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I. INTRODUCTION

Attempts to understand the enormous complexity of neu-
ronal processing that takes place in the mammalian brain,
supported by the ever-increasing computational power used
in the modeling of the brain, have given rise to greatly in-
creased sophistication in mathematical and computational
modeling of realistic neuronal networks [1-7]. Striking
manifestations of spatiotemporal neuronal dynamics, such as
patterns of spontaneous activity in the primary visual cortex
(V1) [8,9] and motion illusions [10], which take place on
length scales of several millimeters and involve millions of
neurons, can now be computed using large-scale, coupled,
point-neuron models [11,12]. The ability to describe still
more complicated neuronal interactions in yet larger portions
of the brain, such as among multiple areas or layers of the
visual cortex, may be significantly enhanced by appropriate
coarse graining.

Coarse-grained neuronal network models can describe
network firing rates using the average membrane potential
alone [13-25], or they can also take into account its fluctua-
tions [26-29]. The latter models are applicable to networks
in which neuronal firing occurs solely due to membrane po-
tential fluctuations while the average membrane potential
stays below the firing threshold [30-36], as well as to those
that operate in the mean-driven regime in which the slaving
potential that drives the neurons to fire is consistently above
the firing threshold. A particularly fruitful use of coarse-
grained models is in combination with point-neuron models,
forming so-called embedded networks [37]. Such models are
especially appropriate for describing neuronal dynamics in
the brain because of the many regular feature maps in the
laminar structure of the cerebral cortex. The primary visual
cortex alone has a number of neuronal preference maps, such
as for orientation or spatial frequency, laid out in regular or
irregular patterns [38—44]. Certain subpopulations which
contain sufficiently many neurons, but are small enough that
their response properties can be treated as constant across the
subpopulation, may be replaced by coarse-grained patches,
while other subpopulations may be represented by point neu-
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rons embedded in this coarse-grained background.

In the simplest case of all-to-all coupled neuronal net-
works, the initial step is to use a nonequilibrium statistical
physics framework and develop a Boltzmann-type kinetic
equation for the network probability density function of the
voltage and various conductances [26-29,45-57]. Since this
is a partial differential equation in three or more dimensions,
it is advantageous to further project the dynamics to one
dimension and obtain a reduced kinetic theory in terms of the
voltage alone. For purely excitatory networks, as well as net-
works with both excitatory and inhibitory neurons and both
simple and complex cells, such a theory was developed in
[28,29]. It achieves dimension reduction by means of a novel
moment closure, which was shown to follow from the
maximum-entropy principle [58]. Efficient numerical meth-
ods for solving the resulting set of kinetic equations were
developed in [59].

The predominant excitatory neurotransmitter in the cen-
tral nervous systems of vertebrates is glutamate, which binds
to a number of different types of post-synaptic receptors
[60]. Two main classes of glutamate-binding receptors are
the AMPA and NMDA receptors. Activation of the AMPA
receptors gives rise to fast post-synaptic conductance dynam-
ics with decay times of about 3—8 ms, while the activation
of the NMDA receptors gives rise to slow conductance
dynamics with decay times of about 60-200 ms, respectively
[61-64]. AMPA and NMDA receptors are frequently colocal-
ized, such as in the rat visual cortex [65] and hippocampus
[63,66] or in the superficial layers of cat V1 [67], and may
thus respond to the same spikes. This colocalization of re-
ceptors with different time constants motivates the present
study. We will examine its theoretical description in terms of
a kinetic theory and investigate its dynamical consequences.

From the viewpoint of kinetic theory, an important aspect
of neuronal networks with conductances activated by fast-
and slow-acting receptors, colocalized on the same synapses,
is the nature of the statistical correlations arising due to the
two types of conductances being driven by (parts of) the
same network spike train. Therefore, in this paper, we de-
velop a kinetic theory for purely excitatory neuronal net-

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.77.041915

RANGAN, KOVACIC, AND CAI

works of this type. For simplicity, we derive this kinetic
theory for a linear, conductance-driven, all-to-all-coupled,
integrate-and-fire (IF) network of identical excitatory point
neurons that incorporates synaptic failure [68—73]. Once we
find an appropriate set of conductance variables, which are
driven by disjoint spike trains, we can derive the kinetic
equation as in [29] and use the maximum-entropy principle
of [58] to suggest the appropriate closure that will achieve a
reduction of independent variables to time and voltage alone.
However, this closure is more general than that of [58] inso-
far as it involves using the dynamics of the conductance
(co)variances computed from a set of ordinary differential
equations. Adding inhibitory neurons and space dependence
of the neuronal connections to the kinetic description devel-
oped in this paper is a straightforward application of the
results in [28,29,58].

The paper is organized as follows. In Sec. II, we describe
the equations for a linear IF excitatory neuronal network
with a fast and slow conductance. In Sec. III, we introduce a
set of conductance-variable changes such that the resulting
conductances are driven by disjoint spike trains. In Sec. IV,
we present the Boltzmann-like kinetic equation that de-
scribes statistically the dynamics of the membrane potential
and these new conductance variables, develop a diffusion
approximation for it, and recast it in terms of the voltage and
the fast and slow conductances alone. In Sec. V, we impose
the boundary conditions for the kinetic equation obtained in
Sec. IV in terms of the voltage and conductance variables
and describe how the resulting problem becomes nonlinear
due to the simultaneous presence of the firing rate as a self-
consistency parameter in the equation and the boundary con-
ditions. In Sec. VI, we find an equivalent statistical descrip-
tion of the network dynamics in terms of an infinite
hierarchy of equations for the conditional conductance mo-
ments, in which the independent variables are the time and
membrane potential alone. In Sec. VII we describe the
maximum-entropy principle which we use to guide us in
discovering an appropriate closure for the infinite hierarchy
of equations from Sec. VI. In Sec. VIII, we discuss the dy-
namics of the conductance moments and (co)variances used
in the closure and also their role in determining the validity
of the conductance boundary conditions imposed in Sec. V.
In Sec. IX we postulate the closure and derive three closed
kinetic equations for the voltage probability density and the
first conditional conductance moments as functions of time
and membrane potential. We also derive the boundary con-
ditions for these equations. In Sec. X we consider the limit in
which the decay rate of the fast conductance becomes infi-
nitely fast and the additional limit in which the decay rate of
the slow conductance becomes infinitely slow. In Sec. XI, we
present conclusions and discuss the agreement of our kinetic
theory with direct, full numerical simulations of the corre-
sponding IF model.

II. INTEGRATE-AND-FIRE NEURONAL NETWORK WITH
FAST AND SLOW EXCITATORY CONDUCTANCES

The kinetic theory we develop in this paper describes sta-
tistically the dynamics exhibited by linear, IF networks com-
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posed of excitatory point neurons with two types of post-
synaptic conductances: one mediated by a fast and another
by a slow receptor channel. In a network of N identical,
excitatory point neurons, the membrane potential of the ith
neuron is governed by the equation

ivi=_<vi;8f>_Gi(t)(LsE)’ (1)
dt T T

where 7 is the leakage time constant, €, is the reset potential,
gp is the excitatory reversal potential, and G,() is the neu-
ron’s total conductance. The voltage V; evolves according to
Eq. (1) as long as it stays below the firing threshold V7.
When V; reaches Vr, the neuron fires a spike and V; is reset
to the value g,. In the absence of a refractory period, the
dynamics of V; then immediately becomes governed by Eq.
(1) again.

The total conductance G,(r) of the ith neuron in the net-
work (1) is expressed as the sum

Gi(1) =\G} (1) + (1-NG(1)
=\G(t) + NGV () + (1 -N)GP(), (2a)
in which
GA=GlH+GV(r) and GYH)=GPk) (2b)

are the fast and slow conductances, respectively. The con-
ductances GSI)(t) and Gl@(t) arise from the spikes mediated
by the synaptic coupling among pairs of neurons within the
network, while Gif (2) is the conductance driven by the exter-
nal stimuli. The parameter A denotes the percentage of fast
receptor contribution to the total conductance G(t) [74-76].

If the coupling for the network (1) is assumed to be all-
to-all, the conductances in (2b) can be modeled by the equa-
tions

d . :
UlEG{=—G{+f2 5(t—tw), (3a)
“

d S
015,01 == G+ L X B pi - n), (3b)
k#i 1

d S
UzEGz('z) =- Gz('2> + N-pE > P/g) At =14), (3¢c)
k#i 1

where we have assumed that the rising time scales of the
conductances are infinitely fast. In Egs. (3a)—(3¢c), &(--) is
the Dirac delta function, o and o, are the time constants of
the fast and slow synapses, f is the synaptic strength of the

external inputs, and S is the network synaptic strength. The &
functions on the right-hand sides of (3a)-(3c) describe the
spike trains arriving at the neuron in question. In particular,
the time ;, is that of the uth external input spike delivered to
the ith neuron and #;; is the /th spike time of the kth neuron
in network. Note that the network neuron spikes {t,;} are
common to Gl(-') and G,(-Z) due to the all-to-all nature of the
network couplings.

The coefficients p\!) and p{Z in Eqs. (3b) and (3¢) model
the stochastic nature of the synaptic release [68-73]. Each
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p,(fl), i=1,2, is taken to be an independent Bernoulli-
distributed stochastic variable upon receiving a spike at the
time #; i.e., p/=1 with probability p and 0 with probability
1-p, where p is the synaptic release probability. The sto-
chastic nature of the synaptic release will play an important
role in the next two sections in helping us determine the
appropriate conductance variables, which are driven by dis-
joint spike trains and can be used in deriving the correct
Boltzmann-like kinetic equation. Moreover, synaptic noise
often appears to be the dominant noise source in neuronal
network dynamics [77-79]. Other types of neuronal noise,
such as thermal [78] and channel noise [79,80], can also be
incorporated in the kinetic theory developed here or the ki-
netic theory with only fast excitatory conductances, devel-
oped in [28,29,58].

In the remainder of the paper, we assume that the train of
the external input spiking times ¢, is a realization of a Pois-
son process with rate v(¢). While it need not be true that the
spike times of an individual neuron, f;; with a fixed i, are
Poisson distributed, all the network spiking times #;; can be
considered as Poisson distributed with the rate Nm(z) when
the number of neurons, N, in the network is sufficiently
large, the firing rate per neuron is small, and each neuronal
firing event is independent of all the others [81]. This Pois-
son approximation for the spike trains arriving at each neu-
ron in the network is used in deriving the kinetic equation.
The division of the spiking terms in Egs. (3b) and (3¢) by the
number of neurons, N, provides for a well-defined network
coupling in the large-network limit N — oe.

III. CONDUCTANCES DRIVEN BY DISJOINT SPIKE
TRAINS

The fact that two different sets of conductances with dis-
tinct time constants are driven by spikes belonging to the
same spike train prevents us from being able to derive a
kinetic representation of the neuronal network in the present
case by using a straightforward generalization of the results
in [28,29,58]. Therefore we must take advantage of the sto-
chastic nature of the synaptic release and first introduce a set
of conductance variables which are all driven by disjoint
spike trains. We find this set in two steps.

As a first step, we introduce four auxiliary conductance
variables X(l) X; 2) Y M and Y; ) which obey the dynamics

d
xV = )+ _E > p Pl sz '8(t—1),  (4a)

T Np
t Pr+i 1

d
—x? = ), S W -p -1,
Uldt Np gl;l?k ( sz)@( 1)

(4b)

d
(Tzd_tYl('l) Y(l + N—kE El’kppﬁ)5 (t—1t),  (4c)
#i 1
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d
oY= <2>+—22p (1= pi)) e —1).
Pr+i 1

(4d)

We have chosen these variables so that the dynamics of X(l)
and Y; D is driven by the synaptic release on both the fast and
slow receptors simultaneously, X ) is driven by the release
on the fast receptors without release on the slow receptors,
and Y ,(-2) is driven by the release on the slow receptors with-
out release on the fast receptors.

By adding the pairs of Egs. (4a), (4b) and (4¢), (4d), re-
spectively, we find that G(l) X(1 +X; @) and G<2) Y(1 +Y(2)
satisfy Egs. (3b) and (3c). From Egs. (4a) and (40) we hke—
wise compute that the conductance A;= a'lX(l)+a'2Y D s
driven by the synaptic release on both the fast and slow
receptors simultaneously, while B;= (rlX(1 02Y D receives
no synaptic driving at all. From Eqs (1), (3a), (4b), and (4d),
we thus finally collect a set of equations in which all the
conductance variables have been chosen so that they are
driven by disjoint spike trains. This set is

d Vi—e, V.-
_Vi=_< i >_Gi(t)<—8E), (5a)
dt T e
d X
o1~ Gl=-Gl+ 2 8t-1,). (5b)
dt L
iAi— : —A- B + _E 2 pupd St —1),
dt + o_ Npizi
(5¢)
d 1 1
—Bj=——B;—-—A, (5d)
dt o, o_
d
o XD =-xP + _E > p (1 =p) St = 1),
d N Pr+i 1
(5e)
d
o, _Y(2) _ Y(Z) + _2 Ep(2)(1 —p(l))5(l‘— tkl)
“dt Npizi 1
(5f)

with the total conductance G; given by
Gi(1) = NG/() + A+ \_B;+ A\ XD + (1 -M)Y?. (59)
In Egs. (5a)—(5g), the constants o and \. are

20'10'2 20'10'2
g =02, 20 6)
0, + 0 Oy, — 0

and

041915-3



RANGAN, KOVACIC, AND CAI

1/ N 1=\ 1/ N 1=\
) )

o o) 2\ oy o,

respectively. In other words, the conductances Gf A, X(2)
and Y; ) in Egs. (5a)-(52) jump in a mutually exclusive fash-
ion in that no two of them can jump as the result of the same
spike.

In what is to follow, we still treat the spike trains that
drive the conductance variables G{ , A, ng), and Y 52) in Eqs.
(5a)—(5g) as Poisson for the same reason as explained at the
end of Sec. II.

IV. KINETIC EQUATION

To arrive at a statistical description of the neuronal net-
work dynamics, we begin by considering the probability
density

w_o {(
at v T

) +DNg N+ AL A+ (1 - )\)yz](v
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p= P(U,gf, 7, g’x2’y2’t)

_F ]%]2 8(v = V(1) &gy = GJ(1)) (7~ A(1))

X 8(L - Bi(1)8(x, - X2 (1)) 8y, - YP(0) | (8)

for the voltage and the conductance variables in Eqgs.
(5a)—(5g). Here I represents the expectation over all possible
realizations of the Poisson spike trains and initial conditions.
An argument nearly identical to that presented in Appendix
B of [29] shows that the evolution of the probability density
p(v.gs» 1.4,x,,y,) for the voltages and conductances evolv-
ing according to Egs. (5a)—(5g) is described by the kinetic
equation

_85)}9 +%l&p}+w)(t>l (v 8- fﬂﬁéXsz)
8rL 0

al(1 1 5 28
= p(v.8p M 8X0.y0) | + 7= —77+U—§ p|+mt)p°N|p v,gf,n—N—p,Z,xZ,yz —p(v,&f7:$:X2,2)

an

d 1 1 d | xp
o 0'_+§+;_77 P1 o o +m(D)p(1 =p)N| p\ v.g7 7. 4,x, =

+m(t)p(1 - leP(v,gf, 7,4,%0,y, =
Npo,

Here, vy(7) is the Poisson spiking rate of the external input
and m(r) is the network firing rate normalized by the number
of neurons, N. This normalization is used to prevent m(r)
from increasing without bounds in the large-N limit. Equiva-
lently, the firing rate m(z) is the population-averaged firing
rate per neuron in the network.

We here give a brief, intuitive description of the deriva-
tion process leading from the dynamical equations (5a)—(5g)
to the kinetic equation (9). To this end, we consider the dy-
namics of a neuron in the time interval (7,7+A¢) and analyze
the conditional expectations for the values of the voltage
V(t+At) and conductances Gf(t+At) A(t+Ar), B(t+Ar),

X (t+A1), and Yz)(t+At) at time ¢t+A¢, given their values
Vi, Gl(1), A1), B(1), XP(z), and YP(1) at time 1. If the
time increment At is chosen to be sufﬁc1ently small, at most
one spike can arrive at this neuron with nonzero probability
during the interval (z,7+Ar). Five different, mutually exclu-
sive events can take place during this time-interval. The first
event is that either no spike arrives at the neuron or else a
spike arrives, but activates none of the conductances because
of synaptic failure. This event occurs with probability
[1—vy()AL][1 = p’m()NAL][1=p(1 = p)m(:)NAL]> + O(Ar)
=1-[vy()+(2p-p*)m(t)N]JAt+O(Ar>).  The  neuron’s

N — PV, &% 71,6,X2,)2 - p
NP0'1 ! 5'y2 o)

i) - p(v.gpnm, f,xz,)’2):| . )

dynamics is then governed by the smooth (streaming) terms
in Egs. (5a)—(5g). The other four events consist of an exter-
nal input or network spike arriving and activating one of the
conductances Gf A;, X,z), or Ygz), with the respective
probabilities vo(t)At+ O(A), p*m(f)N At+O(Ar?), and
p(1=p)m(1)N At+O(Ar?) for the last two possible events.
Due to our variable choice, no two of these conductances can
be activated simultaneously. The corresponding conductance

jumps are f/ o, 2S/Np, S/oNp, and S/ o,Np, respectively.
This argument lets us compute the single-neuron conditional
probability density function at time 7+Az. We then average
over all possible values of V1), Gf (1), Ai(r), B{(1), X(z)(t)
and Y 2)(t) as well as all neurons, initial conditions, and
possible spike trains. This leads to the right-hand side of the
kinetic equation (9) being the coefficient multiplying Az in
the At expansion of the density p(v,gs, 7,4,%5,y2,1+A1),
which implies (9). The details of the calculation are similar
to those given in Appendix B of [29].

Assuming the conductance jump values f/o;, S/Np,

S/Npa,, and S/Npa, to be small, we Taylor-expand the dif-
ference terms in (9) and thus obtain the diffusion approxima-
tion to the kinetic equation (9), given by
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1% 1% v—¢g, U—85>:| 1% {1 _} g‘%&zp
—p="" + NG+ N AL+ N+ (1 =N +— | —(gr— + =
P m;{[( . ) [Ngr+ N+ AL+ Ny + (1= N)y,] ( P } (?gf{ Ul(gf 2 |p & o
a1 1 Pp 9 ( 11 ) J [ 1 } @ Pp
+—\ | —(p=-7)+— +4p*F—+ —\ | —¢+— +—3| —G&,-% +p(1-p)=—
(977{L+(71 7) U_Z}p} PR ag{ L) L e Ul(xz ) |p [ +p( p)g%&xg
J 1 & Fp
AR | RIS R S ) 10
ayz{[az(yz yz)}p} p( p)oéayg (10)
|
In this equation the (time-dependent) coefficients are v-¢,
! IV, 84:8n1) == +[Agya+(1=Ngyl
g0 =fw(0,  o7(0= 3w,
UV—E&g
X( )}P(U,8A78N’t)~ (14)
@
(1) =20.p85m(t). () = S (@), Since we have assumed that the neurons in the ?etwork (1.)
2Np and (3a)—(3c) have no refractory period, a neuron’s voltage is

reset to €, as soon as it crosses the threshold value V;, before
any change to the neuron’s conductance can occur. This im-
plies the voltage-flux boundary condition

%,(1) =3,5(t) = (1 = p)Sm(2), (11)

with o and A as defined in (6) and (7), respectively.

We now reverse the conductance variable changes per-
formed in Sec. III, used to derive Egs. (5a)—(5g), in order to
derive a kinetic equation (in the diffusion approximation) for
the time evolution of the probability density function involv-
ing only the voltage v and the fast and slow conductances g4
and gy, respectively: p=p(v,g4,gy)- This kinetic equation is

J(Vr.84.8n3:1) = Jy(€,,84,8N:1) - (15)

With the conductance boundary conditions, we must pro-
ceed a bit more cautiously. Specifically, in the IF system (1)
and (3a)—(3c), the spike-induced jumps in the conductances
are positive. In conjunction with the form of Egs. (3a)—(3c),
this fact implies that a neuron’s conductances G and G
must always be positive and that there cannot be any con-

ﬁp - i{ [ ( v - 8r> +[Ng,+ (1 - M&v]( v - 85) ] p} ductance flux across the boundary of the first quadrant in the
g dv (G?,GY) conductance plane in either direction. One would
) ) therefore expect the probability density p(v,g4,g,.f) to be
+ _a_{[gA - 2.0 ]p}+ _6_{[81\1— an()]1p} nonzero only when g,>0 and g,>>0 as a result of the natu-
T1084 02088 ral conductance dynamics, and not as a result of any bound-
0}21 #p 2p020 +p 0-20 #p ary conditions.
+ purye) o 9 2,08 2ol (12) The approximation leading from the difference equation
1984 192084088 T208N (9) to the diffusion equation (10), however, replaces the con-
with ductance jumps by a transport and a diffusion term, and one

should expect that this combination of terms may imply
some, at least local, downward conductance flux even across
the half-rays g,=0, gy>0 and gy=0, g,>0. Therefore, a
no-flux boundary condition across these two half-rays would
have to be enforced, essentially artificially, as part of the
diffusion approximation. In addition, due to the cross-
derivative term in Eq. (12), the individual conductance fluxes
cannot be defined uniquely in the (g4,gy) conductance vari-
ables, but only in the transformed conductance variables in
which the second-order-derivative terms in (12) become di-
agonalized. Employing such a transformation, taking the dot
product of the flux vector with the appropriate normal, and
then transforming that expression back in the (g4,gy) con-
ductance variables would make the already somewhat artifi-
cial no-flux boundary conditions also extremely unwieldy to
compute.

Alternatively, in Eq. (12), we allow for the probability
density p(v,g4.8n-1) to be a non-negative function every-
where and take instead the smallness of p(v,g4,gn.t) for

ga(t) = fro() + Sm(1),  gy(®) =Sm(),

Q2
B =30+ 0. 0= . (13

Note that the cross-derivative term in the last line of the
kinetic equation (12) is due to the correlation between the
jumps in fast and slow conductances G* and GV when both
synaptic releases occur with probability p>. Had we treated
the spike trains in Egs. (3b) and (3c¢) as if they were distinct,
this cross term would be missing.

V. BOUNDARY CONDITIONS IN TERMS OF VOLTAGE
AND CONDUCTANCES

The first term in Eq. (12) is the derivative of the probabil-
ity flux in the voltage direction:
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g4=0 or gy=0 as part of the diffusion approximation; its
loss may limit the temporal validity range of this approxima-
tion. The boundary conditions that we assume for the con-
ductances in the solution of Eq. (12) are thus simply that no
neuron have infinitely large or small conductances—that is,

P(U,gA — =* OO’gN’t) - O’

p(v,84,8n— * *,1) =0, (16)

sufficiently rapidly, together with all its derivatives.

As a parenthetical remark, we should point out that, tech-
nically, the adoption of the approximate boundary conditions
(16) is also advantageous in eliminating unwanted boundary
terms from the conductance-moment equations to be derived
in Secs. VI and VIII, and thus significantly simplifying the
resulting reduced kinetic theory. In Sec. VIII we will also
present a conductance-moment-based validity criterion for
the approximation made in adopting the conditions (16).

The population-averaged firing rate per neuron, m(z), is
the total voltage flux (14) across the firing threshold V; that
includes all values of the conductances and is thus given by
the integral

m(t) = f j JV(VT’gA’gN’t)dgAdgN' (17)

Note that this firing rate feeds into the definitions (13) for the
parameters in the kinetic equation (12).

Equation (12), boundary conditions (15) and (16), and the
expression for the firing rate, Eq. (17), which reenters Eq.
(12) as a self-consistency parameter via Eqs. (13), provide a
complete statistical description (in the diffusion approxima-
tion) of the dynamics taking place in the neuronal network
(1) and (3a)—(3c). The simultaneous occurrence of the firing
rate m(t) in both Eq. (12) and the integral (17) of the voltage
boundary condition makes this description highly nonlinear.
Solving a nonlinear problem involving a partial differential
equation in four dimensions is a formidable task, and it is
therefore important to reduce the dimensionality of the prob-
lem to 2 by eliminating the explicit dependence on the con-
ductances from the description. We describe this reduction
process in the subsequent sections.

VI. HIERARCHY OF MOMENTS

In this section, we derive a description of the dynamics in
terms of functions of voltage alone. In other words, we seek
to describe the evolution of the voltage probability density

o) = f f p(v,84.8N-1)dgadgy (18)
and the conditional moments
My s(0) = f f 2agnP(ga-gnlv)dgadgy, (19)

where the conditional density p(g4,gylv) is defined by the
equation
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v). (20)

We derive a hierarchy of equations for the conditional
moments (19), for which we will subsequently devise an
approximate closure via the maximal entropy principle. For
clarity of exposition, we rename

p(v.g4.8n1) = (V) p( 84,8 N-1

ma() = uy o),  pn) = po(v), (21a)
pPW) = w00),  wP0) = poov),  p©) = w4 ).
(21b)

In order to obtain the equations that describe the dynamics of
the conditional moments (19), we begin by, for any given
function f(v,g4,gw,1), using Eq. (12) to derive an equation
for the evolution of this function’s projection onto the v
space alone. We multiply (12) by f(v,g4,gy-?) and integrate
over the conductance variables. Integrating by parts and tak-
ing into account the boundary conditions (16) stating that p
must vanish together with all its derivatives at g, — = and
gny— F oo, faster than any power of g, or gy, we thus arrive
at the equation

d * d “
o f f fpdgadgn+ — f f SIy dgadgn
t o Jdv o
= f J P dgsdgy+ J f ——Jydgadgy
_ Ot _ 0

(g—84) 9f
—f =4 ——pdgadgy
o1 08,4

f J (g-&v) &f . dg.dey
0

02 Pf
+ 5P dgadgy

o7 9g;
=
S5

01029849 8N
Letting f=g,gy in (22), with r,s=0,1,2,..., and using
(14), we now derive a set of equations for the moments

p dgadgy

252 —5p dgadgy. (22)
2 N
f f 818nP(,84.8N)dgadgy = 0(W) 1, (V). (23)

These equations read

2 (=)=

)[MLA +(1- R)MN]} } =0,
(24a)
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d ] — &, -
E(QMA)_%{[(U TS )MA+<U 78E>[7w22)

+(1=Nuf) }e} =- UL(MA—EA)Q, (24b)
1

J J (v—e,) (v—s
at(Q,UvN)— 90 - My + -

E
Jouty

1
+(1 =N ]]Q} == ;(MN_gN)Q’ (24¢)
2
and, for r+s=2,
J 14 v-—g&, vV—¢&g
&I(Q/*Lr,s) - &U{|:( r )Iur,x + ( )[)\M}”+],X

+ (1 - )\)Mr,s+1]:| Q} = [_ O_Ll(lu’r,s - g_Alu’r—l,s)

s B 0—%
= (b = Btrst) + 5= Do
(o) 1

2po’ o
+ P Ors,u,_l -1+ _Os(s - 1)1“rx—2:| o, (24d)
0,0, ’ a'% ’

where two zero subscripts in any of the moments should be
interpreted as making this moment unity and a negative sub-
script as making it zero. Equations (24a)—(24d) indeed form
an infinite hierarchy, which needs to be closed at a finite
order if we are to simplify the problem by eliminating the
dependence on the conductances.

Noting the form of the voltage-derivative terms in (22)
and using the voltage boundary condition (15) and the flux
definition (14), we find the boundary conditions

{(@)/‘Lrs(vﬁ + ( VT_ 8E)[)\/'Lr+l,s(VT)
E,— &
+ (1 - )\')/“LV,S+1(VT)]:| Q(VT) - ( )[)\Mr+l,s(8r)
+ (1 - )\)lu’r,s+l(8r)]g(8r) =0. (25)

VII. MAXIMUM-ENTROPY PRINCIPLE

When the Poisson rate v, of the external input is indepen-
dent of time, Eq. (12) possesses an invariant Gaussian solu-
tion po(g4,gy) given by the formula

vdet M

Po(ga.8n) = e B BMe®) (26)

B Y R Y
M <,3 v/ # en/’ £ )/ 27
_(T1(0'1+0'2)2 _po10y(01 + )
- 20 T D ’

where

(28a)
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_ é‘fz(fﬁ +0y)°

= 28b
Y= 2T b (28b)

i8]

and

D =03(0) + 0)* — 4p*00,05. (28¢)
From (13), we see that of\>a'20, and since 0<p=1, it is
clear that D>0. We also calculate that det M=ay-[’
=0,0,5(0,+0,)?/4Da; >0, where the inequality holds be-
cause all the factors are positive. The inequalities det M >0
and a>0, which follow from (28a)—(28c), imply that the
matrix M is positive definite. The solution (26) is normalized
to unity over the (g4,gy) space; its normalization over the
(v,g4.8y) space would be V,—e,.

Using the equilibrium solution py(g4,gy) in (26), we now
formulate the maximal entropy principle, which will guide us
in determining the correct closure conditions for the hierar-
chy (24a)—(24d). According to this principle, we seek the
density function p(v,gy4,gn,?) Which maximizes the entropy

Slp.pol(v,1) =~ JLC

subject to three constraints: (18), and also (23) with r=1 and
s=0, and (23) with r=0 and s=1, which are

P(v,84,8n51)

(U’gA’gN’ t)dgAdgN’
Po(84-8n)

(29)

f f 24PV, ga-gN)dgadgn = 0(V) us(v),

Jf gnP(v,8a.gn)dgadgn=0V) un(v). (30)

Applying Lagrange multipliers to maximizing the entropy
(29) under the constraints (18) and (30), we find for the
maximizing density function p(v,g,,gy) to have the form

P(v.ga.8n) = Po(ga-gn)explag(v) + a,(v)ga + an(v)gnl,
(31)

where the multipliers ay(v), a,(v), and ay(v) are to be deter-
mined. Solving the constraints (18) and (30), we find

Vdet M

,E’(U,gA’gN,t) = Q(v)e_(g_M)VM(g_”)’ (32)

where u=(u,(v), un())7 is the vector of the first condi-
tional moments, defined by (21a), (21b), and (19).

To find the relations between the first and second condi-
tional moments of the probability density function
p(v,g4,gn.1) in (32), which maximizes the entropy (29) un-
der the constraints (18) and (30), we first put

(V). (33)

We then use the definition of the matrix M in (27) to rewrite
the normalization of the function (26) in the form

x=gs—malv), y=gy-—
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f f (@4 2Bxy+n?) dy= ’L’
—o Vay—- B

which we differentiate upon «, S, and v, respectively, and
from (32) obtain the expressions for the second moments of
the conductances x and y in (33) with respect to the maxi-
mizing density p(v,g4,8y.1). Using (23) and (28a)—(28¢),
for the (co)variances

32(v) = uP W) - [ra) P,

Can(v) = pUv) = pa(0) pup(v),

S0) = u (v) - [uy) P (34)

we thus obtain the relations

208 Y _9a
2= =) oy
~ B 2pa;
Canlv) == (07’—,32) - o+ 0'2’
200y % ﬁ
)= 2ay-p) oy (35)

Equations (34) and (35) furnish the expressions for the
second-order conditional moments in term of the first-order
conditional moments and amount to closure conditions based
on the maximum-entropy principle. With the aid of these
closure conditions we can close the hierarchy (24a)—(24d) at
first order when the external-input and network firing rates
are constant in time.

VIII. DYNAMICS OF CONDUCTANCE MOMENTS

More generally we seek the closure in terms of the mo-
ments

Vr o0
(ghgnw = J J f 8a8nP (0, 84.8N)dV dgdgy
&, —o0

Vr
= f o), (v)dv, (36)

r

with 0=r=2, 0=s=2, and 1 =r+s=2. These moments
are the averages of the conditional moments u,(v) through
,ug)(v) in (21a) and (21b) over the voltage distribution @(v).
Integrating (24a)—(24d) over the voltage interval &, <v <V
and using the boundary conditions (25), we find for these
moments the ordinary differential equations

d 1
d_t<gA> =- ;[<8A> -840, (37a)
o= —l{aw) - B0, (370)
13 0'2
2
= e - om0+ 2, (T
t gy (o]
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d 1 1 1
E(&&v) =- <_ + _><8Agzv> +—(gm&a)
(O] (o) g

1 _ 2pa'2
+—(ggn(0) + 0 )
0 010

(37d)

2 203
== T - om0+ 2 (79

The initial conditions for these equations can be computed
from the initial probability density p(v,g4,gy,t=0) or its
marginal counterpart over the conductances alone.

For the (co)variances

o(t) = (g3 — (ga)*.
can(t) ={gagn) — (ga)gn)>

on(1) = (g3 = e, (38)
Eqgs. (37a)—(37¢) yield the equations

CPae g2 T4, 39

dr ¢ o_lag ot (39a)
d 1 1 2po
_CAN——( +_)CAN+ P 0, (39b)
dt (o) g0,

d 2 2 2 20'(2)

Zt(TN— ;20'N+ 7% (39¢)

Note that when the parameters o7 and o do not depend on
time, Egs. (39a)—(39¢) have the unique attracting equilibrium
points

on="" (40)

whose values are identical to the respective right-hand sides
of the maximal-entropy relations (35). This observation casts
the (co)variances (38) even in the time-dependent case as
suitable candidates for replacing the right-hand sides of (35)
in a general second-order closure scheme, which we will
postulate in the next section.

We need to stress, however, that even if we were to solve
the moment equations (37a)-(37e) (and their higher-order
counterparts) explicitly, we would not obtain an explicit so-
lution to the moment problem for the density p(v,g4,gn)-
This is because Egs. (37a)—(37¢), and so also their solutions,
depend on the as-yet-unknown firing rate m(z). How to find
this rate will be explained in the next section.

Here, we discuss another important aspect of the conduc-
tance moment dynamics—namely, their significance in the
validity of the diffusion approximation leading to Eq. (12)
and the boundary conditions (16). As pointed out in Sec. V,
the probability density function p(v,g4,gy) must be negligi-
bly small in the region outside the first quadrant g, >0, gy
>0, in order for this approximation to hold. [This smallness
can, for example, be expressed in terms of the integral of
p(v,g4,gy) over that region and the voltage being small.] Tt
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is clear that the necessary condition for this smallness is that
the ratio of the variances, oé(t) and ofv(t), versus the first
moments, {g4) and (gy), as computed from Egs. (39a), (39¢),
(37a), and (37b), respectively, must be small. If this is not the
case, the diffusion approximation (12), as well as the reduc-
tion to the voltage dependence alone discussed in the next
section, may become invalid.

IX. CLOSURE AND REDUCED KINETIC MOMENT
EQUATIONS

In this section, we postulate a second-order closure for the
hierarchy (24a)—(24d) of equations for the moments (19)
based on the discussion of the previous two sections. First,
using Eq. (24a), we rewrite Egs. (24b) and (24c¢) in such a
way that the second moments ,uf)(v), Mff,&(u), and ,uﬁ)(v) in
them are expressed in terms of the first moments u,(v) and
un(v) and the (co)variances 33 (v), Cup(v), and 33(v) via
Egs. (34).

In view of the discussion presented in the preceding two
sections, for the closure in the general case, we consider it
natural to postulate

Si0)=0un), SH) = oy,

Cun(v) = cap(t), (41)

where the (co)variances 33(v), Cp(v), and Si(v) are de-
fined as in (34) and oi(t), can(1), and 0'12\,(1‘) are computed
from Egs. (39a)—(39c) with the appropriate initial conditions,
as discussed after listing Egs. (37a)—(37¢).

Since the (co)variances a'f,(t), can(1), and o‘,zv(t) no longer
depend on the voltage v, Eqs. (24a)—(24c) for the voltage
probability density function @(v) and the first conditional
moments u,(v) and uy(v) under the closure assumption (41)
simplify to become

Zo(0)= f{[( =) D)+ (1 =0

(e e}

(42a)

2 a0) == (ua0) - ) + {(” - )
ot o8] T

+ Do) + (1= x)mm(”’—%) }imv)

T Jv
+[No(0) + (1 = Nean(0)]
(v
x o(v) dv [( T )Q(U)}’ (42b)

(0=~ L @) =) + {(” "8’)
t 0'2 T

D)+ (-0 ‘) }%mv)

+[Aean(0) + (1 - 7\)0'12\/(1)]
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1 af(vme
XQ(U)&U[( T )Q(U)]'

Equations (42a)—(42c) provide the desired reduced kinetic
description of moments, and are the main result of this paper.

Equation (42a) is clearly in conservation form, with the
corresponding voltage probability flux

(42¢)

v-g,

NI UMES [( )+[MLA(U)+(1 =N uy(v)]

v-g *
X( T E>:|Q(v)=f f ]V(v7gA’gN7t)dgAdgN7

(43)

where J(v,g4,8y,1) is the probability flux (14) in the volt-
age direction for the original kinetic equation (12). The sec-
ond equality in (43) is obtained from the definitions (14),
(21a), and (21b) and Eq. (23), just as in the derivation of Eq.
(25). From (14) and the definition (17) of the population-
averaged firing rate per neuron, m(f), we now immediately
see that this firing rate can be expressed as the voltage flux
through the firing threshold:

m(t) = J/(Vp,t). (44)

We now proceed to derive the boundary conditions for the
reduced equations (42a)—(42c). First, from the definition of
the voltage probability flux (43) and the voltage boundary
condition (15), we immmediately derive the equation

jV(VTJ) =t7V(8r7t)7 (45)

which is also the first equation of Egs. (25) and further gives
the boundary condition

{(Vr=e) + [N ua(Vy) + (1 =N un(V)I(Vr—gp)to(Vy)
= [)\MA(SF) + (1 - )\)/*LN(Sr)](Sr - 8E)Q(Sr) . (463)

Under the closure (41), using the (co)variance definitions
(34), and the voltage flux probability definition (43), the
boundary condition (45), and the firing rate expression (44),
we can transform Egs. (25) for r=1, s=0 and r=0, s=1,
respectively, into the equations

(O a(Vr) = ma(e)]=[Nos(®) + (1= Neay(0)]
X[(Vz—ep)o(Vy)

- (&,—epo(e,)], (46b)
() un(Ve) = pn(e,)]=[hean(®) + (1= Nay(0)]

X[(Vr—epe(Vy)

—(e,~epe(e,)]. (46¢)

Equations (46a)—(46¢) provide the physiological boundary
conditions for the kinetic moment equations (42a)—(42c).

In passing, let us remark that, due to the definitions (34),
(36), and (38), the closure (41) implies the moment relations

Vr Vr 2
f Q(v),uf‘(v)dv=(f Q(v),uA(v)dv) :

r r
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Vr Vr
f Q(U)ﬂA(U)MN(U)dU:f o) us(v)dv

r r

Vr
Xf o(v)uy(v)dv,

r

Vr Vr 2
J Q(U)Mzzv(v)dv=<J Q(v)MN(v)dv) :

r r

Recapping the results of this section, the reduced statisti-
cal description for the voltage dynamics alone is furnished
by Egs. (42a)—(42c), the boundary conditions (46a)—(46c),
the ordinary differential equations (39a)—(39c¢), the firing rate
definition (44), the parameter definitions (13), and the initial
conductance distribution or its linear and quadratic moments.
This problem is highly nonlinear because of the nonlinear
moment equations (42b) and (42c) and boundary condition
(46a) and because the firing rate m(z) enters the governing
equations as well as the boundary conditions as a self-
consistency parameter.

X. DISTINGUISHED LIMITS

A. Instantaneous fast-conductance time scale

In the limit of the instantaneous fast conductance time
scale—i.e., when o, — 0—regardless of whether the forcing
terms of\(t) and o%)(t) depend on time or not, the solutions
oi,(t) and c,n(7) of Egs. (39a) and (39b) relax on the O(o)
time scale to their respective forcing terms, so that

40

g

o2(1)

8

2pag(t) S
(o) a N(Tz

The limits (47) imply that a'la'z(t)—wi(t) and o cap(1)
—0, and thus Eq. (42b) becomes

2 _
1a®) = 240+ AQ(*‘U()” %{(” TSE)e(w} )

m(t). (47)

can(t) —

In other words, the conditional moment u,(v) relaxes on the
O(0o)) time scale to being slaved to the dynamics of ¢(v) and
().

In the limit of the instantaneous fast conductance time
scale, as o; — 0, we thus only have two equations governing
the moments @(v) and uy(v),

o) = %{[(” =) D)+ (1 -V

x(U_TSEﬂQ(v)},

(49a)
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2 (o) == ~Lpny(0) - 8] + {(” - )
0'2 T

+[Aa(v) + (1= )\)MN(U)]( Z _78E> } %sz(v)

+[hean(d) + (1 =N ay(0)]

1 o[ (v-e
XQ(U)&U[( T )Q(v)],

while u,(v) is expressed by the relation (48). Here, the time-
dependent coefficients g4(z), gy(7), and o'i(t) can be found in
(13) and c4p(1) is computed in (47). Note that all these quan-
tities can now be computed from the external-input and net-
work firing rates vy(¢#) and m(r) alone, without having to
solve any additional differential equation. Only the coeffi-
cient a'lzv(t) is still computed from the ordinary differential
equation (39¢), with o3(r) again given in terms of the firing
rate m(t) in (13). The closure (41), in the limit o; — 0, effec-
tively becomes

o 33) = ai(1), SH(v) = a0,

(49b)

Conlo) = 250 (50)
(%)

Due to relation (48), Eq. (49b) is now second-order in the
voltage v.

Recall that the terms in (49a) and (49b) multiplied by
cn(t) originate from the correlation effects due to the spikes
that are common to both the fast and slow receptors. In a
steady state, using (40) and taking the limit o, — 0, we have
CANH2pa'2N—i.e., a rather strong correlation effect if the
synaptic failure is low.

Because of (47), as o — 0, the boundary condition (46b)
simplifies to become

(Vr—epe(Vy) = (e, —ep)ol(e,), (51a)

and therefore the condition (46¢) also simplifies to become

n(Vr) = pple,). (51b)

Using the boundary conditions (51a) and (51b) and relation
(48), we can finally simplify the boundary condition (46a) to
become

AVy—8)0(Vy) +voi<r><vT—sE>‘;—f<vT)

=N 0o, - o) (e, (51c)

Note that these boundary conditions are now linear in @ and
My, but still contain the firing rate through the parameter
ai (D).

To summarize, in the oy — 0 limit, the simplified descrip-
tion of the problem is achieved by Egs. (49a) and (49b),
relation (48), the boundary conditions (51a)—(51c), the single
ordinary differential equation (39c), the firing rate definition
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(44), the parameter definitions (13), and the initial conduc-
tance distribution or its initial moments {(g,)(0) and (g12\,>(0).

B. Instantaneous fast-conductance and infinite slow-
conductance time scales

If, in addition to oy — 0, we now also consider the limit
o,—%—i.e., if we consider the dynamics over the time
scales with o << o,—we find

2
ean() = 2 —m() 0 (52)
(%)

from (47), as well as do’lz\,/ dr=0 from (39c¢). It is therefore
clear that

on(1) = o3(0), (53)

where 073,(0)=(gx)(0)—(gx)*(0) and (g3)(0) and (gy)(0) are
computed from their definitions in (36) with the integrals
taken against the initial probability density p(v,g4,gn,1=0)
or its conductance-dependent marginals. Using (52) and (53),
we conclude that Egs. (49a) and (49b) then reduce yet further
to

o) = f{[( =) D)+ (1 =0
(2o

1% v-—g&,

_MN(U):{< . )+D\MA(U)+(1—>\)MN(U)]

ot
U— &g i
x( T )}o"v'uw(v)

(I—A)UI%,(O)i[(v—sE) ]
R (2 ot | (sav)

(54a)

with w,(v) again expressed by (48). Because of (52), the
correlation term disappears from Eq. (54b). The closure (41),
in the limit 0y —0 and o, — %, effectively becomes

0 33(v) = a4(0), S}w)=ax(0),

CAN(U) =0. (55)

The complete description of the problem in this limit is
achieved using the same ingredients as in the previous sec-
tion, except that Eq. (54b) replaces Eq. (49b) and that the
variance oﬁ,(O) does not evolve, so there is no need to solve
any of the ordinary differential equations (39a)—(39c).

XI. DISCUSSION

A comparison among a full simulation of IF neuronal net-
work ensembles corresponding to different realizations of the
Poisson inputs, and two corresponding numerical solutions
of kinetic moment equations—one including and the other

PHYSICAL REVIEW E 77, 041915 (2008)
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FIG. 1. (Color online) Accuracy of the kinetic theory for a net-
work of neurons with fast and slow conductances driven by the
same spike train: The time evolution of the population-averaged
firing rate. Gray (red online): simulation of the IF neuronal network
described in the text, averaged over 1024 ensembles. Dark line
(blue online): numerical solution of the kinetic moment equations
(42a)—(42c). Light line (blue online): numerical solution of the ki-
netic moment equations (42a)-(42c), without the correlation
terms—i.e., with c45()=0. A step stimulus is turned on at t=0 with
N=20, 7=20, &,=0, g;=4.67, V;=1, A=0.5, 0,=0.005, 0,=0.01,

£4=0.05, py=11, fy=0.13, vy=0.13, p=1, and 5=0.857.

excluding the correlations ¢, y(7)—is presented in Fig. 1. The
results are depicted in gray (red online), thick, and fine (blue
online) lines, respectively. The IF neuronal network simu-
lated here is a straightforward generalization of Egs. (1) and
(3a)—(3c), which includes external drive for the slow conduc-
tances Gﬁv with the Poisson rate vy and strength fy in addi-
tion to the drive for the fast conductances G with the Pois-
son rate v, and strength f,. The kinetic moment equations
are the corresponding generalizations of (42a)—(42c).

It is apparent that the curve representing the results of the
kinetic theory with the correlations included faithfully tracks
the temporal decay of the firing rate oscillations computed
using the IF network. On the other hand, the kinetic theory
that does not take the correlations into account dramatically
overestimates the amplitude of the firing rate and thus under-
estimates the decay rate of its oscillations.

The results depicted in Fig. 1 convincingly illustrate how
important it is to include explicitly in the kinetic theory the
assumption that both the fast and slow conductances are
driven by the same spike train. The correlation terms appear-
ing as the consequence in the kinetic moment equations ren-
der an accurate statistical picture of the corresponding IF
network dynamics.

Finally, let us remark that developing a kinetic theory for
more realistic neuronal networks, for instance, with neurons
containing dendritic and somatic compartments and a
voltage-dependent time course of the slow conductance
mimicking the true NMDA conductance [82-84], would pro-
ceed along the same lines as those employed in the current

paper.
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