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Using a continuum bead-spring Monte Carlo model, we study the anomalous diffusion dynamics of a
self-avoiding tethered membrane by means of extensive computer simulations. We focus on the subdiffusive
stochastic motion of the membrane’s central node in the regime of flat membranes at temperatures above the
membrane folding transition. While at times, larger than the characteristic membrane relaxation time �R, the
mean-square displacement of the center of mass of the sheet, �Rc

2�, as well as that of its central node, �Rn
2�,

show the normal Rouse diffusive behavior with a diffusion coefficient DN scaling as DN�N−1 with respect to
the number of segments N in the membrane, for short times t��R we observe a multiscale dynamics of the
central node, �Rn

2�� t�, where the anomalous diffusion exponent � changes from ��0.86 to �0.27, and then
to ��0.5, before diffusion turns eventually to normal. By means of simple scaling arguments we show that our
main result, ��0.27, can be related to particular mechanisms of membrane dynamics which involve different
groups of segments in the membrane sheet. A comparative study involving also linear polymers demonstrates
that the diffusion coefficient of self-avoiding tethered membranes, containing N segments, is three times
smaller than that of linear polymer chains with the same number of segments.
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I. INTRODUCTION

There has been considerable interest recently in under-
standing the statistical properties of polymerized �or teth-
ered� membranes �1�. This interest in large part is due to the
membrane behavior which is much richer than that of poly-
mers, their one-dimensional analog. In addition, this interest
is justified by a variety of real systems like red-blood-cell
cytoskeletons �2�, graphite oxide sheets �3,4� or dispersed
silicate �clay� platelets �5,6� which can be modeled by net-
works of fixed connectivity, generally referred to as polymer-
ized membranes. Along with the experimental studies, self-
avoiding polymerized membranes have also attracted
remarkable interest from the point of view of basic research
in recent years. Their static properties have been studied ana-
lytically and numerically �7–19�. Much of these studies have
been spent in the pursuit of the so called “crumpling transi-
tion” between a low-temperature flat phase and a high-
temperature crumpled phase until it was realized �14,20,21�
that self-avoiding membranes are always flat �with an infinite
persistence length�, i.e., their radius of gyration Rg scales
with linear size L as Rg�L� where the Flory exponent
��1. The flat phase arises even without explicit bending
rigidity because the resistance to in-plane shear deformations
leads to anomalous stiffening of the surface in the presence
of thermal fluctuations.

In contrast to static properties, the membrane dynamics is
less well-understood. Earlier analytical and numeric studies
�7,13,22,23� have revealed that the self-avoiding restrictions
considerably modify the relaxation times of the tethered sur-
face. Thus the typical relaxation time �R of a tethered mem-
brane in the case of Rouse dynamics when hydrodynamic
interactions are neglected has been predicted by simple scal-
ing arguments �7� to vary as �R�L2+2��Rg

2+2/�. If, as in poly-
mer physics, one introduces a dynamic exponent z, describ-
ing the relaxation process as �R�Rg

z , then one gets
z=2+2 /� �for linear polymers one has z=2+1 /��. Usually,

�R is considered to be the time needed for the membrane to
diffuse its radius of gyration. For tethered membranes, highly
permeable to the solvent as in isolated spectrin networks, one
is in the Rouse regime �22� and the diffusion coefficient DN
scales with membrane size L as DN�L−2. Thus the time it
takes for such a flat membrane to move a distance Rg is
proportional to L4. In contrast, for impermeable membranes
�like, e.g., erythrocytes� where solvent backflow �i.e., a long-
ranged hydrodynamic interaction� is important, one has in
d-dimensions in the case of Zimm dynamics �H�Rg

d�Ld�

�i.e., z=d� and DN�L−1. Thus one may view permeability as
constituting two different dynamic universality classes of
tethered membranes �22� whereby these classes �Rouse
dynamics—highly permeable membranes, or Zimm
dynamics—impermeable membranes� are observed for a
wave vector independent �or, dependent� friction coefficient.
Recently, a series of simulation studies by Pandey et al.
�24,25� has revealed a multiscale stochastic dynamics of
tethered membranes at times before normal diffusive behav-
ior is reached. The displacement motion of the central node,
Rn, of a four-coordinated coarse-grained model membrane
has been observed to undergo a subdiffusive mean-square
displacement �MSQD� �Rn

2�� t� with the exponent � attain-
ing different values in the short and intermediate time re-
gimes before turning to normal diffusion for t��R with
�=1.

In the present work we employ an efficient off-lattice
Monte Carlo algorithm, focusing on the subdiffusive dynam-
ics of self-avoiding tethered membranes and comparing
some of the salient dynamic features to those of linear poly-
mers. Our observations, based on extensive computer simu-
lations, largely confirm those of previous investigators
�24,25�. As a step forward, however, we suggest a scaling
theory which explains our findings for the anomalous mem-
brane dynamics, relating the observed values of � to the
specific stochastic motion of particular groups of sheet seg-
ments.
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After briefly introducing our model in Sec. II, this is con-
sidered in Sec. III where we focus on the main results of our
investigation and their interpretation. We close this paper
with a brief summary and discussion in Sec. IV.

II. MODEL SYSTEM AND SIMULATION PROCEDURE

We study a coarse-grained model of self-avoiding tethered
membranes, embedded in three-dimensional space. The
membranes have a hexagonal lattice structure where each
monomer interacts with six nearest-neighbors—Fig. 1. There
are altogether N= �3L2−3L+1� monomers in such a mem-
brane where by L we denote the number of monomers on the
edge of the network �i.e., L is the linear size of the mem-
brane�. In this model, spherical particles of diameter � are
connected in a fixed geometry by flexible strings of length l.
To prevent self-intersection of the membrane, the maximum
length of the strings between the centers of the spheres must
be l��3�, then the membrane is self-avoiding in that it
cannot intersect itself.

The bonded nearest-neighbor monomers on the membrane
interact with each other through the finitely extensible non-
linear elastic �FENE� potential �26� where a bond l has a
maximum length lmax and a minimum length lmin,

UFENE�l� = − K�lmax − l0�2 ln	1 − 
 l − l0

lmax − l0
�2� . �1�

The minimum of this potential occurs for l= l0, UFENE�l0�
=0, near l0 it is harmonic, with K being a spring constant,
and the potential diverges to infinity both when l→ lmax and
when l→ lmin. Choosing our length unit lmax=1.0, we choose
the other parameters as lmin=0.2, l0= �lmin+ lmax� /2=0.6, and
K /kBT=5, where T denotes the absolute temperature, and kB
is the Boltzmann constant.

Self-avoidance is observed by the interaction between
particles which are not nearest neighbors on the network.
The nonbonded interaction between monomers is described
by a Morse potential where r is the distance between the
monomers,

UMorse�r�/	M = exp�− 2��r − rmin�� − 2 exp�− ��r − rmin��
�2�

with parameters 	M /kBT=1 and �=24. The minimum of this
potential occurs for r=rmin and UMorse�rmin� /	M =−1. For
�=24, UMorse�r� essentially is zero for r�1.25rmin. Choosing

then units of length such that rmin=0.8, we hence can take
UMorse�r�1�=0. The repulsive part of this potential guaran-
tees self-avoidance of the membrane.

We have used the standard Monte Carlo procedure to
investigate the thermodynamic properties of self-avoiding
tethered membranes. The total energy �Hamiltonian� is the
sum of Eqs. �1� and �2�. In each Monte Carlo update, a
monomer is chosen at random and one attempts to displace it
randomly by displacements chosen uniformly from the inter-
vals −0.25�
x, 
y, 
z� +0.25. The attempted move
is accepted or rejected according to the conventional
Metropolis criterion by comparing the transition probability
W=exp�−
U /kBT� �where 
U is the energy difference be-
tween the configurations after and before the trial move� with
a random number uniformly distributed between zero and
unity. If W exceeds this random number, the attempted move
is accepted, otherwise it is rejected. Time is measured in
Monte Carlo steps �MCS� per monomer whereby a single
MCS is elapsed after N monomers are picked at random and
given the chance to perform a trial move. Since our poten-
tials are constructed such that the membrane cannot intersect
itself in the course of random displacements of monomers,
one does not need to check separately for entanglement re-
strictions during the simulation. Thus the algorithm is rea-
sonably fast. Nevertheless, the simulation takes quite a long
time for large self-avoiding membranes to equilibrate and
then move a substantial distance in space. This and the ne-
cessity to attain very good statistical accuracy have limited
our investigations to sizes L�50. Eventually, we would like
to note that the interactions used in the present off-lattice
model, albeit somewhat more refined and complicated than
the simple potential used in earlier simulations on a cubic
lattice �24,25�, do not change the physics of the problem and
lead qualitatively to the same results.

III. RESULTS

Before we focus on the subdiffusive dynamics of our
membranes, we show in Fig. 2 the scaling behavior of the
gyration radius,

�Rg
2� =

1

N

i=1

N

��ri − rcm�2� , �3�

where ri is the position of the ith monomer of the membrane
while rcm= 1

Ni=1
N ri is its center-of-mass location. We also

sample the eigenvalues �max
2 , �med

2 , and �min
2 of the inertial

tensor,

I�� =
1

N

i=1

N

�ri
� − rcm

� ��ri
� − rcm

� � , �4�

where � ,�� �x ,y ,z�, the sum is taken over all particles of a
given configuration, and rcm

� is the � component of the
center-of-mass radius vector for a given configuration. The
three eigenvalues are ordered according to magnitude
�max

2 ��med
2 ��min

2 . The directions of the principal axes are
given by the three eigenvectors corresponding to the three
eigenvalues. For a planar membrane, the eigenvector associ-

FIG. 1. �Color online� A snapshot of a tethered membrane at
T=1.0 with linear size �the edge length of a regular hexagonal
sheet� L=50 which contains N=7351 monomers. Periphery seg-
ments at the rim of the membrane are shaded gray �green� while the
six monomers at the vertices �corners� of the sheet are dark gray
�red�.
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ated with �min
2 is perpendicular to the plane of the membrane

while the eigenvectors associated with �max
2 and �med

2 lie in
the plane of the membrane. It is evident from Fig. 2 that our
membranes are indeed flat with scaling exponents
�=1.020.01 for Rg, �=1.020.01 for �max

2 , and
�=1.060.01 for �med

2 . The asphericity ratio A
= ��min

2 /�max
2 ��L−2�A tends to zero with an exponent

�A=0.320.01, indicating that these membranes are indeed
asymptotically flat. Note that these data have been obtained
at T=1.0 well above the temperature of the first folding tran-
sition �27�, Tc1

=0.890.01. In Fig. 2 and in the following
figures the error bars do not exceed the size of the symbols.

Turning now to membrane dynamics in the Rouse regime,
one may assume that each segment of the membrane moves
under the influence of surface forces �surface stretching due
to near-neighbors and excluded volume forces due to distant
neighbors�, and a random force representing thermal noise.
As far as the contribution of inertial terms to membrane mo-
tion can be neglected for sufficiently long times, one may
assume that the relevant dynamics is purely diffusive. With �
being the rate of position changes of monomers per unit time
and z=2 /�+2, the dynamic exponent, one may write the
relaxation time of the membrane �R as

�R = �−1Rg
z = �−1Nz�/2. �5�

If monomeric orientations add up randomly and one neglects
correlations, the MSQD of the membrane center of mass is

g3�t� = ��r�cm�t� − r�cm�0��2� = ��
 l

N
�2�Nt = �

�l2�
N

t , �6�

because each monomeric motion moves the center of mass
by a random displacement of the order l /N, l being the bond
length. There are �N such random motions per unit time.

Invoking the Einstein relation g3�t�=2dDNt �where d is the
spatial dimensionality�, one thus concludes

DN � ��l2�/N . �7�

From Fig. 3 it is evident that this prediction, Eq. �7�, is
indeed nicely confirmed by the simulation. The relaxation
time �R and the scaling law z�=2�+2 is then understood by
the condition that the membrane is relaxed when its center of
mass has diffused over its own size Rg, i.e.,

g3��R� � �
�l2�
N

�R � �l2�Nz�/2−1 � Rg
2 � �l2�N�, �8�

whence z�=2+2� follows.
These arguments can be carried over for the MSQD of the

membrane central node as well. We define

g1�t� = ��r�n�t� − r�n�0��2� � �l2���t�� �9�

at time t��R anticipating that the central node exhibits
anomalous diffusion with an exponent ��1. For short times
��t��1, of course, a nearly free diffusion of the central node
takes place, and thus g1�t� for �t�1 should be of the order of
��l2�. Requiring now that g1��R��Rg

2, one gets a scaling
relation for �,

g1��R� � �l2����R�� � �l2�N�z�/2 � �l2�N�. �10�

Thus for flat membranes with �=1, one has �−1=1+�−1=2,
and one would then expect to see a time interval t��R where
g1�t�� t1/2. Additional information for the subdiffusive dy-
namics of the membrane may be obtained if one defines in
analogy with the case of linear polymers �28� the MSQD of
a central node measured in the center-of-mass coordinate
system of the membrane,

g2�t� = ��r�n�t� − r�cm�t� − r�n�0� + r�cm�0��2� , �11�

and also for the averaged MSQD of the six monomers at the
vertices of the hexagonal sheet in the laboratory system of
coordinates,
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FIG. 2. �Color online� Log-log plot of the mean-squared radius
of gyration, Rg

2, and the three eigenvalues, �max
2 , �med

2 , and �min
2

against the linear size L of flat tethered membranes �5�L�50� at
T=1.0. The respective exponents are given in the legend. In the
inset we show the variation of membrane asphericity,
A=�min

2 /�max
2 which vanishes with L as A�L−0.63.
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FIG. 3. Variation of the diffusion coefficient DN of a membrane
with the number of monomers N for membrane sizes 5�L�50 at
T=1.0. The measured slope is −1.010.02.
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g4�t� =� 1

6
i=1

6

�r�i�t� − r�i�0��2� . �12�

In the center-of-mass coordinate system of the membrane,

g5�t� =� 1

6
i=1

6

�r�i�t� − r�cm�t� − r�i�0� + r�cm�0��2� . �13�

Evidently, for t��R one should observe g2�t��g1�t� and
g5�t��g4�t� whereas g2�t��Rg

2 for t��R since the central
monomer cannot travel farther from the center of mass than
the membrane size, of course.

A general impression about the time variation of the vari-
ous MSQD gi�t� and the similarity in the stochastic dynamics
of linear polymers and tethered membranes may be gained
from Fig. 4. It is seen that the course of the functions gi with
time is qualitatively very similar for both linear polymers
and tethered membranes. In both cases, cf. Figs. 4�a� and
4�b�, one finds that the center of mass performs normal dif-
fusion with g3�t�=6DNt. One can, therefore, compare the
relative diffusivity of polymers and membranes, containing
the same number of monomers N, say a chain with N=256
and a membrane with L=10, i.e., N=271, with identical
forces acting between the repeating units. Our analysis
shows that in a good solvent, T=1.0, one obtains
6DN�polymer�=6.6�10−5 and 6DN�membrane�=2.2�10−5,
i.e., a linear self-avoiding chain of N segments moves three
times faster than a self-avoiding flat sheet in the case of
Rouse dynamics. We find this result rather remarkable since
this decrease in mobility is solely and entirely due to the
higher topological dimensionality of the membrane.

A marked difference between chains and membranes,
however, is revealed if one looks at the subdiffusive behavior
of the central monomer in both cases. For times shorter than
the typical relaxation time, t��R, the central node of the
polymer chain is observed to diffuse like g1�t�� t0.58 �i.e.,
very close to the expected t0.54 power law� while for the
membrane one finds a much smaller power g1�t�� t0.3, seen
also by Pandey et al. �25�. It might be argued that this small
exponent ��0.3, describing the subdiffusive behavior of a
tethered membrane, reflects a membrane-specific dynamic
mechanism which shows up at t��R. In the following we
suggest a possible interpretation and a simple scaling deriva-
tion for the observed value of this exponent �.

We first look more closely at the main data of our study
showing the MSQD of the central monomer of a tethered
membrane in Fig. 5. The different regimes of subdiffusive
motion of the central node are indicated by power laws with
exponents, specified in the legend of Fig. 5. It is seen that for
very short time, 0� t�1, each segment indeed performs dis-
placements which are not constrained by the topological con-
nectivity of the network so with g1�t�� t0.86 one observes an
extremely shortlived nearly normal diffusion. At late times,
t��R, the normal diffusive motion sets on eventually, and
g1�t��g3�t��6DNt. We should like to point out that at late
times the averaging of the correlation functions g1 for the
two largest system sizes, L=30–50, is not perfect due to a
progressively deteriorating statistics, however, it is beyond
doubt that their ultimate slope corresponding to normal dif-

fusion should be unity. In the intermediate time interval our
data yields a subdiffusive motion of the central monomer
with g1�t�� t� where �=0.270.01. Due to strong finite-size
effects this value of the � can be unambiguously established
for sufficiently large, 20�L�50 membranes only. We note
that very close values for ��0.25–0.32 have been observed
recently in the computer experiments of Pandey et al. �25�
for the case of tethered membranes in the good solvent re-
gime at temperatures 2.0�T�10. Such behavior cannot be
explained by means of the exponent �=0.5 which follows
from the estimate, Eq. �10�.
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FIG. 4. �Color online� Log-log plot of mean-square displace-
ments g1�t�, g2�t�, g3�t�, g4�t�, and g5�t� at T=1.0 plotted vs time t
�measured in Monte Carlo steps� for a linear polymer of length
N=256 �a�, and for a membrane of size L=10 which contains
N=271 monomers �b�. Dashed lines indicate the scaling behavior of
the central segment MSQD, g1�t�� t�, and of the center of mass,
g3�t�� t, with elapsed time while horizontal lines denote the time
averages of the radius of gyration Rg

2 and of the “end-to-end” dis-
tance of the chain, Re

2 �a�, and of the membrane, Ree
2 �b�, the latter

being measured as the distance between the opposite vertices of the
hexagonal sheet. Evidently, cf. �b�, by defining �R from
g3��R�=Rg

2 as the mean relaxation time of the membrane one can
verify that g1��R��g3��R�.
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We believe that a possible explanation of this sluggish-
ness of flat membranes at early times 1� t��1��R may be
found if one assumes that in this interval only the most
loosely bound monomers �those at the membrane periphery,
or rather, those at the six vertices of the hexagonal sheet�
actually contribute to a displacement of the membrane center
of mass while all monomers with sixfold coordination in the
bulk of the membrane are virtually blocked by their neigh-
bors and for this short time hardly move. As far as the mem-
brane retains its flat shape and does not fold, the maximal
displacement of these loosely bound monomers cannot ex-
ceed the effective thickness �min. Indeed, a comparison of
Figs. 2 and 5 shows that the MSQD, performed by a mem-
brane of linear size L during the time �1 �the latter is given
by the intersection point of the tangent y� t� to g1, and
g3� t� amounts to g3��1���min

2 . One can, therefore, estimate
the characteristic time �1 if, in analogy to Eq. �6�, one con-
siders

g3�t� = ��
 l

N
�2��Nt , �14�

in case that only the membrane periphery of length ��N
contributes to the center-of-mass displacement. Thus during
1� t��1 the diffusion coefficient of the membrane becomes
D�N−3/2�L−3 reflecting the slow displacement of the center
of mass. Equation �14� therefore suggests �1�L3+2�min�L4.4.
With g1��1��L��3+2�min���min

2 one obtains then the
broken exponent for a periphery-driven membrane
�p= �2�min� / �3+2�min�=0.32.

In contrast, if only a finite number of loosely bound
monomers at the vertices effect the net displacement of the
center of mass, one obtains then

g3�t� = ��
 l

N
�2�t , �15�

and therefore temporarily D�N−2�L−4 so that
�1�L4+2�min�L5.4. In this case one gets the exponent for

anomalous diffusion of a vertices-driven membrane
�v= �2�min� / �4+2�min�=0.26.

Thus we obtain two estimates which may be considered
as the lower and upper bounds of the anomalous diffusion
exponent, �v����p, depending on the particular mecha-
nism involved in the diffusive motion. The measured value
of ��0.27 lies indeed within these limits. Of course, one
should bear in mind that most probably neither mechanism
of diffusion �vertices-driven or periphery-driven� takes place
alone and the real process involves a mixture of both. More-
over, at this point we cannot rule out the possibility that at
times �1� t��R all membrane segments eventually get the
chance to perform an elementary move and thus contribute to
the center-of-mass motion. Such a possibility would imply
that during this time interval of subdiffusive motion one ob-
serves a MSQD g1�t�� t� with an exponent �=0.5, cf. Eq.
�10�. We have indicated such a behavior in Fig. 5 by a
dashed line with slope 0.5 and it appears compatible with the
course of g1�t� in between �1 and �R for our largest mem-
branes L=30–50. If such a diffusive regime really exists, it
would underline the multiscaling character of tethered mem-
branes �24,25�. It is clear, however, that larger micelles need
to be simulated with satisfactory statistics before an unam-
biguous conclusion in this respect can be drawn.

IV. SUMMARY AND CONCLUSIONS

In the present work we have studied the stochastic dy-
namics of flat self-avoiding tethered membranes which are
assumed to be completely permeable to the surrounding
good solvent and are thus expected to display typical Rouse
behavior. By means of extensive Monte Carlo simulations
we find that the static properties of our tethered membranes
are described by scaling exponents which agree very well
with the appropriate theoretically predicted values. Thus the
radius of gyration scales with membrane linear size L as
Rg

2�L2� with �=1.020.01, and the membrane thickness,
�min

2 �L2�min with roughness exponent �min=0.700.01,
while the membrane asphericity vanishes asymptotically as
A=�min

2 /�max
2 �L−2�A with �A=0.320.01.

In the regime of Rouse diffusion we find with good accu-
racy that the diffusion coefficient DN�N−1, as predicted,
whereas the typical relaxation time of such polymerized
membranes grows as �R�L4 with the linear dimension L. A
comparative study, involving linear polymers too, reveals
also that the diffusion coefficient of permeable self-avoiding
tethered membranes, containing N segments, is three times
smaller than that of linear polymer chains with the same
number of segments.

Our main concern in this study, however, is with the sub-
diffusive motion of the membranes central segment at times
t��R. Our numeric studies reveal several regimes of anoma-
lous diffusion whereby the central node MSQD grows as
g1� t0.86 for t�1, then g1� t0.27 for 1� t��1, further, with
g1� t0.5 at time �1� t��R, before turning eventually to nor-
mal diffusion with g1� t for t��R. We use simple scaling
arguments to interpret our observation and suggest that the
anomalous diffusion exponent ��0.27 which we find in
agreement with recent studies �24,25� most probably reflects
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FIG. 5. �Color online� Log-log plot of the central node MSQD
g1 vs time t at T=1.0 for a membranes with linear size 5�L�50.
All data are averaged over 100 simulation runs. Dashed lines denote
power law variation with different exponents �see legend� corre-
sponding to the various subdiffusive regimes.
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several particular mechanisms of membrane motion. These
mechanisms involve different groups of loosely bound mem-
brane monomers whose random hops predominantly contrib-
ute to the center-of-mass motion of the whole membrane at
times when most of the inner monomers are mutually
blocked by their nearest neighbors and therefore remain
rather immobile. The particular geometry of the membrane
sheet �e.g., square, hexagonal, or rhombic� is expected to
enhance the role of either periphery, or vertex monomers,
and therefore slightly modify the observed value of the
anomalous exponent � according to Eqs. �14� and �15�. This
would explain some small deviations of our data from that of
earlier measurements �24,25�.

We believe that our results shed some light and provide
insight into the complex dynamics of polymerized mem-
branes. It is, however, clear that further work is needed be-
fore the nature of the membrane stochastic dynamics is defi-
nitely established and understood.
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