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Granular packings, especially near the jamming transition, form fragile networks where small perturbations
can lead to destabilization and large scale rearrangements. A key stabilizing element in two dimensions is the
contact loop, yet surprisingly little is known about contact loop statistics in realistic granular networks. In this
paper, we use particle dynamics to study the evolution of contact loop structure in a gradually tilted two-
dimensional granular bed. We find that the resulting contact loop distributions �1� are sensitive to material
properties, �2� deviate from the expected structure of a randomly wired lattice, and �3� are uniquely dependent
on tilting angle. Also, we introduce a quantitative measure of loop stability � and show that increased tilting
results in a gradual destabilization of individual loops. We briefly discuss the considerations for extending our
approach to three dimensions.
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I. INTRODUCTION

Granular materials constitute a unique and complex class
of matter. Under a confining stress, granular matter adopts an
unusual solidlike state �i.e., a granular packing� marked by
heterogeneity �1–3�, self-organization �4,5�, stress memory
�6�, and a stress response that is neither entirely elastic nor
entirely plastic �7,8�. A fundamental grasp of such granular
behavior is both practically and theoretically important, yet
surprisingly elusive.

A hallmark of granular packings—especially at the jam-
ming transition, or isostatic limit—is fragility �9�. That is,
they respond elastically only to compatible loads; incompat-
ible loads lead to plastic reorganizations �4�. This fragile be-
havior is, arguably, a result of the jamming process itself and
attributable to the formation of unstable force chains �4,10�.
It can therefore be argued that fragility arises from mesoscale
structural motifs—unstable contact chains on the order of
several particles in length. But other mesostructures—in two
dimensions, contact loops—are mechanically robust; they
can support a finite range of compatible loads.

Contact loops are known to contribute to granular stability
�11,12�, and have inspired new approaches to understanding
the stress response of granular matter. Some theoretical mod-
els employ contact loops, not grains, as the basic structural
units �13–15�. However, surprisingly little is known about
the statistics of contact loops in realistic granular packings.
Several questions remain open. Which loop sizes are most
prevalent? How does loop structure depend on material prop-
erties? How and when do loops destabilize and deform?

In this paper, we investigate loop structure in simulated
2D granular packings. We investigate the influence of surface
roughness by varying interparticle friction coefficients and
investigate structural evolution in the approach to the unjam-
ming transition by varying the tilt angle. We find that contact
loop distributions are �1� sensitive to material properties, �2�
deviate from the expected structure of a randomly wired lat-
tice, and �3� are uniquely dependent on tilting angle. Also,

we introduce a quantitative measure of loop stability � and
show that increased tilting results in a gradual destabilization
of individual loops. We conclude with a brief discussion of
considerations for extending our approach to three dimen-
sions.

Contact loops as stabilizing elements

A granular packing can be viewed as a collection of me-
soscale contact structures called “contact loops.” These loops
are significant in that they are the smallest structural arrange-
ments that can support two-dimensional perturbations of a
compressive load, as illustrated by the following example.

Consider three rigid particles arranged in a straight line
�friction is unimportant�. The contact forces f12 and f23 de-
fine the external compressive forces fa and fc exerted at ei-
ther end �see Fig. 1�. Any orientational perturbation of the
external compressive force results in what is known as an
incompatible load—given the linear contact arrangement,
there is no combination of f12 and f23 that can balance even
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FIG. 1. �Color online� Contact loops as stable mesostructures. A
linear contact structure �f12, f23� can support linear compression
�fa , fb�. However, any 2D perturbation of the compressive force
�e.g., fa�� yields a load that is incompatible with the linear contact
structure. For this reason we say that contact chains are locally
fragile. On the other hand, contacts arranged in a triangular loop
can support various compressive loads fa, fb, and fc.
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a slight change in the direction of one of the externally ap-
plied forces. Such a perturbation would cause the linear con-
tact structure to buckle—the structure is said to be fragile �a
more rigorous discussion of this example can be found in
Ref. �10��.

Now consider the same particles arranged in a triangular
loop, with contact forces f12, f23, and f13. Specifically, we say
that the arrangement is a third-order loop, where the order
indicates the number of particles or contacts that comprise
the loop. Again, the contact structure defines a set of external
compressive forces fa, fb, and fc. In this case, however, an
orientational perturbation can be balanced by an adjustment
of the remaining forces �f12, f23, and f13� without deforming
the contact structure. In fact, we can define a finite range of
compatible loads �the contact loop has an infinite number of
compatible arrangements, whereas the contact line has only
one�. Furthermore, if any particle is removed from the loop,
it becomes unstable to perturbation. The same is true for
larger contact loops and lines.

The above example suggests that contact loops contribute
to network stability—they can be viewed as the building
blocks that comprise a mechanically stable network. It can
also be inferred that loop stability decreases with increasing
loop order �consider that an infinitely large loop is essentially
a linear chain�. From these conclusions, we expect the fol-
lowing trends—everything else equal—to hold true: �1� net-
works with high loop density are more stable �less fragile�
than those with low loop density �see Fig. 2�a�� and �2� net-
works rich in lower order loops are more stable than those
rich in higher order loops �see Fig. 2�b��. Here, we have
defined loop density nl,i as

nl,i = Nl,i/Nn, �1�

where i is the loop order �number of particles in the loop�,
Nl,i is the number of loops of order i, and Nn is the total

number of particles. Assumptions �1� and �2� above—
although not essential to the following discussion—help to
aid our interpretation of contact loop distribution data.

II. METHODS

A. Particle dynamics

We simulate two-dimensional systems of rough disks us-
ing particle dynamics �PD�—normal contact forces are cal-
culated using the linear-spring dashpot model �16�, and tan-
gential forces are calculated using the Cundall and Strack
model �17�. The relevant dimensionless quantity describing
particle stiffness is �,

� =
mg

2knr
, �2�

where m is particle mass, g is gravity �=9.8 m /s2�, kn is the
normal spring force constant, and r is particle radius. � gives
the dimensionless deformation per unit particle weight, so
that a particle resting under its own weight has contact de-
formation equal to �r. For our simulations, particles are rela-
tively stiff, with ��5�10−4.

Packed beds are generated in a three stage process. First,
in the initiation stage, Nn point particles, with initial diam-
eters equal to zero, are placed at random inside a box of
prescribed width Lx and height Ly. Next, in the growth stage,
particles grow to their prespecified sizes—growing particles
can collide, transferring small amounts of kinetic energy
through dissipative collisions. �These first two stages are
similar, in spirit, to the Lubachevsky-Stiller method of pro-
ducing random packings �18�.� The final stage is a sedimen-
tation stage—gravity is introduced and particles are allowed
to settle, under their own weight, into a packed state �see Fig.
3�a��.

The final dimensions of the packing approximate a rect-
angle, with width w=Lx=120d and bed height h�20d,
where d is the mean particle diameter �Nn=2500 particles�.
The horizontal boundary is periodic �no vertical walls�, and
the floor is infinitely rough, i.e., particles touching the floor
are not permitted to move horizontally. Particle diameters are
normally distributed with a variance equal to 10% of the
mean in order to prevent crystallization. To examine the role
of interparticle friction, we considering packings over the
range 0���0.5, where � is the Coulomb friction coeffi-
cient.

The resulting packings can be viewed as networks: par-
ticles are represented as nodes, interparticle contacts are rep-
resented as edges, and each edge is weighted according to
the normal force f acting along its corresponding contact
�see Fig. 3�b��. A contact loop can then be precisely defined
as a path along the granular network that forms a noninter-
sected circuit. Due to gravity, contact forces tend to increase
with depth. We remove this effect by normalizing contact
forces with respect to depth:

f ij� =
f ij

h − yij
, �3�

where yij is the vertical position of the contact �see Fig. 3�c��.
We approximate the bed height h as
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FIG. 2. �Color online� Relationships between loop distributions
and packing stability. In �a� the solid curve represents a network
with a higher overall density of contact loops; in �b� a network with
a high relatively density of smaller loops, as compared to the
dashed curve. In both cases, the solid curve represents the more
stable loop distribution.
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h = 2
1

Nc
� yij , �4�

where Nc is the number of contacts, and the sum is taken
over all contact pairs. We exclude the top two layers of
contacts—contacts with �h−yij��2d—from our analysis, as
Eq. �3� may yield highly fluctuating values of f ij� near the
surface.

B. Tilting protocol

The tilting protocol begins after particles have been al-
lowed to fully settle and equilibrate in the bed. We fix the
orientation of the bed and allow 	g, the angle of the gravity
vector with respect to vertical, to increase in increments �for
low tilting rates, this is equivalent to fixing the orientation of
gravity and incrementally tilting the bed�. The free surface
remains horizontal throughout the entire experiment. We al-
ternate two-second tilting intervals �constant rotation rate of
5�10−3 rad /s� with two-second rest intervals so that fluc-
tuations caused by tilting can dissipate prior to gathering data
�see Fig. 4�. We only consider data obtained at or below the
marginal angle of stability so that the data and analysis apply
to packings in the quasistatic, solidlike regime, not steady or
continuous flow.

C. Loop-finding algorithm

We use a breadth-first searching algorithm, exploiting the
constraints of granular packing geometry to to find contact
loops. For each particle, or node i, we identify pairs of adja-
cent neighbors j and k. Each j-i-k combination then consti-
tutes a part of exactly one contact loop �see Fig. 5�. We use
a breadth-first searching algorithm to determine the size of
the loop: If node j has k as a neighbor the loop is order 3;
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FIG. 3. �Color online� The granular bed as a network. �a� 2500
granular particles are allowed to settle under gravity and come to
rest, forming a granular bed about 20 particle diameters deep and
120 particles in length �although the horizontal boundaries are pe-
riodic�. The layer of particles touching the bed are fixed in place,
approximating an infinitely rough floor. �b� The bed can be repre-
sented as a network, where each contact is represented by an edge
and each edge is weighted according to the normal force along its
corresponding contact. Thicker lines near the base indicate a pres-
sure gradient; pressure increases with vertical depth. �c� The same
network with edges normalized with respect to depth, so that the
average edge weight of a layer is independent of its depth.
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FIG. 4. �Color online� Tilting protocol and kinetic energy pro-
file. 	g, the angle of the gravity vector with respect to vertical �red
curve�, is increased incrementally, with each period consisting of a
2-s tilting interval �constant rotation rate of 5�10−3 rad /sec� fol-
lowed by a 2-s rest interval, which allows for dissipation of tilting-
induced fluctuations in the kinetic energy �black curve, filled to
baseline with gray�. Network data is taken at the end of each period
�denoted by the vertical notches in the 	g curve�. We have normal-

ized the mean kinetic energy per particle as KE / m̄d̄2 so that

KE / m̄d̄2 has units s−2 and a particle with KE / m̄d̄2=1 has sufficient
kinetic energy to move one particle diameter per s. In the inset, the
entire kinetic energy profile is shown, including �i� the preparation
stage, �ii� the quasistatic tilting regime, and �iii� the steady flow
regime. For the purpose of this study, we consider network data
obtained in region ii, i.e., data obtained at or below the angle of
marginal of stability. The kinetic energy profile shown here is for a
single tilting experiment involving smooth particles.

FIG. 5. �Color online� Adjacent neighbors and the loop counting
algorithm. For each particle or node, we identify pairs of adjacent
neighbors. In this example, n1 and n2 are an adjacent neighbor pair
of node n0 �as are n2 and n3, n3 and n4, and so on�. Each node-
adjacent node pair combination �here, we have highlighted the n1

−n0−n2 combination� then constitutes a part of exactly one contact
loop. The total number of contacts, or edges, in the loop is calcu-
lated using a breadth-first searching algorithm.
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else, if any neighbor of j �excluding i� has k as a neighbor,
the loop is order 4; else if any of second neighbor of j �ex-
cluding i and j� has k as a neighbor, the loop is order 5; and
so on. We confirm the results with visual checks on small
portions of sample networks.

III. CONTACT LOOP STATISTICS

In general, the PD-generated granular networks are richest
in third and fourth order loops, with loops as high as seventh
order occurring with some, albeit diminishing, regularity �see
Fig. 6�. The details of the loop distribution vary according to
friction properties: networks formed with smoother particles
contain more third- and fourth-order loops, whereas net-
works formed with rough particles are more likely to contain
higher order loops. In systems with ��0.3, third order loops
are the most frequently occurring loop size; in those with
�
0.3, fourth order loops occur most frequently. These dif-
ferences between smooth and rough beds reflect a variation
in packing density: smooth particles form densely packed
beds—which favor small loops—and rough particles form
porous beds—which favor larger loops.

A. Loops in a randomly wired lattice

It is useful to compare loop statistics in the granular pack-
ing to the theoretical expectation for a randomly wired lat-
tice. We consider an infinite triangular lattice, with edges
placed randomly between neighboring nodes. The probabil-
ity pe of finding an edge between any two neighboring node
pairs is

pe =
Z

6
, �5�

where Z is the mean coordination number, or mean number
of edges connected to a node �Z=2Ne /Nn�. It follows that the

probability pl,3 that a group of three neighboring particles are
connected by a triangular set of edges is equal to pe

3. Since
there are 2Nn unique potential triangular arrangements, the
expected number of third-order loops is

Nl,3
rand = 2Nnpe

3. �6�

It is useful to represent the expected number of loops as a
density

nl,3
rand =

Nl,3
rand

Nn
= 2pe

3. �7�

In a similar manner, we can derive nl,4
rand. In this case pl,4 is

equal to pe
4�1− pe�, and the number of unique potential ar-

rangements is equal to 3Nn, resulting in

nl,4
rand = 3pe

4�1 − pe� . �8�

Using the same methodology for higher order loops, we ob-
tain

nl,5
rand = 6pe

5�1 − pe�2, �9�

nl,6
rand = 20pe

6�1 − pe�3 + pe
6�1 − pe�6, �10�

nl,7
rand = 36pe

7�1 − pe�4 + 6pe
7�1 − pe�7. �11�

We can also calculate the random loop probability numeri-
cally by randomly rewiring the nodes of a PD-generated
granular network. To do so, however, requires that we relax
the definition of “neighbor pair.” In the PD-generated net-
work, neighboring particles are in contact—i.e., the distance
between neighboring particle centers �ij is less than or equal
to their mean particle diameter �di+dj� /2 �this is approxi-
mately the same as saying �ij �d, where d is mean particle
diameter over the entire system�. To randomize, we relax this
definition slightly, defining “potential neighbors” as nodes
for which �ij �1.2d. Defined this way, each node typically
has about six potential neighbors—corresponding to its im-
mediately surrounding layer of particles.

Using the PD-generated lattice, we connect pairs of po-
tential neighbors at random, starting from the completely un-
connected network �no edges� and adding Ne=Nn�Z /2�
edges, so that the rewired network has mean coordination
number equal to Z. In this way, we construct a network that
has identical particle positions as the granular packing, but
randomized neighbor connections. From this method, we ob-
tain numerical results that are in good agreement with the
analytical solution for nodes on a triangular lattice �compare
dashed and dotted curves in Fig. 6�.

Loop distributions in PD packings differ significantly
from the expected random result, particularly for lower order
loops—granular packings tend to have significantly fewer
third-order loops and significantly more fourth-order loops
than expected from the random model �see Fig. 6�. This sug-
gests the influence of force balance constraints—in the lat-
tice model, we assume that nodes are connected to their
neighbors with equal probability; in force-constrained net-
works, certain contact arrangements are statistically more
probable than others.
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FIG. 6. �Color online� Distributions of contact loops in untilted
granular beds. Loop distributions for packings with � ranging from
0 to 0.5 �	g=0�. Increasing surface friction corresponds to a de-
creasing density of low order loops an increasing density of high
order loops. The dashed curve is the analytical solution for a ran-
domly wired triangular lattice and the dotted curve is the numerical
result from random rewiring of a simulated granular network; both
are calculated using Z=4 �in the case of the triangular lattice, this
means that adjacent nodes on the lattice are connected with a prob-
ability pe=4 /6�.
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B. Effects of tilting on loop structure

The dynamics of a tilted bed, even in the quasistatic re-
gime, are complex—new contacts are formed, old contacts
are destroyed, and forces along enduring contacts change in
magnitude as the bed approaches the unjamming transition.
A widely accepted view is that these granule-scale changes
conspire to make the bed less resilient to perturbation, i.e.,
more fragile �9,19�. In other words, a granular packing is
most fragile at the unjamming transition �which corresponds
with the limit of isostaticity�. This view is supported, quan-
titatively, by the loop analysis results for our tilted bed simu-
lations.

Loop density—particularly nl,3—tends to decrease as the
tilting angle is increased, suggesting increased fragility �see
Fig. 7�. However, the decrease in nl,3 corresponds with a
decrease in mean coordination number Z. A practical ques-
tion arises: is decreasing loop density in the tilted bed a
unique effect of tilting, or a generic consequence of the de-
creasing contact density �i.e., Z�?

To address this question, we first determine a relationship
for nl,3�Z� in untilted beds. From Eq. �7�, we expect n1,3
�Z3. The actual dependence observed in the granular pack-
ings is stronger. The data is well described by a fit of the
form

nl,3 = ��Z − ��, �12�

where the power-law exponent is �=3.53�0.02 �the fit was
generated using �=0.13 and =1.39� �see Fig. 8�a��.

Equation �7�, which describes nl,3�Z� as a function of con-
tact density in untilted beds, also approximately describes
nl,3�Z� for the various tilting angles. We can then say that the
effects of tilting on nl,3 are generic—i.e., they cannot be
distinguished from contact density effects.

On the contrary, tilting has a unique effect on the fourth-
order loop density nl,4 �see Fig. 8�b��. nl,4 tends initially to
decrease with increasing tilting angle, then—for beds with
��0.2—increase prior to reaching the marginal angle of
stability �a likely explanation is that third-order loops desta-

bilize and become fourth-order loops as the system nears
failure�. Unlike nl,3, the curve that describes nl,4�Z� in un-
tilted beds tends to underestimate the density of fourth-order
loops when the bed is tilted. Thus we can say that effects of
tilting on nl,4 are unique—they are distinguishable from con-
tact density effects.

IV. WEIGHTED CONTACT LOOPS

Loop structures, as described above, are topological con-
structs; they are defined solely by the number of edges. How-
ever, loops with an identical number of edges do not neces-
sarily have identical stability: the magnitude and
arrangement of contact forces factor heavily into whether a
particular loop will be able to withstand perturbation. Below,
we show that relative loop stability can be quantified with a
weighting function �. We then use � to revisit the problem of
the tilted bed, constructing a more complete relationship be-
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FIG. 7. �Color online� Third order loop density as a function of
tilting angle. Relative third order loop density nl,3

� �	g�
=nl,3�	g� /nl,3�	g=0� tends to decrease with increasing tilting angle.
This decrease is accompanied by a decrease in the mean coordina-
tion number Z �denoted by a dashed line�.
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FIG. 8. �Color online� Loop density and coordination number. In
�a� and �b�, solid curves represent the effect of contact density on
loop density—they are best fit regressions of loop densities in un-
tilted beds of various friction coefficients �. The dashed curves are
the theoretical prediction. Filled symbols indicate the evolving loop
density as 	g is increased. For nl,3 �a� the data for the tilted bed lie
close to the solid curve, suggesting that tilting effects on nl,3 are
generic �they are indistinguishable from the effects of contact den-
sity�. For nl,4 �b� the data for the tilted bed deviate significantly
from the solid curve, indicating that tilting effects on nl,3 are unique
�they can be distinguished from the effects of contact density�.
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tween tilting and destabilization and identifying additional
unique effects of tilting on network structure.

A. Quantifying loop stability

For any contact loop there is a finite range of compatible
loads, which corresponds to the allowable set of contact loop
forces. Consider a third-order loop, where the contact forces
f ij, f jk, and f ik, define the resulting compressive force vectors
fa, fb, and fc �see Fig. 9�a��. The most stable arrangement of
contact forces is f ij = f jk= f ik, such that each of the resulting
compressive force vectors lies in the center of its stable
range, and small perturbations in either direction are unlikely
to compromise the loop. On the other hand, consider the
arrangement f ij � f jk� f ik, for which the compressive force
vectors lie near the edge of the stable region �see Fig. 9�b��.
A slight perturbation is likely to move the loop into an un-
stable region. This loop property is captured with the weight-
ing function �:

�l,n =
1

f̄ n
�
i=1

n

f i, �13�

where n is the number of edges in the loop and f̄ is the mean
edge weight, averaged over all the edges in the loop

f̄ =
1

n
�
i=1

n

f i. �14�

�l,n=1 for a loop with equally weighted edges �the most
stable force arrangement� and approaches zero as the relative
weight of any edge in a loop goes to zero. For a third order
loop, �l,3 can be mapped onto a two-dimensional space, with
the stable region describing an equilateral triangle �see Fig.
9�c��. �l,3=1 lies at the center of the triangle and �l,3=0 lies
at the perimeter, such that the inner region of the triangle
corresponds to greater stability and points lying outside the

triangle correspond to unstable configurations. We validate
�l,3 as a stability indicator by mapping its trajectories for
individual loops in a gradually tilted bed.

Recall that the granular bed is tilted in intervals �two sec-
ond tilting interval followed by a two second rest interval�.
We label the granular network prior to each tilting interval as
a stage n such that n=1 corresponds to 	g=0, n=2 corre-
sponds to 	g=0.01, and so on. This description affords a
convenient distinction between stable and marginally stable
triples: we say that a triple that exists during stage n is stable
if, and only if, it also exists during stage n+1. Alternatively,
we say that a triple that exists during stage n, but not stage
n+1 is marginally stable.

Average � values for stable ��l,3
s � and marginally stable

��l,3
m � triples suggest that � is indeed an indicator of loop

stability. In our simulations, we find �l,3
s =0.582�4�10−3

and �l,3
m =0.30�0.02 �where the error represents a 95% con-

fidence interval�, indicating that marginally stable triples
tend to lie nearer to the perimeter of the stable triangle ��l,3

s

��l,3
m would suggest that � is a poor indicator of stability�.

We can visualize the results by plotting �l,3
s and �l,3

m as isos-
tability curves on the stable triangle �see Fig. 10�a��. The
multistage trajectories of individual triples include several,
seemingly random leaps, but have an overall tendency to

FIG. 9. �Color online� Mapping of loop structures. The stability
of a loop can be represented as a function �l,3 of the contact forces
which make it up. �a� Loops with �l,3�1 �i.e., f12� f23� f13� are
very stable and lie near the center of the stable region �represented
as a square on the triangular map, at right�. �b� Loops with �l,3

�0 �i.e., f12� f23� f13� are marginally stable and lie near the pe-
rimeter of the stable region �represented as a circle on the triangular
map�.
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FIG. 10. �Color online� Stability trajectories of individual loops.
Trajectories of third-order loops are mapped in the f12, f23, f13

triangular stable space for �a� a bed of rough particles ��=0.5� and
�b� a bed of smooth particles ��=0�. �Arrows indicate the net tra-
jectory over the life span of the loop.� Filled circles represents a
stable stage in the loop trajectory; outlined circles indicate the final,
marginally stable stage �after which the loop becomes unstable and
fails�. In systems with friction, �l,3

s =0.582�4�10−3 �solid blue
isostability curve� and �l,3

m =0.30�0.02 �dashed red isostability
curve�. In frictionless systems, �l,3

s =0.589�4�10−3 and �l,3
m

=0.41�0.03.
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migrate toward the outer region of the stable space. In simu-
lations of perfectly smooth particles ��=0�, the difference is
less pronounced—�l,3

s =0.589�4�10−3 and �l,3
m

=0.41�0.03 �see Fig. 10�b��.

B. Effects of tilting, revisited

We previously showed that small loops in a granular
packing tend to decrease in number as the bed is tilted; ac-
cording to the quantity �, they also decrease in stability. The
normalized mean stability of third-order loops

�l,3
� �	g� =

��l,3�	g�	
��l,3�	g = 0�	

�15�

can decrease by as much as 15% over the static tilting range
�see Fig. 11�. This is a unique effect of tilting: mean loop
stability in an untilted bed ��l,3�	g=0�	 is roughly indepen-
dent of contact density �Z�, indicating that the tilting effect
on loop stability can be isolated from contact density effects
�see Fig. 12�a��. Fourth-order loop stability �l,4 evolves in a
similar manner, although it appears that �l,4 in the untilted
beds may be a weak function of contact density �see Fig.
12�b��.

V. DISCUSSION

It can be argued that the stability of 2D granular packings
arises from structures on the order of a few particles, i.e.,
contact loops. In this paper, we have shown that �1� loop
structure in a granular packing is a function of interparticle
friction coefficient; �2� granular packings �particularly fric-
tional packings� are especially rich in fourth order loops,
compared to a random lattice model; and �3� tilting has
unique, destabilizing effects on loop structure.

A natural, if somewhat formidable, extension is to three
dimensions. In three dimensions, the smallest structure that
can support three-dimensional perturbations of a compres-
sive load is a tetrahedral cluster. However, other such struc-
tures exist, including square pyramids, triangular prisms, and

cubes, among others. These structures—such as loops in two
dimensions—may be viewed as the building blocks for a
stable three-dimensional packing, and may influence global
stability in three dimensions. �Quantitative indicators analo-
gous to �, although possible, would likely be much more
complicated in three dimensions.�

However, even in the relatively simple case of a two-
dimensional packing, this study has quite possibly raised
more questions than it has answered. For example, we have
shown that third-order loops tend to migrate from the center
of the stable triangular region to the perimeter, and then fail.
But where on the perimeter do they most often exit? Near a
vertex �i.e., f12� f23� f13� or a midpoint �i.e.,
f12� f23� f13�? This would be important for understanding
failure mechanics. Also, it is well known that forces in a
granular packing exhibit spatial organization; are loop struc-
tures also spatially organized? Do they destabilize �i.e., �
→0� in clusters, chains, or randomly? These kinds of studies
might lead to a better first-principles understanding of stabil-
ity and fragility in granular packings.
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FIG. 11. �Color online� Loop stability as a function of tilting.
The normalized mean loop stability ��l,3

� � tends to decrease as the
tilting angle �	g� is increased.
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FIG. 12. �Color online� Loop stability and coordination number.
�a� Tilting causes a decrease in mean stability of third order loops
�l,3. The untilted values �l,3�	g=0� are roughly independent of co-
ordination number, but �l,3 decreases with increasing tilting angle,
suggesting that tilting effects on �l,3 are unique from contact density
effects. �b� Mean stability of fourth order loops �l,4 evolves in a
similar manner. In both �a� and �b�, arrows indicate the direction of
increasing tilting angle.
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