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Effects of friction and disorder on the quasistatic response of granular solids to a localized force
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The response to a localized force provides a sensitive test for models of stress transmission in granular
solids. Elasto-plastic models, traditionally used by engineers, have been challenged by theories and experi-
ments that suggest a wavelike (hyperbolic) propagation of the stress, as opposed to the elliptic equations of
static elasticity. Simulations of two-dimensional granular systems subject to a localized external force have
been employed to examine the nature of stress transmission in these systems as a function of the magnitude of
this force, the frictional parameters, and degree of disorder. The results indicate that in large systems (as
considered by engineers) the response is close to that predicted by isotropic elasticity, whereas for small
systems (or strongly forced ones) it is strongly anisotropic. In the latter case the applied force induces changes
in the contact network accompanied by frictional sliding and gives rise to hyperboliclike stress propagation.
The larger the static friction, the more extended the range of forces for which the response is elastic, and the
smaller the anisotropy. Increase in the degree of polydispersity (in the studied range, up to 25%) decreases the
range of elastic response. This paper is an extension of a previously published Letter [C. Goldenberg and I.

Goldhirsch, Nature (London) 435, 188 (2005)].
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I. INTRODUCTION

Static and quasistatic properties of granular materials are
commonly modeled by engineers using elastoplastic [2,3]
and hypoplastic [4,5] models. Recently, other types of mod-
els have been put forward (mostly by physicists), some of
which comprise hyperbolic partial differential equations for
the description of stress transmission through these materials
[6-11]. The new models, in which stress propagates (much
like waves) through the material, are fundamentally different
from the (elliptic, elasticlike) old ones, in which the concept
of propagating stress does not apply. It seems that this di-
chotomy started [3,12] in the context of the interpretation of
experiments on conical piles [13,14], where a pressure dip
below the apex of the pile was observed (the presence of
such a dip depends on the construction method [15]).

In order to obtain insights into this problem, it is conve-
nient to consider the simpler geometry of a granular rectan-
gular layer (or slab) resting on a solid support [16], an ex-
perimentally well researched system [17-23]. Much as in the
case of piles, experiments on granular slabs seem to be send-
ing mixed messages concerning the “correct” description of
stress transmission in these systems: some render support to
elliptic descriptions whereas others are compatible with hy-
perbolic models. When the response to the application of an
external force is linear in the force (which is the case for
sufficiently small forces), the problem is tantamount to the
study of the Green’s function of the system [22].

The present paper reports results of a detailed study of the
response of two-dimensional vertical slabs comprising poly-
disperse frictional disks subject to gravity and a localized,
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compressive external load applied at the top of the slab. It
significantly expands upon Ref. [1].

The dependence of the response on the magnitude of the
external force as well as the interaction parameters and de-
gree of disorder (or polydispersity) has been studied. Our
results suggest a resolution of the above-mentioned contro-
versy as well as the seemingly mutually incompatible experi-
mental results. First note that a small localized external force
applied to a (“prestressed”) static granular system gives rise
to excess contact forces and other changes. If the force is
sufficiently small, the excess stress can be well described by
elasticity and for an isotropic reference configuration by iso-
tropic elasticity (see also [24]). In contrast, a finite external
load can cause irreversible rearrangements (loss of contacts,
sliding) and strong anisotropy in an influence zone in the
vicinity of its point of application. Far from this point the
excess stress can still be described by elasticity, and therefore
sufficiently large systems (for which this zone is basically a
point) are expected to exhibit elastic response. Unlike in
large systems, the influence zone in a relatively small system
can span the entire size of the system and therefore its re-
sponse will not be elastic but rather hyperboliclike due to the
strong anisotropy induced in the zone [3,25]. Frictional
forces tend to prevent sliding and loss of contacts; their ef-
fect is to shrink the size of the influence zone thus promoting
elastic response. As shown below, they also promote isotropy
of the response. Therefore, in experiments in which large
forces were applied to relatively small systems
[17,18,21-23], the observed response could be accounted for
by hyperboliclike equations, whereas in other experiments
the force was sufficiently small (or the system size suffi-
ciently large) to render the response compatible with elastic-
ity; see, e.g., [18,20,22]. These considerations apply to both
ordered (lattice) and disordered (polydisperse) configura-
tions, the main difference being in the ranges of the magni-
tudes of the external forces for which one observes elastic
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FIG. 1. Predictions of different models, (a) “elliptic” and (b)
“hyperbolic,” for the response of a granular slab to a localized
vertical force applied to its top: excess vertical stress on the floor
supporting the slab.

response. Qualitatively similar results were also obtained in a
numerical study of the displacement response [26]; this study
focused on the effect of the mean coordination number, con-
trolled by the particle stiffness. The force network ensemble
approach [27] yields qualitatively similar results concerning
the effect of friction.

The paper is organized as follows. Section II presents an
outline of the elliptic and hyperbolic descriptions of static
granular matter and a comparison between the two, as well
as results of several relevant experiments. Section III pro-
vides a description of the simulation method. Section IV re-
ports the results obtained for frictionless systems, and the
subsequent sections describe simulations of more realistic
systems, incorporating friction (Sec. V) and disorder or poly-
dispersity (Sec. VI). The results of the simulations and their
analysis enable the interpretation of the findings in different
experiments; this comprises the content of Sec. VII. Section
VIII offers a brief summary and further interpretations.

II. ELLIPTIC VS HYPERBOLIC DESCRIPTIONS
A. Theoretical approaches

As mentioned, the “elliptic” and “hyperbolic” descrip-
tions of stress transmission in granular matter differ both
qualitatively and quantitatively. Consider the response on the
floor on which a vertical granular slab resides (i.e., the ver-
tical stress at the floor in the presence of an external force
minus its value in the absence of this force). Figure 1 illus-
trates the response to a vertical force applied at the center top
of the slab. When isotropic elasticity [28] holds, the response
has a single peak, whose width is proportional to the height
of the slab, and whose shape is determined by the equations
of elasticity and boundary conditions [3,20,29]. In contrast,
in hyperbolic models [6-11], the stress propagates along
characteristic lines and the response is concentrated on two
points in two dimensions (2D) [a ring in three dimensions
(3D)]; diffusive broadening broadens the latter into peaks
whose width is proportional to the square root of the slab’s
height [30]. This type of description applies [7-11] to fric-
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tionless isostatic systems [31-33], i.e., systems in which the
number of equations stemming from Newton’s first and third
laws equals the number of unknowns (force components),
thereby determining the forces. Isostatic systems are margin-
ally stable, and can be considered to comprise plastic mate-
rials which are everywhere at incipient yield (and are de-
scribed by hyperbolic equations [3]). Models based on stress
transmission by propagating force chains which may split
and merge [34-37] were shown to produce elasticlike equa-
tions (in fields whose significance is yet unclear) at large
scales [34-36].

A simple 2D model [29] demonstrates that strongly aniso-
tropic elasticity can mimic hyperbolic behavior. The model
comprises a triangular lattice of harmonic springs in which
the horizontal spring constant K; is different from that of an
oblique spring, K,. In the continuum limit this model is de-
scribed by anisotropic elasticity [for the response of an an-
isotropic elastic infinite half plane (2D) see [36]]. The nature
of the response depends on the degree of anisotropy: it is
single peaked for values of K,/K| near 1 (K,/K,;=1 corre-
sponds to an isotropic system), narrower than in the isotropic
case for K,/K; <1, and wider for K,/K; > 1. For sufficiently
large values of K,/K, the response is double peaked, as for
hyperbolic models. However, the equations of anisotropic
elasticity are elliptic, except in the extreme anisotropic limit
K,/K{— o, when they are hyperbolic. This is consistent with
the fact that the limit K; — 0 corresponds to the absence of
horizontal springs, which renders the system isostatic, much
like the well-known example of a square (or cubic) lattice of
springs, which (to linear order in the displacements) lacks
shear rigidity [38]. Although this anisotropic model is quite
artificial, we show below that anisotropy arises naturally in
more realistic descriptions of granular materials.

B. Review of experimental results

In the experiments of [18,22], a localized vertical force
was applied to a 2D packing of photoelastic particles. The
applied forces had to be sufficiently large (about 150 times
the particle weight) in order to observe the birefringent pat-
terns [39], based on which the magnitudes of the interparticle
forces were estimated [18,22,39]. Three different types of
packing, of increasing disorder, were studied in [18,22]: a
triangular lattice of nominally monodisperse disks, a packing
of bidisperse disks (two different sizes), and a packing of
pentagonal particles. Data from 50 configurations were aver-
aged [18,22] for each type of packing. The force profiles as a
function of the horizontal (orthogonal to gravity) coordinate
(for different depths in each of the slabs) exhibited strong
dependence on the degree of disorder: the ordered (lattice)
configuration exhibited two prominent “force chains” along
the lattice directions (60° to the horizontal), a result which
appears to be consistent with a hyperbolic model (however, a
vertical force chain, not anticipated by these models, was
observed as well). The force chains “faded out” with increas-
ing disorder; for the pentagonal particles the measured force
profile possessed a single peak, the width of which varied
linearly with the depth, as predicted by elasticity; this led to
the suggestion that granular materials experienced a cross-
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over from a hyperbolic to an elliptic behavior with increasing
disorder [18].

The response of a small 2D slab comprising round-edged
rectangular particles [17] exhibits a near-parabolic envelope,
as predicted by models that assume an uncorrelated, diffu-
sive propagation of the forces, such as the ¢ model [40,41]. Tt
appears that the envelope may be narrowing down near the
bottom of the slab.

The simulations of [23] considered the displacements of
(rather than force on) disks (of three different diameters) in a
2D packing, induced by a small displacement of a particle at
the bottom of the packing. The displacement response is ex-
pected to be qualitatively similar to the force response (in
isostatic systems the two are equivalent [31,32]). The re-
sponse profile (averaged over several hundred configura-
tions) possessed a single peak, the width of which appeared
to grow as the square root of the system height for small
heights, and cross over to a linear dependence for larger
heights (these heights were quite small: about ten diameters).
The response function (scaled by the width) could be well
fitted by a Gaussian. Simulations of isostatic systems pre-
sented in the same paper revealed a double-peaked response,
as expected.

References [19,20] report the results of experimental mea-
surements of the response at the floor of 3D disordered slabs
of sand (and other materials), subject to a weak external
localized force (of a few particle weights) at the top of the
slab. In this case the response was verified to be linear in the
applied force. The response profile was single peaked, its
width proportional to the slab height, as expected for an elas-
tic system. The shape of the response was found to depend
on the preparation method: it was wider for loose packings
(obtained by pulling a sieve through the packing) than for
dense packings (obtained by filling the container layer by
layer, pressing the packing after each layer is deposited).
Isotropic elastic solutions for finite slabs [20] did not fit the
results well.

Unlike the disordered systems used in [18,22], the experi-
ments of [21] involved ordered 3D systems of spherical par-
ticles, arranged on face-centered cubic (fcc) and hexagonal
close-packed (hcp) lattices. The forces on the floor were
measured using pressure marks on carbon paper [21]. The
applied force was large (a few thousand times the particle
weight) for technical reasons. The results were averaged over
several packings of nominally equal spheres. For shallow
systems, three distinct peaks were observed in the case of the
fcc lattice, and a ring for the hcp lattice. This is consistent
with a description based on propagating forces [21]. For
larger systems the peaks were considerably less distinct, the
response being “smoother.” This further indicates that a hy-
perboliclike response may apply only to relatively small sys-
tems. For disordered packings [21], a single peak was ob-
tained.

In summary, qualitatively different types of response were
observed in experiments on granular assemblies, some of
which seem to render support to elliptic models of stress
transmission, others to hyperbolic or parabolic models. The
degree of disorder plays an important role, as do the size of
the system and the magnitude of the applied force. Clearly,
other parameters, e.g., the coefficient of friction, may be im-
portant as well.
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II1. SIMULATION METHOD

In order to study the response of granular packings and its
dependence on the particle properties, we employ the dis-
crete element simulation method [42,43] (DEM), also known
as molecular dynamics (MD) [44—47], to study 2D systems
composed of disks. This method has been employed in stud-
ies of molecular assemblies as well as granular systems; see,
e.g., [48-50] for recent reviews.

A. Force model

Models for grain interactions are usually based on contact
mechanics [51,52]. Following Hertz (see, e.g., [28]) and oth-
ers, one assumes that the forces exerted by solid particles on
each other are pairwise additive. Since typical deformations
of relatively rigid particles are very small, not-too-soft grains
are modeled as being fixed in shape and allowed to slightly
overlap; a measure of the overlap is taken to determine the
(reversible part of the) normal forces. The tangential forces
are taken to depend on the tangential relative particle dis-
placements.

Most natural or industrial granular materials are com-
prised of nonspherical particles. These are difficult to treat
theoretically and even numerically; see, though, the simula-
tions of [53-58]. Therefore we specialize below to homoge-
neous disk-shaped particles. The force model we use is simi-
lar to that employed in [42] (see, e.g., [59-61] for other
commonly used force schemes).

The overlap of two spherical or disk-shaped particles is
defined by: §;=R;+R;— |rij , where R;, R; are their radii, r; is
the position of the center (of mass) of particle i, and r;
=r;—r;. The particles are assumed to interact only when
they overlap, ie., §;>0. Following the classical Hertz
theory [28], the force two frictionless elastic spherical par-
ticles in contact exert on each other is proportional to 5?1-/ 2,
while for cylinders, it is linear in §&; (up to a logarithmic
correction [62,63]). In our simulations the normal component
(parallel to r;;) of the force is taken to be linear in the overlap
(linear springs) so as to simplify the interaction law (further
justification is provided by the fact that we consider small
deformations, for which one may linearize the force-
displacement law around a reference configuration [64]). In
addition, a linear (dashpot) viscoelastic damping force
[63,65] is employed to model the normal dissipative forces
between interacting grains. While hysteretic rate-independent
dissipation models (see, e.g., [61,66,67]) may be more real-
istic, we choose to employ a simple model, since our focus is
on static response and small deformations. Therefore the re-
sults should not be sensitive to the choice of a dissipation
mechanism. All in all, the normal component of the force
exerted by particle j on particle i, ffj{, is modeled by

f§§= (knéii + VNUg)H(gij)fijs (1)

ao—= N O N_ (o o) f =y P
where rij_Hrth’ Uj—(Vi V}) I',»j—V,»j r

; ij» ky is the normal
spring constant, vy is a damping constant, and H(x) is the
Heaviside function (equaling 1 for x>0, and 0 for x<0).

Static friction is often modeled [42] by tangential springs
which are generated at zero (also rest) length when two par-
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ticles establish contact and “snap” when the resulting fric-
tional force f7 satisfies f7> ugf", where ug denotes the co-
efficient of static friction, i.e., when the Coulomb limit is
exceeded. Once a tangential spring is severed, the corre-
sponding particles can slip with respect to each other and
experience dynamic friction, f7 = upf", where u,, denotes the
coefficient of dynamic friction, unless the particles separate,
in which case they do not interact at all. A velocity-
dependent damping term is often used to facilitate relaxation
to a static configuration. This description of static friction is
consistent with both contact mechanics [51,52] and micro-
scopic theories of friction (see, e.g., [68] for references on
friction). The tangential springs are taken to be quite stiff,
giving rise to very small, but measurable [69], displacements
prior to slip. Tangential springs have often been used to
model interparticle interactions in mean-field derivations of
granular elasticity [70-73]. More realistic descriptions of
frictional contacts account for the history of particle defor-
mations (see, e.g., [59-61,66]).

We model the tangential forces by a spring-dashpot model
in conjunction with Coulomb’s law of friction, as in [42].
The coefficients of static and dynamic friction are taken to
equal each other: up=ug=p (since this work focuses on
static configurations, the precise value of up is not of impor-
tance, as it only affects the evolution toward these configu-
rations). The tangential component of the relative velocity at
a contact (in 2D) is given by

VZ=V[j—

ij Uljflj_fij(R[wi+ijj)7 (2)

where w;= éi is the angular velocity of particle i, 6; denotes
the particle’s rotation angle, and f,-jE z X t;;. Thus, the model
we use for the tangential forces is

f;z (— kTSl-j— VTvg)H(gij)’ (3)

where ky is the tangential spring constant and the spring
length s;; obeys

), 4)

which ensures that the spring is always tangent to the plane
of contact (a line in 2D), and does not exceed the length that
corresponds to the Coulomb limit. In addition, s;; is set to
zero if there is no overlap (i.e., £;<0). The tangential dis-
placement is obtained by integrating Eq. (4) from the time
the particles establish contact. When fl-Tj becomes equal to
,uff-y, the length of the tangential spring is kept fixed in order
to prevent the frictional force from exceeding the Coulomb
limit. This is important in order to avoid unrealistic behavior
when the contacts cease sliding (i.e., 7= uf"), and revert to
sticking (fT < uf™) [74]: if the integration of the tangential
velocity were to be continued for a sliding contact, and the
result used to further stretch the tangential spring, an unreal-
istically large force would be obtained when the contact re-
verts to sticking. Note that the torques exerted on the par-
ticles determine their angular accelerations; the
corresponding equations are part of the system of equations
that are solved.

The interactions of the particles with the walls are similar
to the interparticle interactions. Since the walls considered

Sij= [Vg + (8- fij)fij]Hqug - kT|Sij

PHYSICAL REVIEW E 77, 041303 (2008)

here are rigid (fixed) straight lines (in 2D), the overlaps are
calculated accordingly, with the same force models. The
force constants for particle-wall interactions,
(kﬁall,k‘}“an, VX’,“H, V‘}Va”, w*) may be specified to be different
from those used for particle-particle interactions (which are
taken to be the same for all particle pairs). In addition to
interparticle and particle-wall forces, gravity is accounted for
as well. External forces and torques may also be applied to
specific particles (see below).

B. Parameters

The studied systems comprise collections of polydisperse
disks, whose radii are uniformly distributed in the interval
[R-6R,R]. In order to facilitate the use of parameters from
experiments performed on short cylinders, the cylinder thick-
ness W and its mass density p are specified, and the particle
masses are given by m,»=7TR?Wp. We consider the case of
homogeneous disks, for which the axial moment of inertia is
given by I,-=%m,<Ri2. The parameters used in this work corre-
spond to experiments performed by Geng and Behringer us-
ing 2D photoelastic disks [75]: R=3.75X 107> m, W=6.6
X 1073 m, and p=1.15X 10° kg/m3.

The simulation results are presented in terms of nondi-
mensional quantities: the lequh unit is the mean particle

radius R, the time unit is 7=\ R/g (where g is the magnitude
of the acceleration of gravity; its value in the simulations is
set to 9.8 m/s?), and the mass unit is the mean particle mass

m.
The value of the spring constant ky for the normal springs

is taken to equal 30007g/R. This value is based on force-
displacement measurements performed on the photoelastic
disks used in [64]. Although the particles are cylindrical,
measurements showed a force proportional to the % power of
the displacement (possibly indicating an elliptic, rather than
rectangular, area of contact). However, for the typical defor-
mations obtained in the experiments, a linear fit to the par-
ticle force law provides quite a good description [64], further
justifying our choice of linear springs. For the particle-wall
interactions, we use k,"\}an=2kN.

The damping coefficient is chosen to equal half its critical
value for an individual contact, VC=2\J'k recall that k and v
are nondimensional), i.e., we use vy r=Vky 7. This value was
found to produce the fastest relaxation of the system toward
static equilibrium and is irrelevant in the state of mechanical
equilibrium itself.

Other simulation parameters such as the ratio k;/ky (and
I/ vl taken to equal it), the coefficients of friction w and
w1 and the degree of polydispersity & were varied in dif-
ferent runs.

C. Simulation procedure and initial conditions

The equations of motion were integrated using the Bee-
man algorithm [45], which provides more accurate velocities
than the commonly used Verlet algorithm [45]. The use of a
Gear five-value predictor-corrector algorithm [47] did not
yield any significant changes in the results. We used Af=5
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X 10"*7=5 X 10"*\R/ g as the time step; decreasing it below
this value did not affect the results.
The initial configuration was produced by placing the par-

ticles on a triangular lattice of lattice constant 2R. The side-

walls and the floor were placed at a distance R from the
centers of the particles closest to them (so that for a mono-
disperse packing these particles were tangent to the sidewalls
and the floor). The initial (translational and angular) veloci-
ties of all particles were set to zero. The next step was to
allow the system to relax under gravity until static equilib-
rium was reached, as further described below. The typical
time needed to obtain proper relaxation (see below) was be-
tween 7 and 307.

In order to study the response to a localized force, the
resulting configuration (with all velocities reset to zero) was
used as an initial configuration for a second run of the simu-
lation, in which an external force (and/or torque in some
simulations) was applied to a particle at the center of the top
row of particles. The force was linearly increased, during a
time 7, from zero to its desired value. The system was then
relaxed again to static equilibrium.

The criterion for static equilibrium was that the kinetic
energy per particle was sufficiently small. We found that, in
order to obtain an error of less than 1% for the forces exerted
on the floor in practically any realization, the system had to

be relaxed to a kinetic energy of E}"=10""%7gR per par-
ticle, which is significantly smaller than that used in previous
studies (e.g., in [76], the systems were relaxed to Ej°P=2
X 10~87gR per particle). For polydisperse systems the re-
sponse was coarse grained and averaged over a number of
different configurations (Sec. VI), since it exhibited strong
fluctuations. In this case, sufficient accuracy was obtained

with E}'"=10"%ngR. We verified that several other criteria
for static equilibrium (see [77]) were satisfied: the contact
network was fixed for at least several hundred time steps,
during which each particle had at least two contacts, there
were no sliding contacts, and the mean particle acceleration
was less than 107g.

For frictionless systems (u=u"=0), we found that
reaching such small energies in a reasonable simulation time
was difficult due to the existence of slow global modes with
a low dissipation rate. Therefore the following algorithm was
used for accelerating the relaxation in this case: the MD

simulation was stopped at a higher energy (E}°=10"%7gR).
The configuration obtained at this stage was used as a refer-
ence state around which the linearized equations of motion
were iteratively solved to approach a static equilibrium. In
each iteration the equations were solved by matrix
(pseudo)inversion, and the connectivity of the particles was
updated to ensure that there was no tension. The iterations
were stopped when the maximal relative particle displace-

ment was less than 107R (the numerical accuracy). The
typical kinetic energy obtained this way was less than Ej

=10"2%7gR per particle. This configuration was then used for
calculating the interparticle forces in the absence of an ex-
ternal force and as an initial condition for the process of
application of this force. An example of the interparticle
forces obtained in a typical simulation run is presented in
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FIG. 2. Forces obtained in a simulation of a polydisperse (&
=0.25) frictional system composed of 15 layers of 60 particles each,
with ky/ky=0.8 and p=pu""=0.2. The linewidths and lengths are
proportional to the force magnitudes. (a) After relaxation under
gravity; (b) after relaxation with an additional vertical force Fey,
=5mg at |, where m is the mean particle mass, with the forces
obtained in (a) subtracted. The lines drawn inside the particles in-
dicate the rotation angles: in the initial configuration (before relax-
ation under gravity) the lines are vertical. The arrow denotes the
position of the externally applied force.

Fig. 2. In order to calculate the response, the forces due to
gravity alone (without the applied force) were vectorially
subtracted at each contact.

IV. RESPONSE OF FRICTIONLESS SLABS

In this section, we describe the results of simulations of
systems of monodisperse frictionless particles. The interpar-
ticle force in this case is parallel to the normal direction and
given by Eq. (1). As shown in [29], the application of a
localized force at the top of a frictionless packing can lead to
rearrangements in the contact network: horizontal springs in
a region below the point of application of the force are sev-
ered (as also observed in [78] for a pile geometry). Interest-
ingly, the force chains in this system are qualitatively similar
to those obtained [29] when the particle interactions are
modeled by regular “two-sided” springs (which do not snap
under tension). However, the dependence of the force mag-
nitudes on the horizontal coordinate at different depths is in
better agreement with experiment, as expected (see Fig. 4 in
[29]), when the particle interactions are modeled by “one-
sided” springs [18,22], as described by Eq. (1). The reason is
that the latter model is more realistic since it does not allow
the establishment of tensile forces [29]. The stress distribu-
tion at the floor for unilateral springs [29] may be aniso-
tropic, and exhibit two peaks. As mentioned, this anisotropy
is related to the existence of a region of open horizontal
contacts where the anisotropy is large and the hyperbolic
limit applies [29]. The anisotropy is not present in the ab-
sence of the external forces or, as shown below, far from the
point of application of an external force or when it is suffi-
ciently small. The dynamical process leading to this aniso-
tropy is of nonlinear nature as it involves changes in the
contact network induced by the externally applied forces
[29]. It may be possible to model the corresponding dynam-
ics by a nonlinear extension of linear elastic theory in which
the elastic moduli are stress history dependent (in particular,
the anisotropy induced by the opening of contacts in certain
regions may be considered to result from an attempted ten-
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FIG. 3. (Color online) Response of frictionless ordered systems
for different applied forces Fy,.

sile stress in these regions). Stress-induced anisotropy has
also been discussed in the context of plastic models of soil
mechanics [79] as well as nonlinear elastic models [24]. If
the particle positions do not change appreciably so that only
the contact network is modified in response to the applied
force (or stress), the behavior can possibly be modeled as
“incrementally elastic.” Under certain conditions (corre-
sponding to plastic yield) the system is no longer able to
support the applied stress without a major rearrangement of
the particles. Incipient plastic yield may be related to a local
extreme anisotropy typical of a marginally stable, locally iso-
static, configuration.

A. Dependence on the applied force: Crossover from
hyperboliclike to elliptic response

In order to examine the changes in the contact network in
more detail, we performed DEM simulations, as described in
Sec. 111, of a system similar to those discussed in [29], with
different applied forces. We focused on systems of 15 layers
of 60 particles each; the effect of the system size is discussed
below. The force response on the floor is shown in Fig. 3. A
crossover from a single- to a double-peaked response occurs
as the applied force is increased. The changes in the contact
network corresponding to the systems of Fig. 3 are shown in
Fig. 4. For a sufficiently small force (not shown), the contact
network is unchanged, and the response is fully elastic (see
Sec. V for a discussion of the linearity of the response). As
the force is increased, horizontal contacts are opened in a
teardrop-shaped region below the point of application of the
force, whose size increases with the force (and in the fric-
tional case decreases with friction; see below). As men-
tioned, in this region the extreme anisotropic limit of elastic-
ity applies. When the teardrop is sufficiently far from the
floor [Figs. 4(a) and 4(b)], the response at the floor is single
peaked, as the changes induced by the force are basically
localized. Otherwise, the anisotropy induced by the external
force reaches the floor [Fig. 4(c)], inducing a double-peaked
response (the crossover actually occurs at slightly smaller
forces, at which the teardrop almost reaches the floor).

B. Dependence on system size

The dependence of the crossover on the size of the system
is important for the interpretation of experimental results.
The depth and maximal width of the teardrop as a function of
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G
==

FIG. 4. Changes in the contact network in an ordered friction-
less system for different applied forces: F.,= (a) 1.5 mg, (b)
3 mg, and (c) 6 mg. The central third of the system is shown. Thick
lines connecting particle centers indicate contacts opened due to the
application of the force; thin lines represent contacts that are
unaffected.

the applied force, for several system sizes, are plotted in Fig.
5. It is seen that the size of the teardrop slightly decreases as
the height of the slab increases. This indicates that the
changes in the contact network induced by the external force
can be considered to be finite-size effects [1], whose impor-
tance decreases as the size of the system increases. For iden-
tical external loads, very deep systems (as typically found in
nature and in engineering applications) are expected to ex-
hibit a single-peaked response, whereas relatively shallow
ones, as studied in some experiments (Sec. II B), should ex-
hibit two peaks. This is one of the reasons that different
experiments, using differently sized samples, yield qualita-
tively different results. This observation also applies when
frictional interactions are accounted for, as described in
Sec. V.

C. Dependence on particle stiffness

The effect of the particle stiffness is considered next.
Simulations with different values of ky reveal that the size of
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FIG. 5. (Color online) (a) Depth L and (b) maximal width W of
the teardrop in units of the particle radius R in ordered (monodis-
perse) frictionless systems (Fig. 4), as a function of the applied
force, normalized by the weight of a particle, for different system
sizes.

the teardrop increases with the stiffness of the particles but
appears to saturate for ky=2000 mg/R. The results pre-
sented here pertain to ky=3000 mg/R. In practical terms, the
response is quite insensitive to the choice of stiffness for
ky=1000 mg/R, e.g., at x=0, it only changes by about 2%
in the range 1000 mg/R <ky< 103> mg/R. It follows that the
crossover from a single- to a double-peaked response is es-
sentially independent of the particle rigidity, provided that
the particles are sufficiently stiff; otherwise the particle over-
laps may be appreciable and the external force may lead to
significant rearrangements.

The lack of dependence of the response on the particle
stiffness may be understood as follows. In the reference con-
figuration, contacts are compressed due to gravity as well as
the effects of the rigid immobile walls and floor (the appli-
cation of an external pressure to the system can result in a
similar effect). In contrast, the application of the external
force leads to attempted tensile interparticle forces which
may overpower the compressive forces present in the system.
Therefore the opening of contacts is determined directly by
the local stress, rather than the local strain (which does de-
pend on the particle stiffness) when the geometry of the sys-
tem is not significantly affected by the applied force. This
justifies our choice of the particle weight as the unit of force
(rather than a scale based on the particle stiffness and size).
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FIG. 6. (Color online) Response at x=0 of ordered systems,
normalized by the applied force Fy, vs the applied force (in units
of the particle weight mg), for different coefficients of friction w,
frictionless walls (u"'=0), and k;/ky=0.8.

The same behavior may persist even as ky— 2 under the
same boundary conditions, provided that the particles in the
reference state are still in contact along the horizontal direc-
tion. However, as the stiffness increases, this requirement
may be hard to comply with, as the particles must fit exactly
between the walls in order to remain in contact: in the limit
ky— o most horizontal contacts may be absent already in the
reference state, rendering it isostatic, and this would lead to a
hyperboliclike response even for an infinitesimal applied
force, as suggested in, e.g., [7-11]. Therefore the above
“limit of infinite stiffness” should be understood as “large but
finite” stiffness (the physically relevant case) else isostaticity
comes into play. Furthermore, one must bear in mind that
frictionless particles are a rather artificial idealization in the
context of granular materials. Indeed, as shown in the next
section, the presence of friction affects the behavior of the
system is a significant way and, in particular, renders it less
sensitive to the contact network.

V. EFFECTS OF FRICTION

A. Dependence on the applied force: Friction increases the
linear range

As mentioned in Sec. IV, sufficiently small external forces
do not induce changes in the contact network, so that the
response is expected to be linear in the applied force [80].
This is demonstrated in Fig. 6, which presents the response
on the floor at x=0 (below the point of application of the
force) as a function of the applied force, in both frictionless
and frictional systems (with k;/ky=0.8; the effect of this
parameter is discussed below). The results shown were ob-
tained with frictionless walls (u**'=0; see Sec. III), since for
weak applied forces, frictional walls can support some of the
load, inducing nonlinearity in the response. A linear (elastic)
range is observed for sufficiently small applied forces even
for frictionless particles, due to the fact that the particles are
slightly deformed by gravity, and a small force does not
cause the contacts to open.

Figure 6 shows that friction has a significant effect on the
linearity of the response: The extent of the linear range is
significantly larger (by almost an order of magnitude) in fric-
tional systems; thus elasticity is enhanced by friction.

The effect of friction on the response profile is shown in
Fig. 7 for different applied forces, for u=0.2 and 1 (compare
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FIG. 7. (Color online) Response of ordered systems, with dif-
ferent coefficients of friction w= (a) 0.2 and (b) 1, to applied
forces (Foy) of different magnitudes, frictionless walls (u*=0),
and k;/ky=0.8 (compare to Fig. 3).

to the frictionless case presented in Fig. 3). Note that the
force for which the crossover from a single- to a double-
peaked response occurs increases rapidly with friction (as
also observed in Fig. 6), so that friction renders the response
closer to that expected from isotropic elasticity. For u=1 no
crossover is observed even for the largest force shown, F
=50 mg (a different type of crossover occurs for u=1 for
larger forces; see Sec. V E). Sufficiently large forces may
induce major rearrangements (i.e., plastic flow), not consid-
ered here.

B. Effect of friction on the contact network

To gain a better understanding of the effect of friction on
the response, we examine the changes in the contact net-
work. Our simulations reveal that the first contact is opened
when F.=0.75 mg in the frictionless case, F =4 mg for
wn=0.2, and F.,=6 mg for u=1. This is compatible with the
fact that the range of forces for which the response is linear
is larger in frictional systems than in frictionless ones.

The effect of the applied force on the changes in the con-
tact network in a system with ©=0.2 is shown in Fig. 8
(compare to Fig. 4). For the same force, the region of open
horizontal contacts is considerably smaller in the frictional
case than in the frictionless case [compare Figs. 4(c) and
8(a)]. In addition, in the frictional case this region reaches
the floor for a much larger force [compare Figs. 4(c) and
8(c)]. This is why the crossover to a double-peaked response,
associated with the anisotropy in this region, occurs at larger
forces in the frictional case.

The above mechanism does not explain the findings for
p=1 (or larger coefficients of friction, in general), for which
the response is single peaked even for rather large forces [see
Fig. 7(b)], for which the region of open contacts (Fig. 9)

PHYSICAL REVIEW E 77, 041303 (2008)

FIG. 8. Changes in the contact network in a frictional system
with ©=0.2, with different applied forces F.,= (a) 6 mg, (b)
15 mg, and (c) 50 mg, frictionless walls (u"™'=0), and k;/ky
=0.8. The various lines are explained in the caption of Fig. 4.

reaches the floor (it does so even for a smaller force than in
the case of ©=0.2). In addition, the profile of the response in
this case is narrower than for small coefficients of friction
(see, however, Sec. V E), These results suggest that the de-
gree to which the external force changes the contact network
is not the only factor affecting the response. As mentioned
above, a hyperboliclike response is the result of anisotropy,
irrespective of its origin. Changes in the contact network can
indeed induce anisotropy but, as it turns out, friction can
partially restore isotropy in regions with abundance of open
contacts by introducing forces in additional directions (see
more below). Note that, when w is sufficiently large (and Fy,
sufficiently small), its value is essentially immaterial, since
sliding is practically precluded. In this case, the ratio of the
tangential to normal stiffness, k;/ky (see Sec. IIT A), deter-
mines the response. Figure 10 presents the response obtained
for different values of ky/ky, Fo=15 mg, and =10 (which
is practically equivalent to u=0o0, as used in [26], since no
sliding occurs). A crossover from a single- to a double-
peaked response occurs with decreasing ky/ky (the crossover
occurs at kp/ky=0.3). For larger values of k;/ky, the re-
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FIG. 9. Changes in the contact network in a frictional system
with w=1, with different applied forces F= (a) 6 mg, (b)
15 mg, and (c) 50 mg, frictionless walls (u"*'=0), and ks/ky
=0.8.

sponse is nearly independent of k;/ky. This phenomenon is
further studied immediately below.

C. Large friction: The role of tangential stiffness

In order to understand the dependence of the response on
ky/ky, we consider a 2D spring network similar to that de-
scribed in [29] (i.e., a triangular lattice with different spring
constants for horizontal, k7, and oblique, k3, springs). In ad-
dition, this model (see Fig. 11) includes tangential springs (as
used in our DEM simulations; Sec. III A), whose constants
are different for horizontal, k%, and oblique, k5, contacts [80].
Note that for Hertzian interactions the existence of aniso-
tropic prestress (e.g., due to gravity) may indeed result in
different spring constants in the horizontal and oblique direc-
tions. This model does not incorporate sliding, so that it cor-
responds to w=c0. Similar models were studied in [70,81,82],
and more recently in [36,73,83], where equal spring con-
stants were used in all lattice directions.

The elastic moduli corresponding to the long-wavelength
limit of this model can be calculated as follows. To leading
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FIG. 10. (Color online) Response of ordered systems for a large
coefficient of friction (u=10) and different values of the ratio of
tangential to normal stiffness, k7/ky, with Fe, =15 mg.

order in the relative particle displacements u;; (which is the
relevant order for linear elasticity), the elastic energy of the
system is given by

1 . . .
E'= 52 k;}(’"ij : uij)2 + k?j[uij = (7 uij)rij]z’ (5)
(i)

where the sum is over nearest neighbors; see Fig. 11 for the
assignment of spring constants. A homogeneous affine defor-
mation is defined by a symmetric, uniform strain field:
U;jo(r 1) =€,p57;5. Note that when tangential forces are
present, the stress is not necessarily symmetric (as assumed
in classical elasticity); however, the micropolar terms due to
this asymmetry are of higher order in the strain. We verified
that they were very small, even near the point of application
of the external force: there the magnitude of the antisymmet-
ric part of the stress is only a few percent of the pressure.
Using the notation of [36],

0
0| e |, (6)
d

GXX

el _
E“ = €,
€xz

where the superscript 7' denotes the transpose, one obtains
the following elastic moduli:

FIG. 11. (Color online) Spring model with normal and tangen-
tial springs.
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a= §—A(8k’,’ + K+ 3kh), (7)
R2
b= Z(%’; +3kh), (®)
2
c= Bk~ 3k3), )
R2
d= £(6k§+4k’1 +2k5), (10)

where A=213R? is the area of the unit cell. These results are
consistent with those obtained in [36] for normal springs
only, but different from the model with bending interactions
introduced in [36].

In a domain of open horizontal contacts one has kj=k)
=0. It was already shown in Sec. IV that, in the absence of
tangential forces (k5=0), this system corresponds to the ex-
treme anisotropic limit. However, since the oblique tangen-
tial springs apply forces that have horizontal components,
they can (at least partially) compensate for the absence of
normal horizontal springs, and therefore significantly de-
crease the anisotropy.

Otto et al. [36] presented continuum elastic solutions for
an anisotropic infinite half plane subject to a localized force.
They found a criterion for the determination of the nature of
the response [36]: two peaks are expected for r= bl—d[ab
—c(d+¢)]<0. Note that this criterion refers to an infinite
half plane rather than a slab of finite height, which is more
appropriate for describing our simulations. In addition, this
model is homogeneous, while the region of open contacts
(even when it reaches the floor) is roughly a triangle below
the point of application of the force. Nevertheless, the esti-
mate obtained using this criterion fits our result for the finite
slab quite well: for the model used here (with no horizontal

springs), ":%’ where B=Kk5/k5. Hence (in the physi-
cally relevant range B>0), two peaks are expected for B
=0.2915, which is consistent with the value k;/ky==0.3 ob-
tained in the simulation (Fig. 10).

For an infinitesimal tangential load applied to a system
composed of elastic spheres, the Cattaneo-Mindlin model
[52] yields kj/ky= 221__: , where v is the Poisson ratio of the
spheres. For the range of positive Poisson ratios (0=v
=0.5; notice that this is a 3D Poisson ratio), this implies that
2/3 =ky/ky=1, so that the minimal value of k;/ky is well
above the crossover from two peaks to one. In most of the
simulations presented in this work, we use k7/ky=0.8, which
corresponds to a realistic Poisson ratio of about 0.3. We
would like to stress that simulations in which the value of
kr/ky is taken to be too small may produce unphysical re-
sults.

D. More on the effects of friction

The above results show that static friction acts to retain an
“effective connectivity” among the grains when the horizon-
tal contacts are open, and renders the system more isotropic
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FIG. 12. (Color online) Response of ordered systems for
kr/ky=0.8 and different values of u with Fe, =15 mg.

than one would have naively anticipated. However, since the
frictional forces are limited by the Coulomb condition (f7
= uf™; see Sec. Il A), sliding can occur if u is too small (or
F.y large). This increases the anisotropy, since not all tan-
gential springs can exert as large forces as predicted by the
above model (in which w=%0), and leads to a crossover to a
double-peaked response. This crossover is shown as a func-
tion of u (for F.,=15 mg) in Fig. 12. Note that, unlike the
coefficient of dynamic friction, which is typically smaller
than 1, the effective coefficient of static friction (which de-
termines the onset of sliding) may be significantly larger than
1 for rough spherical particles, and certainly for irregularly
shaped particles (which can interlock and avoid relative ro-
tation).

For u=0.2, the region of open horizontal contacts (the
teardrop) reaches the floor for F,, =20 mg, which is close to
the crossover force [see Fig. 16(a)]. Sliding occurs in the
system (mainly near the point of application) even for
smaller forces, and the area of sliding contacts gradually
spreads downward with increasing F,. It therefore appears
that the crossover for u=0.2 is associated with the reduction,
due to sliding, of the compensating effect of the tangential
forces. For sufficiently large forces (F.,,=40 mg) the re-
sponse, for u=0.2, exhibits a small third peak at x=0 [below
the point of application of the external force; see Fig. 16(a)];
it is induced by a reorganization of the sliding contacts
within the teardrop.

Note the short vertical force chain in Figs. 13(b) and
13(c), which is in conformity with experiment [18,22]. This
is yet another important consequence of friction, namely, that
the forces (hence the force chains) no longer need to be
aligned with the lattice directions, as they are in the absence
of tangential forces. In general the inclusion of friction in the
models begets a better fit to experiment. In particular our
results nicely reproduce the experimental findings obtained
in [18,22] for monodisperse packings: the force magnitudes
vs the horizontal coordinate at different depths for u=1 (for
the particles used in the experiments, u=0.94 [75]) are
shown in Fig. 14(b); compare to the frictionless case, Fig.
14(a). We also reproduce [84] force chains along nonlattice
directions observed in experiments with applied forces at ob-
lique angles [22], using simulations of frictional particles
(with some polydispersity; see Sec. VI below).
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FIG. 13. Interparticle forces in ordered systems with different
coefficients of friction w= (a) 0, (b) 0.2, and (c) 1 (u™!
=u, kp/ky=0.8), with F.,=15 mg. The effect of gravity has been
subtracted. The central third of the system is shown. Linewidths and
lengths are proportional to the force magnitude.

It is not surprising that the effects of friction are also
evident in the vertical stress component o, (Fig. 15), whose
calculation is based on [29,85]. In particular, the reduced
anisotropy is apparent in the stress field (the stress field for
m=1 is similar to that obtained in the case of an isotropic
harmonic lattice [29]).

E. Symmetry breaking for u=1

For n=1 we have seen that the response is very different
from that obtained for u=0.2. It remains single peaked (and
becomes narrower) for rather large forces, much beyond
those for which the crossover is obtained for u=0.2 [see Fig.
7(b)]. However, when the force exceeds F.=91 mg, a tran-
sition to an asymmetric response [see Fig. 16(b)] occurs (un-
like the symmetric double-peaked response obtained for
lower friction and large forces). The type of asymmetry (fa-
voring positive or negative values of x) appears to be related
to the transient vibrations excited by the application of the
external force; for some close pairs of forces [e.g., Fey
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FIG. 14. (Color online) Norms of the interparticle forces, |f|, vs
the horizontal position x in ordered systems, for an applied force of
magnitude F,. =150 mg. The legend indicates the depth measured
from point of application of the force, in particle radii (compare to
the experimental measurements shown in [18,22]). (a) Frictionless
particles; (b) frictional particles with u"'=u=1 and ky/ky=0.8.

=92 mg and 95 mg; see Fig. 16(b)], the rescaled response to
one force is nearly the mirror image (with respect to x=0) of
the response to the other. The shape of the response remains
qualitatively similar for much larger F',,. The transition to an
asymmetric response is accompanied by a significant change
in the contact network (which becomes asymmetric itself),
and leads to a marked reduction in the number of sliding
contacts.

This instability process, though appears to be dominated
by sliding, rather than changes in the contact network. Its
source and the particular mechanism of symmetry breaking
require further study. It is possible that the instability is re-
lated to shear banding. It also bears some similarities to elas-
tic buckling (which is, however, outside the realm of linear
elasticity).

F. Pile geometry

While the work reported here focuses on the response of a
granular slab, we also examined the effect of friction on a
pile composed of 11 layers of monodisperse disks arranged
on a triangular lattice, prepared as described in Sec. III C
(similar to the frictionless piles in [78]). These piles are quite
unrealistic, since the sides of the pile are at 30° to the hori-
zontal, which is larger than the angle of repose for disks.
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FIG. 15. (Color online) Contour plot of the vertical stress re-
sponse o, in the systems shown in Fig. 13, calculated using a
Gaussian coarse-graining function of width w=2R.

Therefore, the edges of the pile have to be supported by
sidewalls (the construction of stable piles on a smooth floor
requires the introduction of rolling friction, or rolling resis-
tance [86]).

The forces and the corresponding vertical stress compo-
nent o, in the pile are shown in Figs. 17(a)-17(d). As in the
case of the slab (Figs. 13 and 15), the effect of friction is
significant. In particular, as shown in Figs. 17(c) and 17(d),
the pile of frictionless disks exhibits a dip in the stress under
the apex, but that of frictional disks does not. The dip in the
frictionless case is due to the open horizontal contacts in the
central region of the pile; see Fig. 17(e). In the frictional
case, the size of the region of open contacts in the central
region of the pile is quite similar, but its shape is different
[Fig. 17(f)]. The absence of the dip results from the reduced
anisotropy due to the frictional forces, as discussed above for
the slab geometry. We therefore conclude that the presence

R
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FIG. 16. (Color online) Response of ordered systems, with dif-
ferent coefficients of friction (a) u= (a) 0.2 and (b) 1, to different
magnitudes of the applied force (F.,,), for frictionless walls (u"!
=0) and k;/ky=0.8.

or absence of a dip in the pile geometry is determined by the
degree of anisotropy in the mechanical properties of the pile
(which is not always simply related to the anisotropy of the
contact network, as shown here in the frictional case). These
properties should depend on the way the pile is prepared

[15].

G. Effects of applied torque

The force chains are sensitive to applied torques, whether
intentional or due to the fact that (in experiments) the line of
action of a force applied to a particle does not precisely pass
through its center or mass. Figure 18 shows force chains in
systems of 25X 13 slightly polydisperse particles (5=1073)
with kz/ky=0.5 and p=u""'=0.5, for an applied force F,y,
=10mg at 30° to the horizontal, with different applied
torques. It is evident that the torques can have quite a large
effect. Although their effect on the stress field (in particular,
its asymmetric part) is typically confined to the vicinity of
the point of application, a proper continuum description of
the system requires the use of micropolar or Cosserat models
[87-89].

VI. EFFECTS OF DISORDER

Ordered systems of monodisperse grains are more ame-
nable to theoretical modeling than polydisperse systems.
Real granular systems, even those nominally prepared to be
monodisperse, as, e.g., in [18,22], are practically always
polydisperse. Natural granular matter exhibits considerable
polydispersity (also shape variability). It is therefore impor-
tant to verify that the results obtained for monodisperse sys-
tems are not limited to this idealized case. We therefore per-
formed simulations of polydisperse systems of disks, with
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FIG. 17. (Color online) (a),(b) Interparticle forces in a pile of
monodisperse disks under gravity, with (a) and without (b) friction
(in the frictional case, ©=0.94, u"*"=0.35, and ks/ky=0.5). Line-
widths and lengths are proportional to the force magnitude. (c),(d)
Vertical stress o, in the same systems, calculated using a Gaussian
coarse-graining function with a coarse-graining width w=2R. (e),(f)
Contact network: contacts are depicted by lines connecting the cor-
responding centers of the particles.

radii distributed uniformly in the interval [R—8R,R] (see
Sec. III B), for 6=0.01,0.1,0.25.

Since disorder induces force fluctuations, which are not
present in ordered systems, the forces exerted on the floor
were coarse grained using a Gaussian coarse-graining func-

. . . 2, —
tion in the horizontal (x) direction: w+7—7e‘("/ w)” with w=3R or

6R, which amounts to calculating the vertical stress o, at the
floor [90]. The stress was then averaged over several realiza-
tion of the disorder (typically five).

The effect of friction on the response in disordered sys-
tems is qualitatively similar to that found in the ordered lat-
tices described in Sec. V. Figure 19 presents a comparison of
the response (averaged over 15 realizations, coarse grained

with w=3R) obtained in frictionless and frictional (x=0.2)
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FIG. 18. Force chains in 2D packings of slightly polydisperse
frictional particles (6= 1073), with a force F.,,= 10/ig applied at 30°
to the horizontal, and different applied torques M= (a) 0, (b)
0.2F R, and (c) 0.4F R, in the clockwise direction. The effect of
gravity has been subtracted. The same realization of the packing
was used in all cases. The region shown is the central third of the
upper half of the system.

disordered packings with §=0.01, and an applied force F**
=15mg (m is the mean particle mass). As in the ordered case,
two peaks are obtained for the frictionless systems and only
one peak for the frictional ones. The fluctuations are quite
large even for this small degree of polydispersity (larger for
the frictionless case). For the magnitude of the force used in
this case the difference between the frictionless and frictional
cases is evident even for individual realizations.

A. Linearity and the crossover force

A notable difference between monodisperse and polydis-
perse systems is that in the latter the range of linear response
is smaller than in the former (see Fig. 20 compared to Fig.
6). In order to examine the effects of polydispersity and fric-
tion we performed simulations for different degrees of poly-
dispersity, coefficients of friction and applied forces. The re-
sults are depicted in Fig. 21. The larger the coefficient of
friction, the larger the applied force at which the crossover
from a single- to a double-peaked response occurs, much as
in ordered systems (Sec. V A). The crossover force decreases
with increasing polydispersity. Unlike the sharp transition to
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FIG. 19. (Color online) Response of (a) frictionless and (b) fric-
tional (u=u""=0.2, ky/ky=0.8) disordered systems (with poly-
dispersity 6=0.01) for F*'=15/mg (im is the mean particle mass).
Thin gray lines depict separate results for 15 individual realizations,

smoothed with a Gaussian of width w=3R; the thick black line
corresponds to an average over these 15 configurations.

a highly asymmetric response at around w=1 in lattice con-
figurations (Sec. V E), here the transition seems relatively
smooth. A possible explanation is that, for practically any
disordered realization, the response is not symmetric even
for a small external force. In addition, it is basically impos-
sible to apply very large forces to polydisperse systems with-
out causing major rearrangements.

It is quite remarkable that an average over an ensemble of
only five realizations (with coarse graining) is sufficient to
obtain a clean crossover from a single peak to a double peak,
and even results in nearly symmetrical profiles. It appears
that, at least when the force is not too close to its crossover
value, the fluctuations within the ensemble are rather small
for this choice of coarse-graining length (see [90] for another
set of simulations in the linear regime), so that the typical
response of a realization resembles that of the ensemble av-
erage.

The results for different degrees of polydispersity can be
summarized in a schematic phase diagram, Fig. 22 [1]. A
more complete phase diagram would presumably depend on
additional parameters which characterize the geometry of the
packing (in a statistical way). A commonly used character-
ization of packings is that of the fabric tensors [91], often
simplified by considering the distribution of contact angles.
This characterization is often employed in conjunction with a
mean-field approach, which fails for disordered granular ma-
terials [92,93] due to the large nonaffine component of the
microscopic displacements (see also [85]).
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FIG. 20. (Color online) Response at x=0 (coarse grained with
w=3R) of a single polydisperse systems with 6=0.01, normalized
by the applied force F.y, vs the applied force (in units of the mean
particle weight mg), for different coefficients of friction u, with
frictionless walls (u""=0), and k;/ky=0.8 (compare to Fig. 6).

Recall that in the range of polydispersity studied here the
crossover force decreases with increasing disorder, i.e., poly-
disperse systems are more susceptible to induced anisotropy.
It is possible that this result pertains to small polydispersity
and a larger polydispersity may actually stabilize the system
and render it more isotropic. If this is the case, the depen-
dence of the crossover force on the degree of polydispersity
should be nonmonotonic.

The nature of the crossover should also depend on the
preparation method (as observed in experiments on granular
piles [15] and slabs [20]). Note that in our simulations a
specific preparation method was used: relaxation under grav-
ity from a lattice configuration, so that (at least for small J)
the configuration retains partial order. Indeed, the distribu-
tion of contact angles in the systems we studied was not
quite isotropic, exhibiting slightly preferred directions close
to those of a triangular lattice, and therefore possessing a
potential to prefer failure in specific directions.

B. Superposition

Further to the question of linearity of the response, dis-
cussed in Sec. VI A, we set out to check whether the sum of
responses to several forces applied separately is the same as
the response to these forces applied together. Figure 23 dem-
onstrates a typical superposition test. Here, two downward-
pointing vertical forces, each of magnitude F,,,=0.2mg, are
applied at two points (at different horizontal positions) at the
top of a slab, otherwise characterized by 6=1% and u
=0.05, for which the linear range is rather small (F.
=<0.4mg). As shown in Fig. 23, superposition holds even on
the microscopic scale, i.e., for individual forces without
coarse graining; interestingly, it holds quite well even be-
yond the linear regime, as shown in Fig. 24 (for F =mg). A
possible reason is that sufficiently far from the points of ap-
plication of the forces the changes in the contact network (or
sliding) are less sensitive to the precise positions of these
forces. In more general terms, it is possible that the response
to a distribution of forces, sufficiently far from the region
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FIG. 21. (Color online) Response of disordered systems with different degrees of polydispersity & and coefficients of friction (u
=u"M), and k;/ky=0.8, to different applied forces F.,,,. The response is averaged over five configurations (three for the largest force used

with §=10% and p=0.2, for which the system was unstable) and smoothed with a Gaussian of width W=6R.

where they are applied, is not very sensitive to the details of
the distribution. This explanation is similar to St. Venant’s
principle (see, e.g., [94]), which states (for a linear elastic
system) that the difference in stresses and strains in the inte-
rior of an elastic body due to two separate but statically
equivalent systems of surface tractions (same overall force
and torque) are negligible sufficiently far from the area
where the loads are applied. In the case considered here, the
system is certainly not strictly elastic for F,,, = 0.4mg (due to
contact network changes and sliding). However, the response
to a localized force (in an elastic medium) decays with the
distance from the point of application as a power law [e.g.,
the solutions for an infinite half plane or half space (Bouss-
inesq’s problem) decay as 1/z in 2D and 1/z% in 3D [28,52]].
Therefore, as the distance from the point of application in-
creases, the relative displacements of the particles become
smaller and elasticity becomes more appropriate a descrip-
tion; in particular, the response to a distributed load is the
same (or nearly the same) as the response to the resultant
load. This observation may apply to recent experiments

[95,96] on a 2D system subject to a small cyclic displace-
ment, which shows a 1/r decay of the displacement field at
large distances from the perturbation.

VIL. INTERPRETATION OF EXPERIMENTS

The results described in the previous section help interpret
the experiments reviewed in Sec. II B. Our basic claim is that
these different experiments correspond to different regions of
the schematic phase diagram Fig. 22.

In the experiments on 2D systems using photoelastic par-
ticles [18,22] the applied forces were rather large; our simu-
lations (with friction) reproduced them quite well (in these
experiments the forces on the floor were not measured); see
Sec. V. A full comparison with the phase diagram of Sec. VI,
will require the computation of the macroscopic stress fields
in these experiments.

The experiments reported in [19,20] used disordered sys-
tems and a rather small applied force (a few times the par-
ticle weight), for which a single peak was observed, in agree-
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ment with the phase diagram. Since these experiments used
sand, rather than spherical particles, the effective coefficient
of static friction may be larger than 1, so that sliding is less
likely to occur. Note that those experiments were performed
on a 3D system, while the simulations reported here are in
2D; however, we expect similar qualitative features of the
phase diagram for 3D systems. The difference in the re-
sponse of dense and loose sand [20], as well as the deviations
from the isotropic elastic prediction observed in both cases,
may be explained by a small anisotropy, induced by the
packing construction process (see also [97]). The anisotropy
induced by the small applied force in these experiments
should be negligible (note that the systems studied in [19,20]
are also deeper, in terms of particle diameters, than the ones
studied in [18,22]).

In contrast to the experiments reported in [19,20], those in
[21], in which large forces were applied to ordered 3D pack-
ings, obtained several distinct peaks for shallow systems and
diffuse peaks for deeper systems. In the absence of horizon-
tal contacts, the coordination number in the hcp and fcc lat-
tices is reduced to six (each particle is in contact with three
particles in the layer above it and that below it). This corre-
sponds to the (frictionless) isostatic limit. Apparently, the
experimentalists attempted to avoid horizontal contacts by
tuning the wall spacing; even if some horizontal contacts
were initially present, it is likely that the large forces em-
ployed in these experiments opened them, at least in the top
layers. The force may also have induced sliding (at least in
the top layers), so that these shallow systems were extremely
anisotropic, and, as mentioned, near the isostatic limit. In
deeper systems there should be less opening of contacts and
sliding (as we observed for w=0.2), thereby reducing the
anisotropy (note that even the deepest layers in the described
experiment were only about 20 layers deep). In amorphous
packings, a single peak was observed (however, the method
of application of the force was different: a force impulse was
used, which may correspond to a weaker force in our quasi-
static description). Thus, the results of the experiments re-
ported in [21] are consistent with the schematic phase dia-
gram presented in Sec. VL.

The phase diagram may also explain the striking differ-
ence observed in [23] between the experimentally measured
displacement response in packings of (frictional) disks sub-
ject to a localized displacement (which exhibits a single
peak), and the results of simulations of frictionless isostatic
packings (which exhibits two peaks). Note that the mean
coordination number in the frictionless polydisperse systems
studied here (e.g., z~4.25 for §=0.01) is well above the
isostatic limit, z=4. It is, however, much smaller than that of
the triangular lattice, z=6, the “missing” contacts being pre-
dominantly horizontal. This suggests that the hyperboliclike
response of frictionless systems may arise, at least for small
polydispersity, from the anisotropic structure of these sys-
tems rather than their (near) isostaticity, as suggested in [23].

VIII. CONCLUDING REMARKS

Results of simulations of the response of 2D granular
slabs to an external localized force show that this force in-
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FIG. 22. (Color online) Schematic phase diagram (in the F.-u
plane) for the crossover from a single- to a double-peaked response,
for different degrees of polydispersity.

duces frictional sliding and changes in the contact network,
rendering the local properties in an influence zone near its
point of application anisotropic. When this zone spans the
size of the system (as it often does in small systems), the
response is anisotropic, except when frictional effects partly
compensate for the loss of isotropy. It is important to notice
that it is not only the contact network that determines the
response but other factors as well, as detailed in this paper. In
sufficiently large systems (as in most engineering applica-
tions) and/or systems subject to small applied forces, the
influence zone is small compared to the system size: in this
case the response is basically elasticlike and respects super-
position. Friction, which is present in all real granular sys-
tems, increases the range of forces for which the response is
linear, while further reducing the stress-induced anisotropy,
often rendering the response close to that predicted by iso-
tropic elasticity. Similar behavior is observed in (the more
realistic) polydisperse systems, although they are more sus-
ceptible to the induction of anisotropy. Due to the rather
small polydispersity we considered and the way we prepared
the systems, the configurations were locally quasiordered.
We believe that this fact should not affect our main conclu-
sions.

The above considerations should also hold for granular
piles. The properties of these piles depend on their construc-
tion history [15]: a pile grown from a point source is shaped
by successive avalanches which are initiated in the apex area
and is more anisotropic than one built using a nearly uniform
extended source [98]. A dip in the pressure distribution at the
floor was observed in the former case but not in the latter. In
[15] this effect was described in terms of the orientations of
force chains. We believe that the corresponding stress distri-
butions should be compatible with anisotropic (possibly in-
homogeneous) elasticity. A full elucidation of the mecha-
nisms that are responsible for the emergence of anisotropy, in
particular sliding events and contact network changes, re-
quires further study. Anisotropy is also relevant to the distri-
bution of stress in silos, in which the effects of wall friction
and preparation are known to be of importance [99]. In our
own simulations the wall friction induces nonlinear contribu-
tions to the response.

The elastic description of granular solids should be valid
on sufficiently large scales (and system sizes) and for not-
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FIG. 23. (Color online) Superposition in a polydisperse system
with 6=0.01, ©=0.05, F.,=0.2img, frictionless walls (u*'=0),
and k7/ky=0.8, with different distances between the points of ap-
plication of the two forces (applied symmetrically with respect to
the center top particle) d= (a) 8R, (b) 16R, and (c) 24R. Lengths
are given in terms of the mean particle diameter R. In the legend,
Left denotes the response to a force applied to the left of the center
particle, Right to a force applied to its right, (Left+Right) to the
two forces applied together, and (Left) + (Right) the sum of Left and
Right. The shown results pertain to the forces in a single realization.
Note that the dashed gray lines overlie the solid black lines (making
the latter appear dashed).

too-large applied forces. Outside this range, it needs to be
amended, perhaps by using nonlinear, incrementally elastic
continuum models, with stress-history-dependent elastic
moduli, which represent the induced anisotropy. The nonlin-
ear effects associated with contact breaking and frictional
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FIG. 24. (Color online) Superposition in a polydisperse system
with 6=0.01, ©=0.05, and F,=mg (the same as Fig. 23 with a
different applied force; the same realization of the disorder was
used).

sliding, as well as the influence of static frictional forces,
should be important for the understanding of failure (includ-
ing shear banding) in granular materials. We also mentioned
the possible importance of rolling resistance. All of this lends
support to the suggestion that, at least on intermediate scales,
continuum nonlinear models of micropolar or Cosserat type
[87-89] may be required (see, e.g., [100,101]) for the mod-
eling of granular response and beyond.

The crossover from a single- to a double-peaked response
as a function of the magnitude of the applied force needs
further experimental study. Systems that are sufficiently sen-
sitive for the response to small forces (in the linear regime)
to be measurable yet robust enough to withstand large exter-
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nal forces are required. The forces have to be applied slowly,
to avoid plastic flow.
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