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We investigate the effects of structural periodicity on wave localization in one-dimensional periodic-on-
average disordered systems and derive two relations from the properties of the spectral periodicity and sym-
metry of the underlying periodic systems. These two relations predict equal localization lengths between
disordered systems with different randomness. Comparisons with numerically simulated results show good
agreement. These relations are used to explain some properties of the frequency dependence of the localization
length, such as oscillation, asymmetry, etc.
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I. INTRODUCTION

Anderson localization, which was presented originally �1�
for describing the transport behavior of electrons in disor-
dered solid-state systems, has attracted much interest for a
long time �2,3�. Due to its tremendous physical meanings, it
is still a topic of great interest nowadays and the research has
extended to almost all kinds of waves, such as light waves,
sound waves, matter waves, and so on �4–7�.

A main feature of the localized waves is the exponential
decay of their amplitude with the propagating distance. The
speed of this decay is denoted by the localization length �
�2,3�. For a given disordered system, waves at different fre-
quencies generally display different decay speeds, so the fre-
quency dependence of the localization length, ����, is one of
the most important quantities in the study of wave localiza-
tion �8–11�. Localization lengths in the long-wavelength and
high-frequency limit can be derived analytically �12,13�. In
the case of periodic-on-average random systems �PARSs�, it
is also known �14� that the localization lengths decrease dra-
matically in the vicinity of the band gaps of the underlying
periodic system. Due to the intricate interplay of order and
disorder, further understanding of ���� mostly relies on re-
sults of numerical simulations, where the intrinsic nature
may be ignored. Analytical investigations of the localization
behavior in disordered systems are always pursued �15,16�.

Periodic systems, however, can be analyzed more effec-
tively based on the Bloch theorem, and plenty of features can
be derived analytically �17�. In PARSs, the introduction of
disorder does not randomize all structural properties, so it is
natural to wonder whether some well-known features of pe-
riodic systems remain valid to some extent when disorder is
introduced. Works following this idea have been surprisingly
few, even in the simplest case of one-dimensional �1D�
PARSs �18–20�.

In this paper, we start from two well-known spectral prop-
erties of 1D periodic structure, called symmetry and period-
icity, and study their validity in PARSs. Two relations are
obtained analytically, which explore the possibility that the
localization lengths could be equal when the wave frequen-

cies and structural randomness satisfy some conditions.
Comparisons with numerical simulations carried out by us-
ing the transfer matrix method show good agreement. These
two relations are also used to explain some properties of
���� found in numerical results, such as oscillations, asym-
metry, etc.

II. MODEL

As mentioned above, the wave localization phenomenon
in disordered systems is general for all kinds of waves. Here
we deal with the light-wave version and study its localization
properties in 1D PARSs. The structures are assumed to be
multilayer structures composed of two alternating layers A
and B with refractive index nA and nB, respectively. The dis-
order is introduced forcing the layer thickness dA and dB to
change randomly assuming that dA and dB are drawn inde-
pendently from a uniform distribution, respectively:

dA�i� = �dA��1 + �A�A�i�� , �1a�

dB�i� = �dB��1 + �B�B�i�� . �1b�

where i denotes the ith unit, �A and �B are supposed to be
mutually independent, uniformly distributed stochastic vari-
ables in the interval �−1,1�, and 0��A�B��1 specifies the
amount of randomness. So the system is periodic on average
with spatial period equal to �= �dA�+ �dB� and disorder parts
are controlled by 	dA= �dA��A�A�i� and 	dB= �dB��B�B�i�.
The schematic sketch of the structure is shown in Fig. 1, and
we assume that light waves are incident to the structures
normally and the structures are embedded in the air.
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FIG. 1. Schematic sketch of the 1D PARS structure studied in
this paper.
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According to the localization theory, all the states in the
above 1D PARS are localized and the localization length �
can be computed in accordance with the following definition
�2�:

�−1 = lim
L→


ln T

L
, �2�

where L is the length of the structure and T is the transmit-
tance. This equation gives the single value of � only in the
case of infinite systems L→
. However, when L is finite, the
calculated result of � depends on the choice of realization—
i.e., the choice of �A�i� and �B�i�. To obtain a typical value of
�, generally, one takes a geometrical mean of � on more than
tens of thousands of samples, which is equal approximately
to the value of the infinite system due to the ergodic property
of the random quantities �A and �B. So � does not depend on
a particular realization �corresponding to particular se-
quences of �A�i� and �B�i��, but depends on the amount of
randomness of the structure, �A�B�.

The transmittance T can be calculated by means of the
transfer matrix method �21�. The state of the system in the
kth layer is described by the vector uk with components rep-
resenting right- and left-going electromagnetic waves Ek,R
and Ek,L, respectively. The evolution of the vector uk is con-
trolled by the matrix Mk, uk−1=Mkuk, where Mk is deter-
mined as follows:

Mk = � cos �k j/nk sin �k

jnk sin �k cos �k
� . �3�

�k= �
c nkdk, where dk and nk are the layer thickness and re-

fractive index of the kth layer, respectively. � is the angular
frequency and c is the light speed in vacuum.

The transmittance T can be obtained by

T = 	 2

m11 + m22 + m21 + m12
	2

, �4�

where mij �i , j=1,2� are the elements of the matrix M�N�

=
k=1
N Mk,where N is the total layers of the system.

III. PERIODICITY AND SYMMETRY OF PERIODIC
STRUCTURE

The spectral properties of 1D periodic structure are de-
scribed in detail in many works in the literature �Ref. �21�,
for example�. Here, we notice that the transmittance is peri-
odic, i.e.,

T��� = T�� + mP� , �5�

and symmetric, i.e.,

T��� = T�mP − �� , �6�

where m is an integer. In general, � is the phase shift of one
layer: �= ��A�= �

c nA�dA�—i.e., the phase shift of layer A �one
can choose �= ��B� of course�. It should be noted that �
actually denotes the frequency since the parameters c, nA,
and �dA� are fixed. P is the period determined by the ratio of
the phase shifts between the A and B layers: r=

��A�
��B� =

nA�dA�
nB�dB� .

We give a brief demonstration of these two properties as
follows. A detailed analysis can be found in many works in
the literature �Ref. �21�, for example�.

The periodicity originates in the expansion of the Mk ma-
trix:

Mk = � 1 1

nk − nk
��ej�k 0

0 e−j�k
�� 1 1

nk − nk
�−1

. �7�

It can be found that the phase shift enters only in the middle
matrix �called the phase matrix� in Eq. �7�. For the periodic
structure with nA�dA�=nB�dB�, the phase matrices of A and B
layers are the same �thus Mk are the same too�. If we change
the phase shift by an integer multiple of �, the matrices
remain invariant or are multiplied by −1, which has no effect
on T: T���=T��+m��; i.e., the spectra have a period of �.
For the periodic structure with nA�dA��nB�dB�, the ratio r

=
nA�dA�
nB�dB� can be written in the form of a fraction in the lowest

term: r=
 /�, where 
 and � are relatively prime numbers;
then, the period P=��, which guarantees simultaneous in-
variance of the phase matrices of the A and B layers under
the transformation �→�+mP.

The spectral symmetry is a result of the even symmetry of
the transmittance about the angular frequency �; that is,
T���=T�−�� �so T���=T�−�� too�. This can be obtained fol-
lowing the equivalence theorems. It is said that an arbitrary
layer system may be formally regarded as equivalent to a
suitable two-layer system:

Mef f = � cos �1
j

n1
sin �1

jn1 sin �1 cos �1
�� cos r�2

j
n2

sin r�2

jn2 sin r�2 cos r�2
� ,

�8�

where the subscripts 1 and 2 represents two layers, respec-
tively. Substitution of the elements of Mef f into the formula-
tion of transmittance gives rise to the even symmetry natu-
rally. It should be mentioned that this even symmetry is true
of any 1D system, not only periodic systems. Combined with
the spectral periodicity, the spectral symmetry can be ob-
tained easily.

Figure 2 shows the transmittance spectra of two sample
structures with r=1 �A� and r=1.5=3 /2 �B�. We can find
that the spectrum of �A� is a period of T=� and that of B is
a period of T=2�. Within each period, the curves are sym-
metric.

IV. EFFECTS OF STRUCTURAL PROPERTIES IN PARSs

Then we study whether these two properties are still valid
to some extent when disorder is introduced. First, let us
check the periodicity—i.e., Eq. �5�. Following the definition
of our disordered structure, Eq. �1a� and �1b�, the phase shift
of the ith layer ��i� can be separated into two parts:

��i� = ��� + 	��i� , �9�

where ���, representing ��A� or ��B�, is the periodic part and
	�= �

c n	d, representing 	�A or 	�B, is the part caused by
disorder. Because the phase shift enters only in the phase
matrix Mk in Eq. �7� and the phase matrix is diagonal, it can
be separated further into two parts
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�ej��� 0

0 e−j��� ��ej	� 0

0 e−j	�� , �10�

which correspond to the periodic and disordered parts, re-
spectively.

According to the periodicity of the periodic structure, the
periodic part of the phase matrices remains invariant or is
multiplied by −1 under the transformation ���→ ����= ���
+mP. However, we cannot draw a conclusion that the total
transmittance remains invariant here, since the disorder part
of the phase matrices may be affected under this transforma-
tion. So in order to keep the invariance of the total transmit-
tance T, there is an additional condition required: 	�=	��
under the transformation ���→ ����. According to the defi-
nition of a phase shift, the relationship between ��� and 	�
is

	� =
���
�d�

	d . �11�

In order to satisfy the condition 	�=	��, it gives

���
�d�

	d =
����
�d�

	d�. �12�

Substituting the relation ����= ���+mP into the above equa-
tion and after rearrangement, we have

	d� =
���

��� + mP
	d . �13�

It means that if the disorder parts of two structures satisfy the
above relation, 	� can remain invariant under the transfor-
mation �→��=�+mP, and thus the total transmittances of
the two structures are equal:

T�	d,�� = T�	d�,��� = T� ���
��� + mP

	d,� + mP� . �14�

It should be noted that the above equation provides a relation
of transmittance among systems with different randomness.

The above relation can be extended to the localization
length � according to its definition, Eq. �2�. As we have
pointed out above, � is calculated by taking a geometrical
mean of � on more than tens of thousands of sequences and
the general behavior of � does not depend on the particular
sequence due to the ergodic property of the random quantity
�, but depends on the randomness �. So we have

���,�� = �� �

mP + �
�,mP + �� , �15�

which means that the localization length of structure with
randomness � at � is equal to that of structure with random-
ness �

mP+�� at mP+�.
Similarly, based on the transmittance symmetry of 1D pe-

riodic structure—i.e., Eq. �6�—we can obtain another rela-
tion about the localization length. It should be mentioned
that the even symmetry of transmittance is true for any 1D
system, not only the periodic case. According to Eq. �2�, the
localization length has the property of even symmetry too:

���� = ��− �� . �16�

Combining Eq. �16� with �15�, we obtain another relation
easily:

���,�� = �� �

mP − �
�,mP − �� , �17�

which provides another relation of the localization length
among realizations with different randomness. By combining
Eq. �15� with �17�, we have a more general relation

�� �

mP + �
�,mP + �� = �� �

nP − �
�,nP − �� , �18�

where m and n are integers.
We have done some numerical simulations to check

whether these relations are correct. We first consider the case
of nA�dA�=nB�dB�, where the spectrum of the underlying pe-
riodic system has been shown in Fig. 2�A�. It should be
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FIG. 2. Transmittance spectra
at normal incidence of two peri-
odic systems of ten layers with
different ratio r of the layer phase
shift of two materials. �a� r=1 and
�b� r=1.5.
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noted that the period of the spectrum is �. The refractive
indices of the two materials are assumed to be nA=1.4 and
nB=3, respectively. For convenience, the disorder is intro-
duced into the layer thicknesses of the two materials simul-
taneously with the same randomness—i.e., �A=�B=�d. The
localization lengths of three disordered structures with ran-
domness �d=10%, 5%, and 2.5% are calculated by means of
the transfer matrix method and shown in Fig. 3, represented
by different marks. Each point plotted is averaged over 500
realizations, and each realization contains layers whose num-
ber is about 5–6 times the localization length. The localiza-
tion lengths in the figures are in units of �= �dA�+ �dB�.

According to Eq. �15�,

��10%,�/3� = �� �/3
� + �/3

10%,� + �/3� = ��2.5%,4�/3� .

�19�

That is, the localization length at the point of �d=10%, �
=� /3 �we use the pair �10% ,� /3� for convenience in the
following� is equal to that at point �2.5% ,4� /3�. At the same
time, according to Eq. �17�, they are equal to that at point
�%5,2� /3� too:

��10%,�/3� = �� �/3
� − �/3

10%,� − �/3� = ��5%,2�/3� .

�20�

The above three points have been denoted in Fig. 3 by A�
�10% ,� /3�, A� �%5,2� /3�, and A� �2.5% ,4� /3�, respec-
tively. It can be found that the numerical results of the local-
ization lengths at these three points do equal each other,
showing good agreement with the above analysis. We can
also find agreement between the analytical and numerical
results from points B� �10% ,2� /3�, B� �%5,4� /3�, and B�
�2.5% ,8� /3� and from points C� �10% ,5� /3� and C�
�5% ,10� /3�.

We also calculated the case of nA�dA�=1.5nB�dB�, where
the spectrum of the underlying periodic system has been
shown in Fig. 2�B�. All other parameters are the same as
those of Fig. 3. In this case, the period of the spectrum is 2�.
According to Eq. �15�,

��10%,2�/3� = �� 2�/3
2� + 2�/3

10%,2� + 2�/3�
= ��2.5%,8�/3� ,

and according to Eq. �17�,

��10%,2�/3� = �� 2�/3
2� − 2�/3

10%,2� − 2�/3�
= ��5%,4�/3� .

These three points have been denoted by B� �10% ,2� /3�, B�
�%5,4� /3�, and B� �2.5% ,8� /3�, respectively, in Fig. 4. It
can be found that the localization lengths at these three
points do equal each other, showing agreement again be-
tween the numerical and analytical results. At the same time,
agreement can be found between points A� �5% ,2� /3� and
A� �%2.5,4� /3� and between points C� �10% ,4� /3� and C�
�5% ,8� /3�.

V. DISCUSSION

The above relations can be used to investigate some prop-
erties of ���� in PARSs. From Figs. 3 and 4, it can be found
that the curves of ���� oscillate. For example, in Fig. 3, the
curves approach a maximum near the points �
=� ,2� ,3� , . . ., while they approach a minimum near the
points �=� /2,3� /2,5� /2, . . .. This oscillation is caused by
the band structures of the underlying periodic system. Gen-
erally, states from passbands have relatively large localiza-
tion lengths, while states from stop bands have small local-
ization lengths, especially for the case of small degrees of
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FIG. 3. Localization length as a function of phase shift for three
1D PARSs with different randomness: �A=�B=�d
=2.5% ,5% ,10%. The structural parameters of the underlying peri-
odic system are the same as those of Fig. 2�A�.

0 1 2 3

10
0

10
1

10
2

10
3

10
4

L
o

c
a

liz
a

ti
o

n
le

n
g

th

Phase shift (in units of π)

δd=2.5%

δd=5%

δd=10%
A' A''

B' B'' B'''

C' C''

FIG. 4. Localization length as a function of phase shift for three
1D PARSs with different randomness: �A=�B=�d
=2.5% ,5% ,10%. The structural parameters of the underlying peri-
odic system are the same as those of Fig. 2�B�.

PENG HAN AND CHUJUN ZHENG PHYSICAL REVIEW E 77, 041111 �2008�

041111-4



randomness. So the curves of ���� in general oscillate and
the minimum values correspond to the center of the original
band gaps. However, this oscillation decreases with an in-
crease of the band number, which can be seen from Figs. 3
and 4. For example, in Fig. 3, the amplitude of the oscillation
during the zone �0,�� is larger than those during �� ,2�� and
�2� ,3��. This is consistent with the well-known property
that the localization length will tend to be a constant in the
limit of high frequency �13�, which implies that the oscilla-
tion will disappear in the high-frequency region.

This property of decreasing oscillation can be explained
by the above relation �15�, which can be changed easily to

���,mP + �� = ��mP + �

�
�,�� . �21�

Since mP is always positive, mP+�
� �1, then mP+�

� ���. If we
confine � to the first period—i.e., 0��� P—then the above
equation means that for a given sequence with randomness �,
the value of ���� in high-order zones �i.e., mP+� with m
�1� can be related to that in the first period of another se-
quence with relatively larger randomness. A larger random-
ness should disorder the structural properties more seriously
and thus reduce the oscillation amplitude of ����. With an
increase of m, mP+�

� � will tend to be large enough to destroy
the structural property totally, leading to disappearance of the
oscillation.

There is another property of ���� which can be explained
by the relations we derived. It has been demonstrated above
�i.e., Eq. �6�� that the spectra of periodic systems are sym-
metric within each period �i.e., the intervals of �0, P�,
�P ,2P�, �2P ,3P�, …�. However, ���� are asymmetric in
each zone. This point can be found easily from Fig. 3, where
the asymmetry is obvious for states from passbands and band
edges. Let us take the curves in Fig. 3 during �� ,2��, for
example. The curves during the left half of this zone—i.e.,
�� , 3

2��—are clearly different with those during the right
half—i.e., � 3

2� ,2��. Furthermore, this asymmetry decreases
with an increase of the band number. This can be seen from
the difference between two maximum values within each
zone. In �� ,2��, ���=��−���=2��
1500−400=1100,
whereas in �2� ,3��, ���=2��−���=3��
400−150=250.

This property of asymmetry can also be understood by the
relations derived above. For convenience, we define �l to
denote the phase shifts located at the left half of the first
period—i.e., 0��l� P /2. Then mP+�l always locates in
the left half of each period and �m+1�P−�l in the right half.
From Eq. �18� we have ��

�l

mP+�l
� ,mP+�l�=��

�l

nP−�l
� ,nP

−�l�. We choose n=m+1, then ��
�l

mP+�l
� ,mP+�l�

=��
�l

�m+1�P−�l
� , �m+1�P−�l�, which actually provides a rela-

tion between ���� within two halves of each period. We can
define the ratio of two periods of randomness as

r =
�l

mP + �l
� :

�l

�m + 1�P − �l
� =

�m + 1�P − �l

mP + �l
. �22�

Since 0��l� P /2, we have 1�r�1+ 1
m . 1�r means that

the states within the right half always suffer more disorder
than those within the left half, leading to the asymmetry of
the curve of ���� within each period. In addition, with an
increase of k, r decreases and tends to be equal to 1, meaning
that the curve of � tends to be more symmetrical within
regions of large frequency, which is also consistent with the
numerical results shown in Fig. 3.

VI. CONCLUSION

In summary, we have presented analytically two relations
of the frequency dependence of the localization length in 1D
PARSs based on the spectral periodicity and symmetry of the
underlying periodic systems. Numerical simulations are per-
formed and show good agreement with the analytical results.
These relations are used to explain some properties of the
frequency dependence of the localization length. Since the
relations originate from the properties of the underlying pe-
riodic structure, they are expected to be generic properties of
1D PARSs and thus probably facilitate a further understand-
ing of the complicated behavior of wave localization. Based
on these relations, further quantitative research work is being
carried out and more nontrivial results are anticipated.
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