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We analyze temperature and thermometry for simple nonequilibrium heat-conducting models. We also show
in detail, for both two- and three-dimensional systems, that the ideal-gas thermometer corresponds to the
concept of a local instantaneous mechanical kinetic temperature. For the �4 models investigated here the
mechanical temperature closely approximates the local thermodynamic equilibrium temperature. There is a
significant difference between the kinetic temperature and nonlocal configurational temperature. Neither obeys
the predictions of extended irreversible thermodynamics. Overall, we find that the kinetic temperature, as
modeled and imposed by the Nosé-Hoover thermostats developed in 1984, provides the simplest means for
simulating, analyzing, and understanding nonequilibrium heat flows.
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I. INTRODUCTION

The present work emphasizes and details the mechanical
nature of the kinetic temperature, in contrast to the
ensemble-based configurational temperature. Simulations for
the simple models considered here are insensitive to system
size and show significant differences between the kinetic and
configurational temperatures. Our main goal is to illustrate
and emphasize the relative advantages of the kinetic tem-
perature, particularly away from equilibrium.

Ever since the early days of molecular dynamics, “tem-
perature” has been based on the familiar ideal-gas kinetic-
energy definition. For a Cartesian degree of freedom at equi-
librium the kinetic definition is

kTK � �mv2� .

This definition provides a means for linking Gibbs’ and Bolt-
zmann’s classical statistical mechanics to thermodynamics.
Because thermodynamic equilibrium corresponds to the
Maxwell-Boltzmann velocity distribution,

f�v� = ��m/2�kT�exp�− mv2/2kT� ,

any of the even moments

�v2� = 1 � �kT/m� ,

�v4� = 1 � 3 � �kT/m�2,

�v6� = 1 � 3 � 5 � �kT/m�3,

. . . ,

can be used to define the temperature for a system at equi-
librium. The second-moment choice is not only the simplest,
but in the ideal-gas case it also corresponds to a conserved
quantity: the energy. The same definition of temperature is a
fully consistent choice away from equilibrium too.

An ideal-gas thermometer can be visualized as a collec-
tion of many very small, light, and weakly interacting par-
ticles, but with such a high collision rate that thermal equi-
librium �the Maxwell-Boltzmann distribution� is always
maintained within the thermometer. For an innovative imple-

mentation of this model with molecular dynamics, see Ref.
�1�.

Configurational temperature definitions are also possible.
There are two motivations for considering such coordinate-
based temperatures: first, there is some ambiguity in deter-
mining the mean velocity in a transient inhomogeneous
flow—the kinetic temperature has to be measured relative to
the flow velocity while configurational temperature does
not—second, the search for novelty. The simplest of the
many configurational possibilities was suggested and also
implemented by Jepps �2�. In independent research directed
toward finding a canonical-ensemble dynamics consistent
with configurational temperature, Travis and Braga devel-
oped an implementation identical to Jepps’ unpublished al-
gorithm �3�. The underlying expression for the configura-
tional temperature,

kTC � �F2�/��2H� ,

appeared over 50 years ago in Landau and Lifshitz’ statistical
physics textbook �4�. In the definition of kTC the force F for
a particular degree of freedom depends upon the correspond-
ing gradient of the Hamiltonian:

F = − �H .

Landau and Lifshitz showed that the expression for kTC fol-
lows from Gibbs’ canonical distribution,

fGibbs � exp�− H/kT� ,

by carrying out a single integration by parts:

��2H� = ���H�2�/kT → kTC � ���H�2�/��2H� .

Unlike the kinetic temperature, the configurational tempera-
ture TC is not simply related to a mechanical thermometer.
And in fact, there are many other such nonmechanical tem-
perature expressions. Away from equilibrium it is clear that
no finite number of moments or averages can be expected to
uniquely define a phase-space distribution function. For a
thorough discussion see Refs. �2� and �3�. Long before this
complexity surfaced the proper definition of temperature
away from equilibrium was a lively subject. To capture some
of its flavor over a 30-year period see Refs. �5� and �6�.
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Relatively cumbersome microcanonical versions of the con-
figurational temperature have been developed following
Rugh’s investigations. For references and an early applica-
tion of these variants see Morriss and Rondoni’s work �7�.

Jou and co-workers and their critics �8–12� have consid-
ered the desirability of measuring an “operational” “thermo-
dynamic” temperature for nonequilibrium systems. They dis-
cussed and then implemented a method �8,12� �which we
explore in more detail here� for its measurement. Figure 1
illustrates the simplest case of their idea: a heat conductor
connected to a “thermometer.” As usual, the devil is in the
details. Here the details include both the type of thermometer
used and the linkage connecting that thermometer to the con-
ducting system. The linkage certainly has an effect on the
forces and internal energy at the linkage point, and hence
affects the local-thermodynamic-equilibrium temperature
and the configurational temperature. In addition to their “op-
erational” temperature, Jou and co-workers also consider a
“Langevin temperature” TLangevin �the temperature which en-
ters explicitly into the usual equilibrium Langevin equations
of motion� and a “local thermodynamic equilibrium” tem-
perature TLTE �the temperature based on the equilibrium
equation of state�,

TLTE � T��,e� ,

where e is the internal energy per unit mass�. At equilibrium,
and only at equilibrium, all of the various temperatures are
the same and there is no ambiguity in the temperature con-
cept:

T = TK = TC = TLangevin = TLTE �at equilibrium� .

Away from equilibrium, where most physical interpretations
of temperature are actually symmetric second-rank tensors,
we can expect that each of the these four “temperatures”
differs from the others. This tensor nature of temperature is
evident in strong shock waves �13�. Generally we must an-

ticipate that the nonequilibrium temperature can be aniso-
tropic, with

TK,C,LTE
xx � TK,C,LTE

yy � TK,C,LTE
zz .

This anisotropicity makes it imperative to describe the mi-
croscopic mechanics of any nonequilibrium thermometer in
detail and argues strongly against a nonequilibrium version
of the zeroth law of thermodynamics.

In their illustrative example, Hatano and Jou �12� used the
temperature of a Langevin oscillator �14� coupled to a driven
oscillator to measure the driven oscillator’s temperature. A
Langevin oscillator is damped with a constant friction coef-
ficient and driven with a random force �14�. See also the
next-to-last paragraph of Sec. II. Hatano and Jou �12� found
that their measured temperature was qualitatively sensitive to
the assumed form of coupling linking their “system” �the
driven oscillator� to their “thermometer” �the Langevin os-
cillator�.

At equilibrium, thermometry and thermodynamics, itself,
both rely on the observation often called the zeroth law of
thermodynamics, that two bodies in thermal equilibrium with
a third are also in thermal equilibrium with each other �inde-
pendent of the couplings linking the bodies�. Hatano and Jou
drew the very reasonable conclusion from their work that
this fundamental property of temperature, which makes equi-
librium thermometry possible, might be impossible away
from equilibrium.

Baranyai �15,16� considered a much more complicated
thermometer, a tiny crystallite, made up of a few hundred
tightly bound miniparticles. He compared both the kinetic
and configurational temperatures of nonequilibrium flows
with the temperatures within his thermometer and found sub-
stantial differences. Baranyai was able to conclude from his
work that neither the kinetic nor the configurational tempera-
ture was a “good” nonequilibrium temperature. By this, he
meant that neither satisfied the zeroth law of thermodynam-
ics. The temperature within Baranyai’s minicrystal thermom-
eter, his “operational temperature,” exhibited relatively small
spatial variations �the entire many-body thermometer was
about the same size as a single particle of the nonequilibrium
system in which it was immersed�.

There is a considerable literature extending irreversible
thermodynamics away from equilibrium, based on defining
the nonequilibrium temperature, in terms of an �ill-defined�
nonequilibrium entropy:

T = ��E/�Snoneq�V.

For a recent guide to the literature, see Ref. �17�.
At equilibrium, Gibbs and Boltzmann showed that the en-

tropy Seq of a classical system is simply the averaged loga-
rithm of the phase-space probability density:

Seq = − k�ln feq� .

Away from equilibrium fnoneq is typically fractal �18,19� �so
that its logarithm diverges�, so that the very existence of a
nonequilibrium entropy appears doubtful. For a comprehen-
sive review of efforts based on a nonequilibrium Gibbs en-
tropy, presumably −k�ln fnoneq�, see Ref. �20�. It is evident
that such efforts are inconsistent with what is known about

T T

θ

C H

FIG. 1. Jou and co-worker’s nonequilibrium system �described
in detail in Sec. III�, driven by the temperature difference TH−TC, is
coupled to a thermometer which reads the “actual” or “correct” or
“equilibrium” or “operational” temperature T�. This idea underlies
our own simulations. Here T� represents temperature “at” the con-
tact point between the vertical “thermometer” and the particle lo-
cated between the two thermostated particles. Each of the seven
particles in the system is represented here by a short trajectory
fragment.
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the singular fractal nature of nonequilibrium phase-space dis-
tributions 	fnoneq
.

Recent thorough work by Daivis �21� investigated the
consequences of an assumed nonequilibrium entropy. Daivis
compared three equalities �analogous to the equilibrium
Maxwell relations� based on the assumed existence of Snoneq
with results from numerical simulations. None of the three
“equalities” was satisfied by the simulation results, casting
doubt on both the existence of a nonequilibrium entropy
analogous to the Gibbs-Boltzmann entropy and also on the
existence of a corresponding entropy-based temperature.

In the present work we will explore these ideas for a
simple nonequilibrium model of heat flow: the �4 model
�19,22�. This very basic model has quadratic Hooke’s-law
interactions linking nearest-neighbor pairs of particles. In ad-
dition, each particle is tethered to its individual lattice site
with a quartic potential. This model has been extremely use-
ful for nonequilibrium statistical mechanics. In its most use-
ful temperature range �where the particles are sufficiently
localized, as detailed in Sec. IV� we will see that the internal
energy varies nearly linearly with kinetic temperature, sim-
plifying the analyses. The model obeys Fourier’s law �for
small enough temperature gradients for the equivalence of all
the various temperature definitions�, even in one dimension
�22�. It can also display considerable phase-space dimension-
ality loss �19�, establishing the fractal nature of the phase-
space distribution function. Because the loss can exceed the
phase-space dimensionality associated with the thermostat-
ing particles, a fractal distribution for the interior Newtonian
part of a driven nonequilibrium system is implied by these
results. We use the �4 model here to elucidate and compare
the kinetic and configurational candidates for nonequilibrium
temperature.

Though the mechanical models we consider are small,
with only a few dozen degrees of freedom, we firmly believe
that the analysis of such very specific manageable models is
the only reliable guide to an understanding of thermometry
and temperature. The pitfalls and complexities associated
with large systems, and with large thermometers, are the gra-
dients and inhomogeneities already seen in Baranyai’s work
�15,16�.

The paper is organized as follows: first, a discussion of
mechanical thermometry, using the ideal-gas thermometer,
with simulations corresponding to ideal gases of disks �two
dimensions� and spheres �three dimensions�; next, a descrip-
tion of the computer experiment suggested by Jou as applied
to the �4 model. After discussing and illustrating the �4

model, numerical results, and conclusions based on them,
make up the final sections of this work.

II. IDEAL-GAS THERMOMETRY

Hoover, Holian, and Posch �9� described the mechanics of
a one-dimensional ideal-gas thermometer in detail. They
considered a massive particle, with momentum MV, interact-
ing with a Maxwell-Boltzmann bath of ideal-gas particles
with momenta 	mv
. Here we will consider the same situa-
tion in detail for two- and three-dimensional thermometers.
A typical collision can be viewed in the center-of-mass

frame, a coordinate frame with the center-of-mass velocity

vc.m. =
MV + mv

M + m
.

For an instantaneous hard-sphere impulsive collision the di-
rection of the relative velocities in this frame, averaged over
all possible collisions of the two velocities,

	vbefore
 = � �V − v� ,

is directed randomly after collision. This simplification leads
to a systematic expansion �9� of the energy change of the
massive particle in half-integral powers of the mass ratio
m /M. To second order in �m / M ,

− ��d/dt��MV2/2�� � �MV2/2� − ��mv2/2��

= �MV2/2� − �3kTK/2� ,

where TK is the ideal-gas kinetic temperature.
For the details of other models �soft spheres, square wells,

etc.� of the interaction between the massive particle and an
ideal-gas-thermometer heat bath, a solution of the corre-
sponding Boltzmann equation would be required. Neverthe-
less, on physical grounds it is “obvious” that a massive par-
ticle with �above/below�-average energy will �lose or gain�
energy, on the average, as a result of its collisions with the
equilibrating bath,

�Ė� � sgn��E�eq − E� .

It is an interesting exercise in numerical kinetic theory to
confirm this expectation in two and three dimensions. Con-
sider first a hard disk with unit radius and mass M with unit
velocity V= �1,0�. Scattering for disks is anisotropic. On the
average a disk retains a memory of its original velocity in the
center-of-mass frame. To model the interaction of a massive
disk with a heat bath of unit-mass-point particles at kinetic
temperature TK requires choosing Maxwell-Boltzmann bath-
particle velocities 	v
= 	vx ,vy
 as well as an angle 0	

	2� for each collision, which specifies the location of the
colliding bath particle relative to the massive disk. See Fig. 2
for typical results. These were obtained by using a random
number generator �23� to simulate the collisions.

The velocity changes of the disk, �V, and the bath par-
ticle, �v, are as follows for a collision described by the angle

:

�V = �V − v��R − r�„cos�
�,sin�
�…�2m/�M + m�� ,

�v = �v − V��R − r�„cos�
�,sin�
�…�2M/�M + m�� .

A sufficiently long series of velocity changes 	�V
, com-
puted in this way, can be used to find the averaged hard-disk
energy change shown in the figure.

Results for m=1, M =100, and 5�106 randomly-chosen
hard-disk collisions for each ideal-gas temperature are shown
in Fig. 2. In analyzing these simulations it is necessary to
weight the summed-up contributions of all the observed col-
lisions with the relative velocities corresponding to each col-
lision c:
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��E� =
� �v − V�E�c

� �v − V�c

.

The speed v−V is included because the collision rate for
two randomly located particles with velocities v and V is
directly proportional to the magnitude of their relative veloc-
ity, v−V.

As expected, the temperature at which the disk kinetic
energy, for M equal to 100, is equal to the averaged mass-
point thermal energy is 50:

��
MV2

2
� � 2kTbath − MV2.

The analogous averaged mass-point thermal energy is
33.333. . . for hard spheres. Energy changes for both disks
and spheres are shown in Fig. 2. The simplicity of such a
mechanical model for a thermometer—which “measures
temperature” in terms of the kinetic energy per particle—
recommends its use in analyzing nonequilibrium simulations.

The configurational temperature, on the other hand, has
no corresponding mechanical model and also requires that
the quotient of two separate averages be computed to find the
temperature associated with a particular Cartesian degree of
freedom:

kTC �
�F2�

��2H�
.

Kinetic temperature is simpler, requiring only a single aver-
age because �p

2H=1 /m is constant:

kTK � ���pH�2�/���p
2H�� = �p2�/m = m�v2� .

Unlike the kinetic temperature the configurational tempera-
ture is nonlocal �through its dependence on forces�.

It should be noted that the “Langevin thermometer,” as

implemented by Hatano and Jou �12�, appears to be based on
a similar application of kinetic theory. But the Langevin ther-
mometer, if viewed as a “thermostat” designed to impose the
temperature TLangevin, suffers from the defect that its “tem-
perature” �given by the ratio of the time-integrated correla-
tion function of the fluctuating force to the drag coefficient�
is not equal to �mv2 /k� �or to any other oscillator-based tem-
perature� except at equilibrium. The ideal-gas thermometer,
on the other hand, maintains its temperature both at and
away from equilibrium, and can easily be implemented in
numerical simulations by using either Gaussian �constant ki-
netic energy� or Nosé-Hoover �specified time-averaged ki-
netic energy� mechanics. Both these thermostats employ
feedback forces to maintain the specified kinetic temperature
TK even away from equilibrium.

Baranyai’s thermometer �15,16�, with hundreds of degrees
of freedom, contains within it both stress and temperature
gradients. His minicrystal thermometer translates, rotates,
and vibrates as well. This complexity destroys the local in-
stantaneous nature of temperature that is so valuable for ana-
lyzing inhomogeneous systems with large gradients.

III. JOU AND CO-WORKER’S THERMOMETRIC
EXPERIMENT

In order to explore the concept of nonequilibrium tem-
perature, Jou and Casas-Vázquez suggested �8�, and Hatano
and Jou ultimately tested �12�, the setup shown in Fig. 1. As
indicated in that figure, an equilibrium thermometer mea-
sures the “real,” or “thermodynamic,” or “operational” tem-
perature T� when it is connected to a nonequilibrium system
with a temperature intermediate to Thot and Tcold. The con-
straint on individual particles’ velocities imposed by the heat
current in the nonequilibrium system suggests that the non-
equilibrium temperature T� will turn out to be lower than the
local thermodynamic equilibrium temperature TLTE �the tem-
perature based on mass, momentum, and energy through the
equilibrium equation of state� �8,11�. “Extended irreversible
thermodynamics” �17� provides an estimate for this tempera-
ture difference:

TLTE − T� � Q2,

where Q is the heat flux and the proportionality constant in
this relation is a temperature- and-density-dependent mate-
rial property. Although Hatano and Jou �12� confirmed that
the kinetic temperature for a simple two-oscillator model ac-
tually is less than the temperature measured by a Langevin
thermometer, the configurational temperature for this same
model behaved oppositely, exceeding the Langevin tempera-
ture. This discrepancy led Hatano and Jou to conclude that
the zeroth law of thermodynamics is unlikely to be obeyed
away from equilibrium, once again shedding doubt on the
existence of a nonequilibrium entropy.

In the present work we implement an extension of the
Hatano and Jou simulation to a two-dimensional few-body
system based on the �4 model �19,22�, as described in the
following section.

-2

-1

0

1

2

Spheres
Disks

0 < kT < 100

∆Ε

FIG. 2. Energy change, due to collisions, for a hard disk of mass
M and unit speed with an equilibrium bath of point particles with
mass m=M /100 and temperature TK. Zero energy change corre-
sponds precisely to that temperature �50 for disks, 33.333. . . for
spheres, open circles in the figure� for which the disk kinetic energy
equals the mean bath energy �mv2 /k�. Also shown are analogous
results for a hard sphere immersed in a hard-sphere ideal-gas
thermometer.
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IV. �4 MODEL FOR NONEQUILIBRIUM THERMOMETRY

We consider a simple heat-conducting nonequilibrium
system in two space dimensions. See Fig. 3 for a time expo-
sure of the corresponding dynamics. There is a cold particle
obeying the Nosé-Hoover equations of motion

ẋ = �px/m�, ẏ = �py/m� ,

ṗx = Fx − �coldpx, ṗy = Fy − �coldpy ,

�̇cold � �px
2 + py

2 − 2mkTcold� .

Both the cold particle and an analogous hot particle �with �hot
and Thot� are connected to a Newtonian particle with qua-
dratic nearest-neighbor Hooke’s-law bonds:

�Hooke =
2

2
�r − d�2.

See again Fig. 3.
The Newtonian particle through which the flux Q flows,

from the hot particle to the cold one on the average, lies at
the end of a chain of similar Newtonian particles. This chain
of Newtonian particles acts as a thermometer through which
no heat flows.

To validate the chain idea we carried out preliminary
equilibrium simulations, with the “hot” and “cold” particles
thermostated at a common temperature: TK

c =TK
h =0.07. Simu-

lations with 109 time steps �beginning after first discarding
0.5�109 equilibration time steps� were carried out for 7-,
14-, and 21-particle systems. These three simulations each
provided time-averaged configurational and kinetic tempera-
tures for all particles lying in the range �0.0698	T
	0.0701�. These simulations indicated consistent equilibra-
tion along the chains and between the configurational and
kinetic temperatures within a reasonable tolerance of
�0.0001. We conclude from these equilibration runs that the
�4 model is a sufficiently mixing and conducting system for

use in nonequilibrium thermometry simulations.
This convincing equilibration suggests that a chain of �4

particles is a suitable thermometer. How long should the
chain be away from equilibrium? To find this out we next
carried out an exactly similar series of three nonequilibrium
simulations with an extreme factor-of-19 difference between
the constrained cold and hot kinetic temperatures:

TK
c = 0.005, TK

h = 0.095.

The long-time-averaged temperature results for 7-, 14-, and
21-particle systems, shown in Fig. 4, are essentially the
same, so that a simple 4-particle chain of thermometric par-
ticles is sufficient.

Each of the particles in this nonequilibrium system is teth-
ered to its lattice site r0 with a quartic potential:

�tether =
4

4
�r − r0�4.

With 7 particles there are 30 ordinary differential equations
to solve �14 coordinates, 14 momenta, and 2 friction coeffi-
cients�. For convenience we choose all of the particle
masses, Boltzmann’s constant k, the force constants 2 and
4, the Hooke’s-law equilibrium spacing d, and the cold and
hot proportionality constants determining the Nosé-Hoover
friction coefficients, all equal to unity. For the cold particle
we solve the following equations:

ẋ = px, ẏ = py ,

ṗx = Fx − �coldpx, ṗy = Fy − �coldpy ,

�̇cold = �px
2 + py

2 − 2Tcold� .

We have carried out many other simulations, using configu-
rational or one configurational and one kinetic thermostat, as
well as different particle numbers, but the results are quali-
tatively similar to those obtained with kinetic thermostats
and are therefore not reported here. Likewise we do not ex-
plicitly consider here the possibility of separately thermostat-
ing the x and y directions �by using two friction coefficients
�T

xx and �T
yy�.

COLD HOT

FIG. 3. Particle trajectories for 20 000 time steps. The cold par-
ticle kinetic temperature TK

cold=0.01 and the hot particle kinetic tem-
perature TK

hot=0.03 are constrained with Nosé-Hoover friction coef-
ficients. The corresponding measured configurational temperatures
are 0.0159 and 0.0265. The long-time-averaged kinetic and configu-
rational temperatures of the five Newtonian particles are �from bot-
tom to top� 	0.0207,0.0237,0.0238,0.0238,0.0242
 and
	0.0218,0.0229,0.0229,0.0229,0.0234
, respectively. See Table II.
The heat flux is 0.002 69.
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0.04

0.08
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Configurational
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Particle Index 1 ... 21

Configurational
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Particle Index 1 ... 21

Configurational

kT(<x>)

Particle Index 1 ... 21

Configurational

kT(<x>)

FIG. 4. Long-time-averaged temperature profiles for nonequilib-
rium systems of n= 	7,14,21
 particles. Nosé-Hoover kinetic con-
straints control the kinetic temperatures of a “cold” particle, with
TK

c =0.005, Particle n−1, and a “hot” particle, with TK
h =0.095, Par-

ticle n. Particle 1 lies between the “cold” particle and the “hot”
particle. Both the kinetic and the configurational temperatures are
shown for all n particles. These simulations used 1�109 time steps
after discarding an equilibration run of 0.5�109 time steps. dt
=0.005.
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It should be noted that the Hooke’s-law nearest-neighbor
potential leads to discontinuous forces whenever particle tra-
jectories cross one another. This is a common occurrence in
either one or two dimensions, at sufficiently high tempera-
tures. In one or two dimensions the force changes from �1
to �1 as two particles pass through one another. To avoid �or
at least minimize� these discontinuities in the present two-
dimensional simulations we have only considered simula-
tions with average temperatures less than or equal to 0.1.

In discussing the applicability of irreversible thermody-
namics to nonequilibrium systems several workers have sug-

gested the use of a “local thermodynamic equilibrium” tem-
perature �5,8,11,17,20,24�. For the present model the relation
between the local thermodynamic equilibrium temperature
and the kinetic temperature is nearly linear. Figure 5 shows
the variation of kinetic energy with internal energy for a
periodic chain of 100 particles �results for 7- and 14-particle
chains are essentially the same�. To an accuracy better than a
percent,

TK � TLTE.

V. NUMERICAL RESULTS AND CONCLUDING
REMARKS

Exploratory simulations of the type illustrated in Figs. 3
and 4 suggested that the kinetic and configurational tempera-
tures are a bit different �away from equilibrium� and also that
these temperatures vary slightly along the length of the New-
tonian thermometric chain. At the same time the heat flow
between the hot and cold particles closely follows Fourier’s
law. To show this explicitly Table I gives the kinetic and
configurational temperatures for an average temperature Tav

= �Tc+Th� /2=0.05 and a broad range of temperature differ-
ences �T=Th−Tc.

The tabulated results for temperature differences which
are not too large,

�T/Tav 	 1,

show a relatively small variation of the effective thermal
conductivity for the three-particle �cold-Newton-hot� system,

0.00

0.05

0.10

0.15

K/N

0 < E/N < 0.20

K/E ~ 0.588

FIG. 5. Variation of kinetic energy with total energy for a 100-
particle �4 chain at equilibrium. For each of the 20 points which the
line connects here 107 time steps were used after discarding 5
�106 equilibration time steps. dt=0.005. To an excellent approxi-
mation, K�0.588E.

TABLE I. Averages for runs of length t=5 000 000 with the fourth-order Runge-Kutta time step dt=0.005. The kinetic and configura-
tional temperatures are listed, along with the heat flux Q �all accurate to the last figure�. The first seven columns correspond to the
temperatures of the cold and hot particles, followed by the temperature of the Newtonian particles �the Newtonian particles are the five
shown in a vertical column in Fig. 3 and labeled from bottom to top�.

TK
c TK

h TK
1 TK

2 TK
3 TK

4 TK
5 Q

0.045 0.055 0.0504 0.0507 0.0507 0.0507 0.0507 0.0020

0.040 0.060 0.0512 0.0524 0.0526 0.0526 0.0528 0.0039

0.035 0.065 0.0526 0.0554 0.0558 0.0559 0.0560 0.0057

0.030 0.070 0.0542 0.0588 0.0593 0.0594 0.0595 0.0076

0.025 0.075 0.0559 0.0622 0.0628 0.0629 0.0631 0.0094

0.020 0.080 0.0574 0.0648 0.0655 0.0657 0.0659 0.0113

0.015 0.085 0.0588 0.0671 0.0678 0.0682 0.0681 0.0132

0.010 0.090 0.0603 0.0681 0.0689 0.0692 0.0690 0.0146

0.005 0.095 0.0643 0.0698 0.0706 0.0710 0.0707 0.0143

TC
c TC

h TC
1 TC

2 TC
3 TC

4 TC
5 Q

0.0471 0.0537 0.0506 0.0506 0.0506 0.0506 0.0506 0.0020

0.0445 0.0578 0.0519 0.0522 0.0523 0.0522 0.0524 0.0039

0.0423 0.0623 0.0540 0.0548 0.0550 0.0550 0.0552 0.0057

0.0400 0.0672 0.0563 0.0578 0.0581 0.0581 0.0583 0.0076

0.0378 0.0723 0.0587 0.0608 0.0611 0.0610 0.0614 0.0094

0.0353 0.0775 0.0606 0.0631 0.0635 0.0635 0.0638 0.0113

0.0327 0.0831 0.0624 0.0655 0.0659 0.0659 0.0660 0.0132

0.0298 0.0886 0.0638 0.0669 0.0671 0.0670 0.0671 0.0146

0.0285 0.0937 0.0670 0.0694 0.0695 0.0695 0.0693 0.0143
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 = 2Q/�TK
h − TK

c � ,

with the imposed temperature gradient. There are significant
differences between the �local� kinetic and �nonlocal� con-
figurational temperatures of the two thermostated particles.
Similarly, the kinetic and configurational temperatures of the
Newtonian particle linking them also differ somewhat. On
the other hand, the near proportionality of the internal energy
and the kinetic energy at equilibrium implies that local-
thermodynamic-equilibrium temperature profiles and kinetic
temperature profiles are essentially the same.

In every case the difference between the temperature of
the Newtonian particle with a heat flux �particle 1� and the
temperatures of the thermometric Newtonian particles with-
out a heat flux �particles 2 , . . . ,5� is rather small, but signifi-
cant. This difference is explored systematically in Table II,
where a relatively large kinetic temperature difference

TK
h = 3TK

c → �T/Tav = 1

is imposed. Symmetry suggests that the temperature differ-
ence should depend quadratically on the heat flux �this same
dependence is also predicted by “extended irreversible ther-
modynamics” �8–11,17,20,24��. These simple arguments are
wrong. In fact, the data in Table II suggest a square-root
rather than a quadratic dependence. Figure 6 shows the de-
pendence of the temperature differences TK

5 −TK
1 and TC

5 −TC
1

on the heat flux Q.
The data in both tables, calculated with all the Hooke’s-

law force constants equal to unity, are consistent with the set
of nonequilibrium inequalities

T� � TC � TK,

where T� is the thermometric temperature of the Newtonian
thermometer while TC and TK are the configurational and
kinetic temperatures of the Newtonian particle through

which heat flows. On the other hand, simply reducing the
force constant �from 1.0 to 0.3� linking that Newtonian par-
ticle to the thermometric chain �and leaving all the other
force constants unchanged� gives different inequalities

TC � T� � TK.

Whether or not the conducting Newtonian particle is “hotter”
or “colder” than the thermometric chain depends on the defi-
nition of temperature at that particle. The anistropicity of the
Newtonian particle’s temperature is relatively small in these
simulations and tends to decrease as the force constant link-
ing that particle to the thermometric chain is decreased. For
instance, TK

yy −TK
xx is reduced from 0.012 to 0.006 as the link-

ing force constant is reduced from 1.0 to 0.1. The sign of this
disparity, TK

yy �TK
xx, is nicely consistent with the intuitive rea-

soning of Jou and Casas-Vázquez �8,11�.
Evidently the predictions of extended irreversible thermo-

dynamics are not particularly useful in understanding the
temperature differences which result from small-system ther-
mometry with relatively large thermal gradients. The detailed

TABLE II. Kinetic temperatures �above� and configurational temperatures �below� are shown as functions of the long-time-averaged �
1�109 time steps� heat flux Q induced by the temperature difference TK

h −TK
c between two thermostated Nosé-Hoover particles. The first

seven columns correspond to the temperatures of the cold and hot particles, followed by the temperature of the Newtonian particles �the
Newtonian particles are the five shown in a vertical column in Fig. 3 and labeled from bottom to top�.

TK
c TK

h TK
1 TK

2 TK
3 TK

4 TK
5 Q

0.001 0.003 0.00134 0.00146 0.00146 0.00146 0.00147 0.00002

0.002 0.006 0.0029 0.0031 0.0031 0.0031 0.0031 0.00008

0.005 0.015 0.0089 0.0100 0.0100 0.0100 0.0101 0.00064

0.010 0.030 0.0207 0.0237 0.0238 0.0238 0.0242 0.00269

0.020 0.060 0.0447 0.0504 0.0508 0.0508 0.0509 0.00736

0.050 0.150 0.1066 0.1132 0.1142 0.1148 0.1152 0.01858

TC
c TC

h TC
1 TC

2 TC
3 TC

4 TC
5 Q

0.00125 0.00217 0.00135 0.00142 0.00140 0.00142 0.00145 0.00002

0.0025 0.0043 0.0029 0.0030 0.0030 0.0030 0.0031 0.00008

0.0075 0.0120 0.0095 0.0098 0.0097 0.0097 0.0099 0.00064

0.0159 0.0265 0.0218 0.0229 0.0229 0.0229 0.0234 0.00269

0.0311 0.0570 0.0470 0.0490 0.0492 0.0491 0.0494 0.00736

0.0673 0.1497 0.1104 0.1125 0.1133 0.1136 0.1138 0.01858

0.000

0.005

0.010

0 < Q < 0.02

Kinetic

Configurational

FIG. 6. Variation of the kinetic-temperature and configurational-
temperature differences with heat flux, using the data from Table II.
A quadratic variation in this plot �rather than the apparent square
root� corresponds to the “predictions” of extended irreversible
thermodynamics.
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results depend upon the details of the thermometric linkage.
Note that the configurational temperature of the hot �cold�
thermostated particle lies below �above� the kinetic tempera-
ture, a symptom of the configurational temperatures’ nonlo-
cality. Because the sign of TK−TC can vary, both mechanical
and thermodynamical effects are involved.

In order to show that the qualitative features of thermom-
etry for the �4 model are insensitive to temperature, we col-
lect typical results in Table II for sets of cold and hot tem-
peratures varying over two orders of magnitude. In each case
the kinetic temperatures of the cold and hot particles are
imposed by Nosé-Hoover thermostats. Then the long-time-
averaged temperatures, both kinetic and configurational, are
measured for all of the particles. The averaged heat flux is
included too. The configurational temperature of the “cold”
particle is uniformly higher than its kinetic temperature,
while the configurational temperature of the “hot” particle is
uniformly lower. This complexity is due to the nonlocal char-
acter of configurational temperature.

In summary, let us reiterate our findings. First, numerical
kinetic theory simulations �Fig. 2� demonstrate the local in-
stantaneous dynamical basis of kinetic temperature. Next,
stationary heat flows demonstrate an insensitivity of the non-
equilibrium temperature to system size �Fig. 4� and also
show that the kinetic and configurational temperatures shift
away from equilibrium can differ by more than a factor of 2.
This disparity occurs despite the near equivalence �Fig. 5� of
the kinetic temperature to the local-thermodynamic equilib-
rium temperature. Although it is possible to imagine and

compute many “temperatures” away from equilibrium, none
of which satisfies a zeroth law, we see no reason to prefer
any definition more complicated than that of the ideal-gas
thermometer. A mechanical, local, and instantaneous physi-
cal thermometer �which also corresponds well to a local ther-
modynamic equilibrium thermometer in the present case� is
appealing. It is the simplest choice.

A particularly interesting problem where locality is impor-
tant for nonequilibrium thermometry is the stationary shock-
wave. There the differences between the longitudinal and
transverse kinetic temperatures are extremely large �as mea-
sured by an ideal-gas thermometer� and the relaxation times
are determined by the atomic vibration frequency rather than
diffusive processes �13�. The extreme spatial gradients asso-
ciated with strong shock waves make the smoothing associ-
ated with configurational temperature undesirable.
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