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Stock return distributions: Tests of scaling and universality from three distinct stock markets
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We examine the validity of the power-law tails of the distributions of stock returns P{R > x}~ x~% using
trade-by-trade data from three distinct markets. We find that both the negative as well as the positive tails of the
distributions of returns display power-law tails, with mutually consistent values of (=3 for all three markets.
We perform similar analyses of the related microstructural variable, the number of trades N=N,, over time
interval At, and find a power-law tail for the cumulative distribution P{N > x}~ x~V, with values of £y that are
consistent across all three markets analyzed. Our analysis of U.S. stocks shows that the exponent values {» and
{y do not display systematic variations with market capitalization or industry sector. Moreover, since { and {y
are remarkably similar for all three markets, our results support the possibility that the exponents { and ¢y are

universal.
DOI: 10.1103/PhysRevE.77.037101

Define the “log return” of stock price S(f) over a time
interval Ar: R=R,,(r)=log S(t+Ar)—log S(¢) [1]. Analyses
of returns of individual stocks [2,3] and stock indices [4]
have shown that the cumulative distribution of returns is well
fit by a power-law asymptotic behavior with tail exponent {,

P{R > x} ~ x7*r. (1)

Based on analysis of tick data for the 1000 largest USA
stocks, Refs. [3,4] report values of {z=3 for both the posi-
tive and negative tails for time scales Ar<<1 day up to a few
weeks. Qualitatively similar results for currency exchange
fluctuations as well as stocks can be found in Refs. [5-13].

The tail exponent {z=3 [Eq. (1)] implies that P(R>x)
does not belong to the family of Lévy stable distributions
which requires {<<2 [14]. Thus it is particularly interesting
that the values of { seem similar for a wide range of stocks
and time scales.

Our goal is to understand whether the dispersion in the
measured exponent { across different stocks reflects statis-
tical variations around a “universal” value or genuine varia-
tions from stock to stock and market to market. We show that
the exponent g is universal in the following respects: (a) We
find that { does not show significant dependence on market
capitalization and (b) {3 does not show any systematic varia-
tions with industry sector. We further extend our analysis to
two quite different markets—the London Stock Exchange
(LSE) and the Paris Bourse—that show the validity of the
power-law distribution Eq. (1) for these markets with similar
estimates for the exponent (. Moreover, performing the
same analysis on a related and equally important variable,
the number of trades N=N,,(¢) in the time interval Az, we
show that the exponent {y describing the tails of the distri-
bution P{N>x}~x"%¥ is universal in the same way as .
This work complements recent work which reports universal
behavior of the power-law exponents of the distribution of
trade sizes and volume [15].

We analyze detailed trade-by-trade data from three dis-
tinct markets (same data set analyzed in Ref. [15]): (a) 1000
major USA stocks for the 2-yr period 1994-1995 (=108
records), (b) 85 major stocks traded on the London Stock
Exchange for the 2-yr period 2001-2002 which form part of
the FTSE 100 index (=4 X107 records), and (c) 13 major
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stocks traded on the Paris Bourse that form part of the CAC
40 index for the 4.7-yr period 3 Jan 1995-22 Oct 1999
(=2 X 107 records). To examine the behavior of the distribu-
tions over a larger time horizon, we analyze daily data from
(d) the CRSP database for 422 stocks for the 35-yr period Jan
1962-Dec 1996.

For each of the 85 UK stocks, we examine the cumulative
distribution of returns for Ar=5 min [Fig. 1(a)]. For each
stock 7, we find that the cumulative distribution is consistent
with a power law [Eq. (1)] with exponent (. Figure 1(b)
shows the exponent estimates obtained using Hill’s estimator
for the positive and negative tails for each of the 85 stocks.
We obtain mean values

2.96 = 0.05 [positive tail],
2.88 = 0.04 [negative tail].

Ro= @)
Note that these results are consistent with previous results for
USA stocks [3] and indices [4].

We find similar results for each of the 13 Paris Bourse
stocks. Figure 1(c) shows that the cumulative distribution
P{R > x} displays power-law tails as in Eq. (1). We obtain the

mean values
Bourse _ 3.13 = 0.08 [positive tail], )
R 3.03 = 0.06 [negative tail],

which are consistent with previous findings for the USA data
[3] and the above results for the LSE data.

One of the striking features of the exponent {z in Eq. (1)
is that the estimates of {; seem to be similar for all 1000
stocks analyzed in Ref. [3], with some dispersion around
{r=3 over intraday time scales. Our analysis extends these
results and shows consistent values among all stocks for both
the LSE and the Paris Bourse data, raising the interesting
possibility that the actual value of the exponent { is “uni-
versal” and the dispersion in exponent values may be purely
statistical around a “true” value. To investigate this possibil-
ity further, we examine for the USA data the dependence of
{ estimates on stock-specific factors such as industry sector
and market capitalization.

Figure 2 shows for each of the 1000 USA stocks the es-
timates of { for the positive and negative tails plotted as
functions of the average market capitalization of the stock in
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FIG. 1. (a) Cumulative distribution function P{R > x} for the 85
largest stocks that form part of the FTSE 100 index and survived
through the 2-yr period 2001-2002. Here the Af=5 min returns of
each stock have been normalized to zero mean and unit variance.
(b) Estimates of the exponent { obtained using Hill’s method. Ex-
ponent estimates for the positive tail (top panel) and negative tail
(bottom panel) for which we obtain mean values {z=2.96+0.05
and {p=2.88 +0.04 for the positive and negative tails, respectively.
(c) Cumulative distribution function P(R>x) for the 13 Paris
Bourse stocks that form part of the CAC40 index for the 4-yr period
1995-1999. Here the Ar=5 min returns of each stock have been
normalized to zero mean and unit variance.

the 2-yr period. We find only a statistical dispersion around
the mean value with no systematic dependence on market
capitalization [cf. caption of Fig. 2].

To analyze the dependence on the industry sector, we ex-
amine the exponent estimates for each stock as functions of
the corresponding industry sector. To categorize each stock
by industry sector, we use the Standard Industry Classifica-
tion (SIC) code [25]. Figure 3 shows that { as a function of
the first two digits of the SIC code (which shows major
industry sectors) displays only a narrow scatter around the
dashed lines which represent the mean value—consistent
with the possibility that all individual distributions are char-
acterized by the same power-law exponent.
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FIG. 2. Estimates of exponent {j that describe the tail behaviors
of the Ar=15 min returns for 1000 largest U.S. stocks from the
TAQ database shows no clear dependence on market capitalization.
Each point shows the average value of { for each market capitali-
zation group, and the groups are spaced uniformly in logarithmic
scale. The regression A+Blogx gives an estimate of
B=-0.04=0.04 (positive tail) and —0.01 = 0.04 (negative tail) with
negligible values of R?.

Next we focus on the statistical properties of the number
of trades N=N,,(¢) in the interval Az. The statistics of N is
important for understanding the behavior of returns and
share volume [17-24]. Analysis [16] of the statistics of N for
the 1000 largest U.S. stocks (same as the USA data in our
analysis) shows that the simplistic view of describing the
dynamics of N by a Poisson process is not consistent in the
following two respects: (a) The cumulative distribution
P{N>x} is found to display a power-law tail and (b) N dis-
plays long-range correlations that decay as a power law. Here
we analyze the LSE and Paris Bourse data. Moreover, for the
USA data, we analyze the dependence of the tail exponent {y
on market capitalization and industry sector.

Previous work [16] reports that the number of trades in At
displays a power-law asymptotic behavior,

P{N > x} ~x~*N, (4)

with £y°*=3.40=0.05.
To test whether the power-law distribution of N holds for
other markets, we first examine the tick-by-tick data for the
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FIG. 3. Tail exponent as a function of the SIC code shows no
clear dependence on the industry sector. Here we have binned using
the first two digits of the SIC code [25] which shows major industry
sectors. Points farthest from the mean have large standard errors
and occur when only a few stocks contribute. The points at SIC
code 0 show the 73 stocks in our sample of 1000 for which we did
not have the corresponding SIC codes.
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FIG. 4. (a) Cumulative distribution P{N>x} for 13 stocks
which form part of the CAC40 index of the Paris Bourse for the
4-yr period (1995-99). Power-law regression gives the value {y
=3.240.06 (x> 10). (b) Tail exponent obtained using Hill estima-
tor as a function of estimation threshold shows an increase followed
by a plateau behavior around {y=3.25.

Paris Bourse stocks. We use data for the 13 largest stocks
that are part of the CAC 40 index and survived through the
~4.7-yr period 4 January 1995-22 October 1999.

For each stock, we find that the cumulative distribution
P{N>x} displays a power-law functional form for large x.
The exponents characterizing the distribution are consistent
across all stocks and scaling N by its first centered moment
we find good data collapse. Under the assumption that the
underlying distributions are identical, we use the scaled data
to improve the tail statistics. Figure 4(a) shows that the dis-
tribution is consistent with a power law as in Eq. (4) with an
exponent {5™""*¢=3.24 + 0.06.

Analyzing the Hill exponent estimate as a function of the
number of tail events used in the estimation procedure, we
find a region around {=3.25 around the tail, showing that
the exponent estimate is robust with the number of tail
events. Figure 4(d) shows the analogous plot where the Hill
exponent estimate is plotted as a function of the estimation
threshold instead of the number of tail events. We find an
increase of the exponent estimate {y followed by a plateau
around

Bourse — 323 +0.12. (5)

We use the threshold-independent Meerschaert-Scheffler
(MS) estimator [26] to obtain a separate estimate of the tail
exponent and find {y*""*¢=2.99 = 0.03.

We next analyze the statistics of the number of trades,
using the UK LSE database. For each of the 85 stocks, we
construct a time series of N, for Ar=5 min. We find that
individual distribution functions P{N>x} show power-law
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FIG. 5. (a) Estimates of the exponent {y for each stock in our
sample using Hill’s estimator with an estimation threshold of 4
yields an average exponent of {y=3.46 %+ 0.04. For each stock N has
been normalized by its first centered moment. Performing the same
estimation for larger thresholds gives consistently larger exponents
{y=3.90+0.05 and {y=4.41%=0.09 for five and seven times the
average, respectively, although this increase is an artifact of the
estimator [15]. (b) To obtain a reliable estimate of the exponent ¢y,
we use the MS estimator which does not rely on an estimation
threshold and obtain a mean value {y=3.42+0.02.

asymptotic behavior consistent with Eq. (4). We apply Hill’s
estimator to the 85 stocks in our database and find similar
exponent values for each stock [Fig. 5(a)]. We obtain a mean
exponent value

OSE=3.46 + 0.04, (6)

which is consistent with the behavior of ¢y for the USA data
in Eq. (6). Since Hill’s estimator displays a dependence on
the estimation threshold, we apply the MS estimator to the
data to obtain a threshold-independent estimate for the expo-
nent {y. Figure 5(b) shows the MS estimate of {y for the
same set of stocks and finds a mean value {5
=3.42+0.02.

We next test whether the estimates of the exponent {y
show any systematic variations with stock-specific variables
such as market capitalization and industry sector. Figure 6(a)
shows that the exponent estimates of ¢ for Ar=15 min ob-
tained from the TAQ database shows no statistically signifi-
cant dependence on the market capitalization. Although a
log-linear regression y=A logx+B gives a slope A
=0.10*£0.02, the statistical significance of this relation is
small as indicated by a negligible R>~0.02. We perform the
same regression using exponent estimates obtained from the
MS estimator and find similar results: A slightly positive
slope with little statistical significance. Based on our statis-
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FIG. 6. (a) Hill estimates of the tail exponents {y plotted against
the average market capitalization for the TAQ data. Here we have
binned logarithmically in market capitalization so that each point
represents the average (y for stocks belonging to that group. A
logarithmic regression y=A log x+B on the data without any bin-
ning gives B=0.10+0.02 with negligible R?=0.02. We repeat this
test using {y from the MS estimator and find no dependence on
market capitalization. (b) Average number of trades over the inter-
val Ar=5 min for USA stocks as a function of average market
capitalization in the 2-yr period 1994-95.

tics, we conclude that ¢, does not show any systematic varia-
tions with market capitalization.

Although the functional form Eq. (4) and the exponent
values do not show significant dependence on market capi-
talization (S), the average number of trades (N) for each
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FIG. 7. (a) Estimates of the tail exponent {y obtained using
Hill’s estimator as a function of the SIC codes which denote indus-
try sector. Here we have grouped stocks by the first two digits of the
SIC code which shows major industry sectors. (b) Same as (a) but
using the MS [26] estimator shows a less dispersed plot confirming
the lack of dependence on industry sector as seen in (a).

stock displays a power-law dependence on market capitali-
zation (N) ~ S# with an exponent $=0.68 = 0.02. Similar re-
sults can be found in Ref. [27].

Figure 7(a) shows that ¢, obtained using Hill’s estimator
[28] does not display any significant dependence on industry
sectors. Similar results are found using the MS estimator
[Fig. 7(b)].
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