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The standard lattice Boltzmann equation �LBE� is inadequate for simulating gas flows with a large Knudsen
number. In this paper we propose a generalized lattice Boltzmann equation with effective relaxation times
based on a recently developed generalized Navier-Stokes constitution �Guo et al., Europhys Lett. 80, 24001
�2007�� for nonequilibrium flows. A kinetic boundary condition corresponding to a generalized second-order
slip scheme is also designed for the model. The LBE model and the boundary condition are analyzed for a
unidirectional flow, and it is found that in order to obtain the generalized Navier-Stokes equations, the relax-
ation times must be properly chosen and are related to the boundary condition. Numerical results show that the
proposed method is able to capture the Knudsen layer phenomenon and can yield improved predictions in
comparison with the standard lattice Boltzmann equation.
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I. INTRODUCTION

Small-scale gaseous flows under atmospheric pressure
have received particular attention in recent years with the
rapid development in microscience and nanoscience and
technology �1–3�. The mean free path of the gas, say �, is
usually not very small in comparison with the characteristic
length of the flow regions, L. As such, the Knudsen number
of the flow, Kn=� /L, may be relatively large, and the con-
tinuum assumption may break down. Consequently, the
Navier-Stokes equations based on the continuum assumption
will fail to work for such flows.

On the other hand, it is well accepted that the Boltzmann
equation can be used to model gas flows ranging from the
continuum regime �Kn�0.001� to free molecular regime
�Kn�10� �4�. Therefore, the Boltzmann equation can serve
as a good base for developing reasonable numerical methods
for microscale gas flows. Actually, some methods based on
the Boltzmann equation have been proposed recently �5–8�.
Particularly, the lattice Boltzmann equation �LBE� method
has been receiving increasing interests since 2002 �7–22�.
However, the applications of the LBE for microscale gas
flows are still very premature, and some recent studies have
revealed that most of the available LBE models for microf-
lows are inadequate for flows in the transition regime �Kn
�0.1� �21,22�.

The failure of the standard LBE for high-Kn flows can be
attributed to its insufficient capability for capturing the
Knudsen layer �KL� or the kinetic boundary layer near solid
surfaces. The thickness of the KL is usually in the order of
the mean free path of the gas. Outside the KL the collisions
between gas molecules are sufficient and the Navier-Stokes
equations can be used to describe the gas motion. Within the
KL, however, the intermolecular collisions become insuffi-
cient so that the quasithermodynamic-equilibrium assump-
tion, upon which the Navier-Stokes equations depend, does
not hold any more, and the Navier-Stokes model will fail to
work. Since the standard LBE is only accurate at the Navier-

Stokes level as an approximation to the Boltzmann equation
�21–24�, or in other words a numerical scheme for the
Navier-Stokes equations, it is not surprising that the standard
LBE is incapable of describing the KL, and will fail to work
for high-Kn flows where the KL takes a large portion of flow
domain.

Recently some efforts have been made to improve the
capability of LBE for high-Kn flows. One approach, and
perhaps the most natural way, is to increase the approxima-
tion accuracy to the continuous Boltzmann equation �CBE�,
since the LBE is a discrete approximation to the CBE that is
capable of describing a gas flow both in and outside the KL.
The most challenging aspect of this approach lies in the need
to obtain a discrete-velocity set with sufficient symmetry so
that discrete moments can match the continuous counterparts
at a higher order than the Navier-Stokes levels. Some ways
for obtaining a high-order discrete-velocity set have been
proposed recently �19,22�. It has been shown that the high-
order LBE models can improve the predictions for nonequi-
librium flows �22,25,26�, but two problems may hinder the
applications of this method: First, usually we have no a pri-
ori knowledge on what the order of the discrete velocity set
should be for a specific flow, and second, the use of a high-
order discrete-velocity set usually means a large computa-
tional cost.

Another approach for capturing the KL with the LBE
framework is to make use of an effective relaxation time. As
shown in Ref. �21�, the collisions between the gas molecules
and the solid wall have a significant influence on the mean
free path for a confined gas, and thus the relaxation time�s�.
Therefore, by using an effective relaxation time in which the
effects of the gas-solid interaction are taken into account, it
is possible to capture the KL within the usual LBE frame-
work. Some recent independent studies have shown that the
Navier-Stokes-aimed LBE models with an effective relax-
ation time can indeed improve the flow predictions within
the KL �20,21�. The most critical issue of the effective-
relaxation-time method is how to obtain a reasonable effec-
tive relaxation time.

The objective of the present work is to develop a gener-
alized LBE model with multiple effective relaxation times
for gaseous microscale flows within the standard LBE frame-*Corresponding author: zlguo@mail.hust.edu.cn
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work. The model is based on a recently developed extended
Navier-Stokes constitution that can be effectively used to
describe the flows within KL �27�, and the most appealing
feature of the extended constitution is that it is derived rig-
orously and contains no empirical parameters. The rest of the
paper is organized as follows. In Sec. II, we will give a brief
description of the extended Navier-Stokes formulation. The
LBE model with multiple effective relaxation times is
present in Sec. III, and a kinetic boundary condition for the
LBE is constructed and analyzed in Sec. IV. Some numerical
tests are performed in Sec. V, and finally a summary is given
in Sec. VI.

II. EXTENDED NAVIER-STOKES MODEL WITH
KNUDSEN LAYER EFFECT

A. Generalized Navier-Stokes constitution

The Knudsen layer is the kinetic boundary layer formed
when a gas flows over a solid surface �Fig. 1�. The gas mo-
tion within the KL cannot be properly described by the
Navier-Stokes equations because of the insufficient collisions
in this region. In order to capture the KL while keeping the
simple form of the Navier-Stokes model, Guo et al. proposed
an extended Navier-Stokes formulation �27�,

��r� = − �e�r��̇�r� , �1�

where ��r�, �e�r�, and �̇�r� are the local shear stress, effec-
tive dynamic viscosity, and strain rate at position r, respec-
tively. The key point of this model lies in the definition of the
effective viscosity �e. In Ref. �27� this was achieved by ex-
tending the relationship between the viscosity and the mean
free path in the gas kinetic theory �4�

�e =
�e

p
��RT

2
, �2�

where p=�RT is the pressure, with � the density, R the gas
constant, and T the gas temperature. Therefore, once the ef-
fective mean-free-path �e is determined, the new Navier-
Stokes model will be closed.

The effective mean free path �e in a gas system bounded
by a solid wall is always smaller than that in an unbounded
system, because the free paths of some molecules will be cut

off by the wall. The effect of wall confinement on the mean
free path can be expressed through a function �,

�e = ���r,Kn� . �3�

The exact expression of � can be derived rigorously through
the probability distribution function of the free path of a gas
molecule �27,28�, and is usually dependent on the flow ge-
ometry. For instance, for a gas bounded between two parallel
plates located at y=0 and y=H, respectively, the mean free
path of the molecules in the plane located at 0	y	H is �27�

��y� =
1

2
�
� y

�
� + 
�H − y

�
�	 ,

where � is the mean free path for an unbounded system, and
the function 
 is defined as


��� = 1 + �� − 1�e−� − �2Ei��� , �4�

where Ei�x� is the exponential integral function defined by

Ei�x� = 

1

�

t−1e−xtdt .

From Eqs. �2� and �3� we can obtain the effective geometry-
dependent viscosity as

�e�y� = ���y� , �5�

where � is the viscosity for an unbounded gas or that far
away from the wall.

It is noted that 
�x� is a monotonically increasing function
satisfying 
�0�=0 and 
���=1.0. Therefore, if the top plate
is removed, i.e., H→�, the effective viscosity becomes

�e�y� =
�

2
�
� y

�
� + 1	 .

This suggests that the effective viscosity will approach the
bulk one far away from the wall, but is exactly one half of
the bulk one at the wall. The fact that �e�0�=� /2 is consis-
tent with some previous independent studies �29,30�.

For a more complicated geometry, the exact formulation
of the geometric function ��r ,Kn� may be quite compli-
cated. However, if the local curvature of the wall is not large,
a more effective way may be to use the present formulation
as a “wall function,” just the same as that proposed in Ref.
�30�. It has been shown that this approach can indeed im-
prove predictions within the KL �27�. Hereafter, we will call
the model using the effective viscosity “generalized Navier-
Stokes equations.”

B. A generalized second-order slip boundary condition

In practical applications the generalized Navier-Stokes
equations with the extended constitution must be supple-
mented by some suitable boundary conditions. As illustrated
in Fig. 1, the true or microscopic velocity at the wall, us, is
usually different from the virtual or macroscopic slip veloc-
ity us

ns extrapolated from the Navier-Stokes velocity in the
bulk region. For instance, for the Kramer’s problem these
two slip velocities are given approximately by �40�

Bulk flow

Knudsen
layer

u

Actual velocity

Navier−Stokes
velocity

u us ns

w

s

FIG. 1. �Color online� Schematic of the Knudsen layer.
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us =
2 − 




�1 − 0.1817
����nu�KL, �6a�

us
ns =

2 − 




�1 + 0.1621
����nu�KL, �6b�

where 
 is the accommodation coefficient, n is the unit vec-
tor normal to the wall, and the subscript “KL” means evalu-
ating the derivatives at the KL boundary. As 
=1, i.e., the
wall is fully diffusive, both us and us

ns are in good agreement
with the exact solutions of the linearized Boltzmann �BGK�
equation �4�. The velocity outside the KL is linear for the
Karmer’s problem. Cercignani also proposed a second-order
slip boundary condition for us

ns based on the solution of Bolt-
zmann equation for the Poiseuille flow where the velocity
outside the KL is nonlinear,

us
ns = �����nu�wall −

1

2
�1

2
+ �2���2��n

2u�wall, �7�

where �=1.016 and ��= �2 /����.
Motivated by Eqs. �6� and �7�, in this work we propose a

heuristic second-order slip boundary condition for the micro-
scopic slip velocity us,

us ª u�0� − uw = A1��e�nu�wall − A2��e�n��e�nu��wall, �8�

where u�0� is the gas velocity at the wall, uw is the wall
velocity, and the two slip coefficients are given by

A1 =
2 − 




�1 − 0.1817
�, A2 =

1

�
+

1

2
A1

2. �9�

This is a generalization of the boundary condition proposed
in Ref. �27� where the two parameters A1 and A2 were set to
be 1.0 and 0.5, respectively. It should be emphasized that the
mean free path appearing in the above boundary condition is
a locally position-dependent variable. If we replace �e with
the constant bulk mean free path �, Eq. �8� is very similar to
the second-order slip boundary condition that is widely used
for the classical Navier-Stokes equations �3�. It is also noted
that owing to the use of the local effective mean free path,
the slip velocity given by Eq. �8� is smaller than that of the
classical one given by Eq. �7� as 
=1. This is reasonable
since the microslip velocity us is usually smaller than the
extrapolated Navier-Stokes slip velocity us

ns. In Ref. �27� it
has been shown that the generalized Navier-Stokes model
together with the heuristic boundary condition can give good
predictions for flows with a large Kn.

III. GENERALIZED LBE WITH MULTIPLE EFFECTIVE
RELAXATION TIMES

The LBE tracks the evolution of the discrete distribution
functions for the gas molecules,

f i�x + ci�t,t + �t� − f i�x,t� = �i�f� + �tFi, i = 0,1, . . . ,b − 1,

�10�

where f i�x , t� is the distribution function associated with the
gas molecules moving with the discrete velocity ci at posi-

tion x�L and time t �L is a regular lattice with a spacing
�x�; Fi is a forcing term accounting for the body force expe-
rienced by the molecules, and �i�f� is the discrete collision
operator. The most widely used collision operator in LBE is
the single relaxation time or BGK model �31�,

�i = −
1

�
�f i − f i

�eq�� , �11�

where f i
�eq� is the discrete equilibrium distribution function.

Models with multiple relaxation times �MRT� were also pro-
posed �32,33�, where the collision operator is given by

�i = − �
j

�M−1SM�ij�f j − f j
�eq�� , �12�

where M is a b�b transform matrix projecting the discrete
distribution functions f i onto the moment space m=Mf
where f= �f0 , f1 , ¯ , fb−1�T, and S=diag��0 ,�1 , ¯ ,�b−1�−1 is
a non-negative diagonal matrix with �i being the relaxation
time for the ith moment. As �i=�, the MRT model reduces to
the BGK model. The equilibrium distribution function in ei-
ther the BGK or the MRT model depends on the gas density,
velocity, and temperature. For an isothermal system, the tem-
perature appears only as a free parameter, and the density �
and momentum �u in f i

�eq� are defined as

� = �
i

f i, �u = �
i

ci f i +
�t

2
F . �13�

In both the BGK and MRT models, the discrete velocity
set with sufficient symmetry and the relevant equilibrium
distribution functions must be chosen appropriately so that
the LBE is accurate for the intended fluid dynamics. In most
of the available LBE models, these components are mainly
designed for continuum flows that can be described by the
Navier-Stokes equations. Since the aim of our LBE model is
to solve the generalized Navier-Stokes equations described
in the preceding section, we will also use the velocity set and
equilibrium distribution functions employed in the standard
LBE. For simplicity and without loss of generality, we shall
consider the two-dimensional nine-velocity �D2Q9� MRT
model in this work, where the velocity set is given by

ci = ��0,0�c , i = 0,

��1,0�c, �0 � 1�c , i = 1 – 4,

��1, � 1�c , i = 5 – 8,

 �14�

where c=�x /�t, which is taken to be the velocity unit �i.e.,
c=1� in this work.

Based on the discrete velocity vectors given by Eq. �14�,
we can define nine discrete velocity moments of the distri-
bution function,

m ª Mf = ��,e,�, jx,qx, jy,qy,pxx,pxy�T, �15�

where f= �f0 , f1 , ¯ , f8�T. These moments have clear physical
significances: m0=� is the density, m1=e are related to the
total energy, m2=� is related to energy square, �m3 ,m5�
ª �jx , jy� are the momentum components, �m4 ,m6�
ª �qx ,qy� is related to the heat flux, and m7= pxx and m8
= pxy are related to the diagonal and off-diagonal components
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of the stress tensor, respectively. With the ordering of mo-
ments specified by Eq. �15�, the relaxation times in the diag-
onal matrix S are given by

S = diag���,�e,��,� j,�q,� j,�q,�s,�s�−1, �16�

and the corresponding transform matrix M for the D2Q9
model is given by

M =�
1 1 1 1 1 1 1 1 1

− 4 − 1 − 1 − 1 − 1 2 2 2 2

4 − 2 − 2 − 2 − 2 1 1 1 1

0 1 0 − 1 0 1 − 1 − 1 1

0 − 2 0 2 0 1 − 1 − 1 1

0 0 1 0 − 1 1 1 − 1 − 1

0 0 − 2 0 2 1 1 − 1 − 1

0 1 − 1 1 − 1 0 0 0 0

0 0 0 0 0 1 − 1 1 − 1

� .

�17�

The equilibrium distribution function in Eqs. �11� and
�12� can be expressed as

f i
�eq� = wi��1 +

ci · u

cs
2 +

�ci · u�2

2cs
4 +

u · u

2cs
2 	 , �18�

where w0=4 /9, w1�4=1 /9, and w5�8=1 /36, and cs=c /�3 is
the sound speed. For consistency, the forcing terms Fi’s
should be given by

F = M−1�I −
1

2
S�MF̄ , �19�

where I is the unity matrix, F= �F0 ,F1 , ¯ ,F8�T, and F̄
= �F̄0 , F̄1 , ¯ , F̄8�T with

F̄i = wi� ci · F

cs
2 +

uF:�cici − cs
2I�

cs
4 	 . �20�

The forcing term given by Eq. �19� is a generalization of that
for the BGK model as proposed in Ref. �34�.

With the equilibria given by Eqs. �18� and the forcing
term given by Eq. �19�, the Navier-Stokes equations can be
derived from the MRT-LBE,

�t� + � · ��u� = 0, �21a�

�t��u� + � · ��uu� = − �p + � · �2��S + ���� · u�I� + F ,

�21b�

where p=cs
2�=�RT is the pressure with T being the system

temperature and R the gas constant, Sij = ��iuj +� jui� /2 is the
strain rate, � and � are the kinematic shear and bulk viscosi-
ties given by �33�

� = cs
2��s −

1

2
��t, � =

cs
2

2
��e −

1

2
��t. �22�

Therefore, in order to solve the extended Navier-Stokes
model with the LBE �10�, the relaxation time �s should be
chosen as

�s =
1

2
+

�e

p�t
, �23�

which can also be rewritten in terms of the Knudsen number
based on Eqs. �2� and �3� as

�s =
1

2
+� 6

�
N Kn��r,Kn� , �24�

where N=h /�x is the grid number in the direction of the
characteristic length, and we have made use of the fact that
c=�3RT=1 for the LBE model in the deduction. The other
relaxation times can be chosen with some freedom due to the
decoupling between the relaxation processes of different mo-
ments �33�.

IV. KINETIC BOUNDARY CONDITION FOR THE
GENERALIZED LBE

A. The combined bounce-back and/or specular-reflection
boundary condition

In practical applications, suitable boundary conditions
must be supplied for the LBE. Some schemes have been
proposed for the BGK-LBE in the literature, such as the
discrete Maxwell’s diffuse-reflection schemes �10,35� and
the combined bounce-back and specular-reflection �CBBSR�
schemes �17,36�. Recently, the two schemes were analyzed
for both the BGK- and MRT-LBE with �a� constant relax-
ation time�s� �37,38�, and it was found that they are identical
in a parametric range and both contain some discrete effects.

In this work, we shall propose a generalized CBBSR
model for the proposed MRT-LBE. For simplicity and with-
out loss of generality, we consider a flat surface as sketched
in Fig. 2. It is noted that the lattice is arranged so that the
solid wall locates at j=1 /2, where j is the index of the grid
line at yj = �j−0.5��x. After the collision substep at time t at
every node, i.e.,

f̃ i�x,t� = f i�x,t� + �i�x,t� + �tFi,

the streaming substep,

0 1

2

3

4

56

7 8

j=1

j=2

a

x

y
δx

FIG. 2. �Color online� Schematic of the flow geometry and lat-
tice arrangement.

GUO, ZHENG, AND SHI PHYSICAL REVIEW E 77, 036707 �2008�

036707-4



f i�x + ci�t,t + �t� = f̃ i�x,t� ,

can be performed for all nodes at j�1. But for the nodes at
j=1, only the distribution functions f0

1, f1
1, f3

1, f7
1, and f8

1 can
be determined after the streaming, the remaining distribution
functions, f2

1, f5
1, and f6

1, cannot be provided by the streaming
step and must be specified according to the kinetic boundary
condition at the wall. For the CBBSR boundary condition,
they are given by

f2
1 = f̃4

1 + 2r�c2 · uw/cs
2,

f5
1 = r f̃7

1 + �1 − r� f̃8
1 + 2r�c5 · uw/cs

2,

f6
1 = r f̃8

1 + �1 − r� f̃7
1 + 2r�c6 · uw/cs

2 �25�

where 0	r	1 is the portion of the bounce-back part in the
combination. In the CBBSR scheme, the parameter r plays
an important role in simulations. In most previous applica-
tions, r was chosen quite arbitrarily. But recently it was
shown that even for the LBE with �a� constant relaxation
time�s�, r depends on a number of factors, including the
Knudsen number, the lattice size, and the relaxation time�s�,
and it must be carefully chosen in order to obtain a reason-
able solution �37,38�. It can be expected that for the present
LBE with the locally changing relaxation time �s, the influ-
ences on r would be more complicated. In the subsequent
subsection we will present an analysis of the CBBSR scheme
to investigate this problem.

B. Analysis of the CBBSR scheme

To simplify the analysis, we consider the steady incom-
pressible Poiseuille flow driven by a constant force F
= �Fx ,Fy�=��a ,0�, where we assume that

��

�t
= 0, � = const, v = uy = 0,

��

�x
= 0, �26�

where � is an arbitrary flow variable. Under such conditions,
by expanding the left-hand side of the LBE �10� into a Taylor
series in �t up to second order, we can obtain that

ciy�yf i +
�t

2
ciy

2 �y
2f i = �i��f� + Fi, �27�

where ��=M−1S�M�f− f�eq�� with S�=S /�t. Multiplying
both-hand sides of Eq. �27� by the matrix M, we can obtain
the following equations for the moments:

�t

2
�y

2�2�

3
+

e

6
−

pxx

2
	 = 0, �28a�

�yqy +
�t

2
�y

2�2�

3
+

e

2
+

�

3
−

pxx

2
	 = −

e + 2� − 3�u2

�e�t

+
6��e − 0.5��au

�e
, �28b�

�yqy +
�t

2
�y

2� e

3
+

�

3
+ pxx	 = −

� − � + 3�u2

���t
−

6��� − 0.5��au

��

,

�28c�

�ypxy +
�t

2
�y

2�2�u

3
+

qx

3
	 = �a , �28d�

�ypxy +
�t

2
�y

2�2�u

3
+

qx

3
	 = −

qx + �u

�q�t
−

��q − 0.5��a

�q
,

�28e�

�y�2�

3
+

e

6
−

pxx

2
	 = 0, �28f�

�y� e

3
+

�

3
+ pxx	 +

�t

2
�y

2qy = −
qy

�q�t
, �28g�

1

3
�yqy +

�t

2
�y

2�−
2�

9
+

2

18
+

�

9
+

pxx

2
	

= −
pxx − �u2

�s�t
+

�2�s − 1��au

�s
, �28h�

�y�2�u

3
+

qx

3
	 +

�t

2
�y

2pxy = −
pxy

�s�t
. �28i�

Equations �28d� and �28e� allow one to identify that

qx = − �u − �2�q −
1

2
��a�t, �29�

while from Eqs. �28d� and �28i� we can obtain that

�y� �s − 0.5

�s
pxy	 = �a + O��t

2� , �30a�

�y�2�u

3
+

qx

3
+

�t�a

2
	 = −

pxy

�s�t
+ O��t

2� . �30b�

Equations �29� and �30� indicate that the LBE �10� is actually
a second-order numerical scheme for the following equation:

�y��e�yu� − 2�t�y��ea�y�q� = − a , �31�

where �e= 1
3 ��s−0.5��t. It is noted that Eq. �31� is not the

exact Navier-Stokes equation for the Poiseuille flow due to
the second term on the left-hand side, which is nonzero in
general. However, this term can be canceled in the proposed
MRT-LBE by setting �q to be a constant, since the relaxation
times can be chosen independently. Obviously, this is un-
reachable for the BGK-LBE model which uses a unique re-
laxation time.

The constant value of �q in the MRT-LBE can be deter-
mined from the boundary condition. Actually, some previous
studies for the LBE with constant relaxation times �38,39�
has shown that the choice of �q has a significant influence on
the accuracy of a specific kinetic boundary condition. To see
this point more clearly, now we make a detailed analysis for
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the proposed CBBSR scheme. First, based on the relation-
ship between the distribution functions f and the moments m,
we have

f1 − f3 =
1

3
jx −

1

3
qx, �32a�

f5 − f6 =
1

3
jx +

1

6
qx +

1

2
pxy , �32b�

f8 − f7 =
1

3
jx +

1

6
qx −

1

2
pxy , �32c�

from which we can obtain that

jx = �u −
�t

2
�a . �33�

Similarly, we can also express the postcollision distribution
functions as

f̃1 − f̃3 =
1

3
j̃x −

1

3
q̃x, �34a�

f̃5 − f̃6 =
1

3
j̃x +

1

6
q̃x +

1

2
p̃xy , �34b�

f̃8 − f̃7 =
1

3
j̃x +

1

6
q̃x −

1

2
p̃xy , �34c�

where the postcollision moments are given by

m̃k = mk −
1

�k
�mk − mk

�eq�� + F̂k�t, �35�

for k=0,1 , . . . ,8, where the equilibrium moments and the
corresponding forcing term in the moment space are given

by m�eq�=Mf�eq� and F̂=MF= �I−S /2�F̄ˆ , respectively. Under
the conditions given by Eq. �26�, we have

jx
�eq� = �u, qx

�eq� = − �u, pxy
�eq� = 0, �36�

and

F̄
ˆ

jx
= �a, F̄

ˆ
qx

= − �a, F̄
ˆ

pxy
= 0. �37�

With these results, we can obtain from Eq. �35� that

j̃x = �1 −
1

� j
� jx +

�u

� j
+ �1 −

1

2� j
��a�t, �38a�

q̃x = �1 −
1

�q
�qx −

�u

�q
− �1 −

1

2�q
��a�t, �38b�

p̃xy = �1 −
1

�s
�pxy . �38c�

Furthermore, the unidirectional property of the flow suggests
that

f1 − f3 = f̃1 − f̃3. �39�

Then, from Eqs. �32a�, �33�, �34a�, �38�, and �39� we can
obtain that

qx = − �u − �2�q −
1

2
��a�t, �40a�

j̃x = �u +
�a�t

2
, �40b�

q̃x = − �u − �2�q −
3

2
��a�t. �40c�

With these results at hand, we can now investigate the slip
velocity us at the wall corresponds to the CBBSR scheme.
First, it is noted that the distribution functions at j=1 and 2
have the following relationship �see Fig. 2�:

f5
�2� − f6

�2� = f̃5
�1� − f̃6

�1�, f8
�1� − f7

�1� = f̃8
�2� − f̃7

�2�, �41�

where f i
�j�= f i�yj�, which gives that

pxy
�1� =

�s
�1���2�s

�2� − 1���u1 − �u2� − 3�a�t�
3��s

�1� + �s
�2� − 1�

, �42�

where uj =u�yj�, and we have made use of the assumption
that �q is a constant. On the other hand, the CBBSR scheme
�25� gives that

f5
�1� − f6

�1� = �1 − 2r�� f̃8
�1� − f̃7

�1�� . �43�

With the aid of Eqs. �32b�–�42�, we can obtain from the
above equation that

u2 = Au1 + B�ta , �44�

where

A =
2�r − 1��̃s

�1��̃s
�2� − r��̃s

�1� + 2�̃s
�2��

�̃s
�2��2�r − 1��̃s

�1� − r�
, �45�

B =
4r��̃s

�1� + �̃s
�2���̃q + �9 − 11r��̃s

�1� + �3 − 5r��̃s
�2� + 3r

2�̃s
�2��2�r − 1��̃s

�1� − r�
,

where �̃s
�j�=�s�yj�−0.5 and �̃q=�q−0.5.

By expanding u1 and u2 around y=0 up to O��x
2�, respec-

tively and making use of Eq. �31� with �q=const, we can
obtain the slip velocity us from Eq. �44� as

us = u�0� = L1�xu��0� − L2�x
2u��0� , �46�

where u�=�yu and u�=�y
2u, and

L1 =
3A − 9 − 2B�̃s��0��x

6�1 − A�
, L2 =

27 − 3A + 8B�̃s
�0�

24�1 − A�
,

�47�

where �̃s�=�y�̃s. With this result, we can now realize the gen-
eralized second-order slip boundary condition �8� with the
CBBSR scheme by properly choosing the parameter r and
the relaxation time �q. To this end, we first rewrite the heu-
ristic boundary condition �8� as
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us = �A1 − A2�e��0���e�0�u��0� − A2�e
2�0�u��0� . �48�

Then, from the relation between the mean free path and the
lattice spacing, �e�0�=��̃s�0��x where �=�� /6, we reex-
press Eq. �48� as

us = �A1 − A2�e��0����̃s�0��xu��0� − A2�2�̃s
2�0��x

2u��0� .

�49�

Comparing Eq. �49� with Eq. �46�, we can see that in order to
realize the boundary condition �8� with the CBBSR scheme,
the parameter r and the relaxation time �q must satisfy the
following two constraints:

L1 = �A1 − A2�e��0����̃s�0�, L2 = A2�2�̃s
2�0� . �50�

The solution of the above equation is very tedious due to
the nonconstant relaxation time �s. To simplify the algebra,
we expand �s

�1� and �s
�2� around y=0 up to O��x�, and neglect

all terms of O��x
2� in Eq. �50�. With such approximations, we

finally obtain that

r = �1 + �A1 +
�s��0��x

8�̃s
2�0� 	−1

, �51a�

�̃q =
3 + 24�2�̃s

2�0�A2

16�̃s�0�
+

�s��0��x�12 + 30�̃s�0��A1�
16�̃s

2�0�
.

�51b�

It can be seen that as the relaxation time �s is a constant, the
second terms in Eqs. �51a� and �51b� vanish, and the results
are in agreement with the previous results for the standard
MRT-LBE �38�. But for the present model these terms should
be included since �s changes locally.

V. NUMERICAL RESULTS

The MRT-LBE �10�, where the relaxation times �s and �q
are determined from Eqs. �24� and �51b�, respectively, to-
gether with the CBBSR boundary condition �25� where r is
determined from Eq. �51a�, are tested in this section by ap-
plying it to several typical microscale gas flows. In all of the
following simulations, we use A1= 2−



 �1−0.1817
� and A2
=�−1+A1

2 /2, where 
 is the accommodation coefficient. The
relaxation times are set as follows: �s is determined by the
Knudsen number given by Eq. �24�, �q is given by Eq. �51b�,
��=� j =1 for the conserved variables, and the remains are
given by �e=1.1 and ��=1.2. Actually we found that the
relaxations times except for �s and �q have negligible influ-
ences on the simulation results.

A. Test of accuracy

We first test the accuracy of the proposed MRT-LBE by
simulating the force-driven Poiseuille flow between two par-
allel plates. The boundary condition �25� are applied to the
two walls which are assumed to be fully diffusive �
=1.0�,
and periodic boundary conditions are applied to the inlet and
exit of the channel. In our simulations we use a lattice with
size Ny �4, where Ny is doubled from 4 to 512 successively.

The driven force a is set to be 10−7 so that the Mach number
is sufficiently small even for a finite Knudsen number.

In order to measure the relative error of the MRT-LBE,
we first try to obtain a reference velocity by solving the
Navier-Stokes equations with the effective viscosity given by
Eq. �5�. For the unidirectional Poiseuille flow, the Navier-
Stokes equations reduce to

�

�y
��e

�u

�y
	 + �a = 0,

which can be integrated effectively using a standard numeri-
cal quadrature. Here we use the trapezoidal rule with 4096
points which gives the grid-independent reference result. Af-
ter obtaining the reference velocity ur, the relative L2 error of
the LBE result can be defined as

E�u� =
�uLBE − ur�2

�ur�2
, �52�

where uLBE is the LBE result on a certain grid.
In Fig. 3 the L2 errors of the LBE at several Kn. The

slopes of the linear fittings for the cases of Kn=0.05, 0.1,
and 0.5 are 2.227, 2.180, and 2.074, respectively. This fact
indicates that the present MRT-LBE is a second-order
scheme for the Navier-Stokes equations, which is consistent
with our previous theoretical analysis.

B. Kramer problem

Now we apply the proposed MRT-LBE to the Kramer
problem to demonstrate its capability for capturing the
Knudsen layer. In this problem the gas fills the half space
y�0 bounded by a wall in the plane y=0 and is sheared by
a uniformly applied stress a at infinity �4�. For this problem,
the second term on the right-hand side of the heuristic
boundary condition �8� takes no effect since �y��e�yu�=0
everywhere, and therefore equation �8� essentially gives a
first-order slip boundary condition. In our simulations we did
find that A2 has no influence on the results.

In our simulations, the computational domain is 0	y
	20�� where ��= �2 /����, and a Ny �Nx=128�4 lattice is

1 10 100 1000
10

−6

10
−4

10
−2

10
0

10
2

Ny

E
(u

)

Kn

0.05

0.1

0.5

FIG. 3. �Color online� L2 error E�u� vs the grid number Ny in the
y direction.
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used so that the Knudsen layer can be well captured. Periodic
boundary conditions are applied to the left and right bound-
aries, and the proposed CBBSR boundary condition is ap-
plied to the bottom wall, while the no-slip bounce-back
scheme is applied to the upper infinite boundary moving with
a velocity u�=uNy−1+a�x /2.

In Fig. 4, the velocity profiles predicted by the present
MRT-LBE as 
 changes from 0.2 to 1.0 are shown and com-
pared with the results of the linearized Boltzmann equation
�40�. For comparison, the linear extrapolations from the ve-
locity profiles outside the KL are also shown. It is clearly
seen that the LBE results are in good agreement with the
solutions of the Boltzmann equation, and the nonlinearity of
the velocity profile within the Knudsen layer is successfully
captured. These observations demonstrate the potential capa-
bility of the present MRT-LBE model for capturing the flows
within KL.

C. Couette flow

The present MRT-LBE is also applied to the Couette flow
between two parallel plates with a distance H. The bottom
plate located at y=0 is kept stationary, and the top one lo-
cated at y=H moves with a constant velocity uw. In our
simulations, the channel height is set to be H=1.0, and the
mean free path is determined from the Knudsen number Kn,
which ranges from 0.01 to 1.5. All simulations are performed
on a Ny �Nx=128�4 lattice, and periodic boundary condi-
tions are again applied to the inlet and outlet of the channel,
and the CBBSR scheme is applied to the both plates. It is
again found that A2 has no influence on the simulation for
this problem.

In Fig. 5, the velocity profile at Kn=0.01 is shown and
compared with the results of the direct simulation Monte
Carlo �DSMC�, the standard MRT-LBE, and the classical
Navier-Stokes equations with a first-order slip boundary con-
dition, uwall−uw= ����yu�wall, where the signs � are for the

bottom and top plates, respectively. Clearly, with this small
Knudsen number the standard LBE, the present LBE, and the
Navier-Stokes model all predict a linear velocity profile that
agrees well with the DSMC data, and no obvious slip is
observed. The indistinguishable velocity profiles indicate
that the present LBE is equivalent to the standard LBE for
the classical Navier-Stokes equations for small Knudsen
number flows.

As shown in Fig. 6, apparent slip appears at both walls
with the increasing Kn. It is first noted that the velocity pro-
files predicted by the standard LBE and the classical Navier-
Stokes model are totally indistinguishable in all cases, and
both are linear in the whole region. On the contrary, the
present MRT-LBE and the DSMC both give nonlinear veloc-
ity profiles, although some discrepancies are observed for
higher Kn. Specifically, at Kn=0.1, the predictions of the
present LBE and the standard LBE �also the Navier-Stokes
model� show some slight differences, but both are still in
good agreement with the DSMC result. As Kn reaches to
0.25, the DSMC velocity profile becomes nonlinear near the
two walls, and the present LBE gives better predictions than
the standard LBE and Navier-Stokes within the two KLs. For
further larger Kn �0.25�Kn	1.0�, it is clearly seen that the
degree of slip increases with increasing Kn, and the standard
LBE and/or Navier-Stokes solutions start to deviate from
DSMC data more and more obviously, while those of the
present LBE are much better. These observations further
demonstrate the potential of the present LBE for capturing
the KL and the capability for simulating moderate Kn flows.
However, it is observed that at Kn=1.5, the present LBE
underpredicts the slip velocity obviously. One possible rea-
son for this deviation could be the heuristic slip boundary
condition �8�, which is motivated by the solution of the
Kramer problem where only one KL is involved. For the
Couette flow between two parallel plates, the two KL will
overlap for larger Kn and thus the boundary condition will be
inaccurate. More elegant boundary conditions that can treat
overlapping KLs are still desirable.

D. Poiseuille flow

Both the Kramer and the Couette flows are driven by an
applied shear stress, and the velocity profiles are linear out-

0 2 4 6 8 10 12
0

1

2

3

U

Y

σ=1

σ=0.6

σ=0.4

σ=0.2

FIG. 4. �Color online� Velocity profiles of the Kramer problem.
Solid line: MRT-LBE; dashed line: linear extrapolation; Symbol:
linearized Boltzmann equation �40�. Here Y =y /�� with ��
= �2 /����, and U=u /a�2RT.
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FIG. 5. �Color online� Velocity profile of the Couette flow at
Kn=0.01. Here Y =y /H and U=u /uw.
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side the KLs. Now we consider the planar Poiseuille flow
driven by a constant force a, which has a nonlinear velocity
profile in the whole region. In all of the following simula-
tions, we use the same parameters and boundary conditions
as those used in the Couette flow. For comparison, the stan-
dard MRT-LBE using the second-order slip boundary condi-
tion but with different slip coefficients are also applied to the
flow under the same condition. Here we use the term
“LBE-1” to denote the standard LBE using A1=1.1466 and
A2=0.9795 as proposed by Cercignani �4�, and “LBE-2” to
denote that using A1=1.11 and A2=0.61 as proposed by Had-
jiconstantinou �42� which is an improved version of the Cer-
cignani’s.

In Fig. 7 the velocity profiles normalized by ur

=aH�2 /RT�1/2 at Kn=2k /�� with k ranging from 0.1 to 10
are compared with the solutions of the linearized Boltzmann
equation �41�. It is seen that at k=0.1 �Kn=0.1128�, the three
LBE profiles are all in good agreement with the solution of
the Boltzmann equation, although it can still be observed that
the present LBE gives the best prediction. As k increases to
0.2, the LBE-1 gives an obvious overestimation in the whole
region; The LBE-2, on the other hand, gives a good predic-
tion in the central region, but the Knudsen layers near the
two walls are not well captured; The present LBE, interest-
ingly, provides a satisfied result in the whole region, espe-
cially within the two KLs.
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0

0.2

0.4

0.6

0.8

1

Y

U

Standard LBE
Present LBE
Navier−Stokes
DSMC

Kn=0.1

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

Y

U

Standard LBE
Present LBE
Navier−Stokes
DSMC

Kn=0.25

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

Y

U

Standard LBE
Present LBE
Navier−Stokes
DSMC

Kn=0.5

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

Y

U

Standard LBE
Present LBE
Navier−Stokes
DSMC

Kn=0.75

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

Y

U

Standard LBE
Present LBE
Navier−Stokes
DSMC

Kn=1.0

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

Y

U

Standard LBE
Present LBE
Navier−Stokes
DSMC

Kn=1.5

FIG. 6. �Color online� Velocity profile of the Couette flow at moderate Kn. Here Y =y /H and U=u /uw.
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For further larger Knudsen numbers, the results of LBE-1
depart from the solutions of the Boltzmann equation more
and more, and becomes unuseful totally. For LBE-2, also
over-predicts the velocity in the whole region and the devia-

tion from the Boltzmann solution increases with increasing
Kn. Encouragingly, the present LBE yields much better so-
lutions than both the LBE-1 and LBE-2, and can still give a
satisfactory prediction even as k=4.
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FIG. 7. �Color online� Velocity profile of the Poiseuille flow at moderate Kn. Here Y =y /H and U=u /ur.
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To further demonstrate the advantage of the present LBE,
in Fig. 8 we show the nondimensional mass fluxes Q of
several methods normalized by �aH2 /�2RT. It is seen that
all of the three LBEs give accurate mass fluxes as Kn	0.1
in comparison with the solutions of the Boltzmann equation
obtained by different methods �4,41�, and the experimental
results for different gases �43�. Above this Kn, LBE-1, which
uses the standard LBE that actually solves the Navier-Stokes
equation together with the traditional second-order slip
boundary condition suggested by Cercignani �4�, fails to
work any more. LBE-2, although gives improved result com-
pared with LBE-1, also produces very unreasonable results
as Kn�0.3. On the other hand, the present LBE predicts
satisfied results in a rather larger region and is able to capture
the Knudsen minimum successfully.

VI. SUMMARY

Based on a recently developed generalized Navier-Stokes
model, we proposed a lattice Boltzmann equation with mul-

tiple effective relaxation times in which the wall-
confinement effects are considered. A kinetic boundary con-
dition �CBBSR� that combines the bounce-back and
specular-reflection schemes was proposed for the LBE, and
was analyzed based on a unidirectional flow. It was shown
that in order to recover the generalized Navier-Stokes equa-
tions correctly, the relaxation time for the heat flux mode, �q,
must be chosen to be a constant, which is determined from
the boundary condition and the relaxation time �s for the
shear mode. Furthermore, it is found that the bounce-back
portion r in the CBBSR boundary condition depends on both
the hydrodynamic boundary condition and �s.

One of the advantages of the present LBE is that it is still
within the framework of the LBE for the Navier-Stokes
equations, and thus shares the same advantages of the stan-
dard LBE. Another important feature of the present LBE is
that it has the potential to capture the Knudsen layer by em-
ploying the geometry-dependent relaxation time �s. Some
numerical simulations, although preliminary, demonstrate the
potentials of the present LBE for microscale gas flows at
moderate Knudsen numbers.

Finally, we would like to point out that the proposed
CBBSR boundary condition is designed and analyzed for
plane walls that are parallel to a particle velocity. For more
general cases, however, it would be a nontrivial task to de-
sign a suitable boundary condition, and actually deserves an-
other paper as done in Ref. �44�. We would like to extend the
present method to cases involving curved boundaries in fu-
ture work.
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