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Wobbles and other kink-breather solutions of the sine-Gordon model
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We study various solutions of the sine-Gordon model in (1+1) dimensions. We use the Hirota method to
construct some of them and then show that the wobble, discussed in detail in a recent paper by Kilberman, is
one of such solutions. We concentrate our attention on a kink and its bound states with one or two breathers.
We study their stability and some aspects of their scattering properties on potential wells and on fixed boundary

conditions.
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I. INTRODUCTION

Topological solitons play an important role in the descrip-
tion of many phenomena in physics. In this paper we look at
solitons of the simplest model in (1+1) dimensions, namely
the sine-Gordon model.

This model involves a scalar field ¢(x,) and is based on
the Lagrangian density given by (we set the speed of light to

c=1)
1(de\? 1(de\* m?
v v RO

This particular model arises in many areas ranging from the
description of Josephson junctions [2] to systems with one-
dimensional dislocations [3]. The model has also been very
intensively studied by mathematicians (as it describes spaces
with constant negative curvature [4]) and by theoretical
physicists working in integrable and conformal field theories
[5].

As is well known [6] the model possesses kink, antikink,
and breather solutions. A kink solution is a static field con-
figuration which solves the Euler Lagrange equations based
on (1), i.e.,

2
P G =— %sin(&p), 2)

and satisfies the boundary conditions ¢@(x=-%)=0 and
Be(x=2)=27. Such a field is well known [6] and is given
by

Q= %arctan{exp[m(x -xo) 1} (3)

For the antikink the boundary conditions are interchanged
and in the field configuration given above there is a — sign
before (x—x).
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In addition, the model possesses also so-called breather
solutions. These are nonstatic field solutions of (2) given by

4 V1 - ? sin(mwt)
¢ = —arctan ] 5 NG
®  cosh[my1 - &*(x —x;)]

Here w is a free parameter of the solution which varies from
—1 to 1. The breather field, which can be thought of as de-
scribing a bound state of a kink and an antikink, oscillates
with frequency m .

As the basic Lagrangian is Lorentz covariant, all these
field configurations can be Lorentz boosted, resulting in field
configurations moving with velocity v <c=1.

Recently, there has been some controversy as to whether a
kink possesses an internal mode [7,8]. Such a mode was
claimed to exist by Boesch and Willis [9] and then disputed
by Quintero et al. [10]. The mode at stake is a possible
internal mode of zero frequency which may have arisen in
numerical studies of the sine-Gordon model. Such a mode
could be a genuine oscillatory mode or a numerical artifact.

In fact, as is well known [6], the sine-Gordon model pos-
sesses many solutions in addition to the above mentioned
kinks and breathers. One such solution was recently studied
extensively by Kélbermann [1]. He called it a “wobble” and
looked at its properties in detail. However, it is not clear
from his discussion whose claims his wobble solution sup-
ports.

It is worth recalling at this stage that the wobble is only
one of many solutions involving a kink with breathers.
Hence we have decided to reconsider this subject and look in
some detail at these solutions. In particular, we have decided
to present explicit forms of the field configurations that de-
scribe some of these solutions, so that they become better
known outside the integrable model community. We have
also decided to look at some of their properties, paying par-
ticular attention to their stability and their scattering proper-
ties on defects (here taken in the form of an interaction with
potential holes and boundaries). This we discuss in the next
sections.

II. THE WOBBLE

The wobble solution of Kilberman [1] involves a field
configuration describing a static kink and a breather. In his
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FIG. 1. Energy as a function of time as seen in a simulation
started with A=1.15

paper Kilbermann gives an analytic form of this solution,
obtained by using the inverse scattering method of Lamb and
Segur, and then discusses some of its properties.

In our work we use the Hirota method [11] of deriving
such solutions as discussed in detail in Appendix A. We de-
rive in Appendix A 4 the exact solution describing a kink and
a breather moving with respect to each other. The solution is
given by Eq. (A21). However, the wobble corresponds to a
kink and a breather sitting one on top of the other and not
having a relative motion. Therefore, if one sets the the ve-
locities to zero in the general solution (A21) one gets the
wobble solution as

¢

Vi—o? . 1 v 1-w? N-0?
4 ( ww Sln(mwt)+§€8mx(€ mV1 wx+p2em\l wx))
= —arctan

s

I 2
Vi-w”
[2)

(cosh(mv"1 — w’x) + pe®™ sin(mwt))

(5)

where w is a frequency varying from —1 to 1, and

1-eVl -

P ]+8\’1—(1)2’ (©)
where e=*1 corresponds to the kink (+1) or antikink
(=1).

This agrees with the expression given by Kilbermann. As
is clear from (5) the field configuration depends on one pa-
rameter (the frequency of the breather), and so we have stud-
ied the stability of this field configuration by calculating ¢
and its time derivative from (5) and then used the fourth-
order Runge-Kutta method to simulate the time evolution of
this configuration (the spatial derivatives were calculated us-
ing central differences). Our simulations involved looking at
a breather-kink system (¢=1) and for 8 and m we took B
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=2, m=1. Hence, for the kink ¢ varies from 0 to 7. In fact
we used this choice of 8 and m in all our simulations. The
results of our simulations were in complete agreement with
the analytical expression, thus showing that the solution is
stable with respect to small perturbations (due to the discreti-
zations).

Next we tried to assess the stability of the wobble with
respect to larger perturbations. We performed several pertur-
bations, the most important of them being the perturbation of
the original slope of the kink [i.e., in the expression (5) we
have replaced exp(emx) by exp(Ax) where \ # 1]. We have
performed numerical simulations with A=1.05, 1.15, 1.18,
1.20, 1.24, and 1.3.

Each perturbation added an extra energy to the system.
Such a system was then unstable and so it evolved toward a
stable wobble, emitting some radiation which was sent out
toward the boundaries of the grid. To prevent reflections
from the boundaries, we absorbed the energy there. For A\
close to 1—the perturbations were small—the system re-
turned to its initial configuration (with N=1.0). For larger
values of the perturbation the system was more perturbed
and often not only kept on sending out its excess of energy
but also, at regular intervals, altered its frequency of oscilla-
tion (increasing it) which allowed it to send out even more
radiation. In Fig. 1 we present plots of the time dependence
of the total energy as seen in the simulation in which A was
set at 1.15.

We have also studied the case of v=v;=vg#0. In this
case we had a system consisting of a kink and a breather
moving with a constant velocity. Again, the system was
stable (we run it with very small v to avoid having problems
with the boundaries and for larger values of v with fixed
boundary conditions).

Then we performed a series of simulations in which the
initial configuration was sent toward a potential hole. This

was achieved by making a= " in (1) x dependent; i.e., we

3
set
1 for |x| >3,
a(x) = (7)
<1l for -5<x<5.

Then by placing the breather and the kink far away from the
hole (i.e., from —5<x<35), and sending them toward it we
could study the effects of their scattering on the hole.

In Fig. 2 we exibit the field configurations (at two values
of time) seen in one such simulation. The simulation in-
volved placing the breather around x~-30, and the kink
around x~—20, and sending them with velocity v=0.05 to-
ward the hole of depth 0.1 located between —15 and 15. In
Fig. 2(a) we show the field configurations at r=60, i.e., just
before the kink reached the hole. When in the hole the
breather separated and one of its constituents (the kink) re-
mained trapped in it, oscillating back and forth, while the
original kink and the antikink from the breather emerged at
the other side of the hole. This is clearly seen in Fig. 2(b),
which shows the field configuration at r=450. Other simula-
tions produced other equally interesting results (often involv-
ing splitting of the breather).
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We also found that the hole can separate the breather from
the kink (in one simulation we saw the kink being trapped in
the hole while the breather bounced off the kink trapped in
the hole and has returned to its original position). As studied
by two of us [12], the scattering of a breather on the hole is
very complicated and produces many different outcomes;
this time we have even more possibilities and so we have
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sponding to one static kink and two breathers.
In this case, as shown in the Appendix, the field is given,
for B=m=1, by

decided to postpone the further study of this problem to ¢@=4 arctan—, (8)
some future work. B
III. KINK AND TWO BREATHERS
In this section we briefly discuss another interesting solu-
tion of the sine-Gordon model; namely, the solution corre- where
|
A=-2 cotan 6,¢*°* % sin(¢ sin ;) — 2 cotan 6,¢* > % sin(¢ sin 6,) + e* — 2 cotan 020'(13)0'(1_2)6“‘(2 cos 1+¢0s ) gin(r sin 6,)
+ p%eh €0s 01, _ 9 otan 6, U(I‘E)O.(I—Z)ex(cos 6,+2 cos 6,) Sil’l(l‘ sin 01) + p%ezx cos 0 ,x
+ 20(1_2)p1 p, cotan 6, cotan @,ee"(¢s %1+¢0s 02) cog[1(sin 6, + sin 6,)]
- 20(1;)p1 p, cotan 6, cotan B,e%e" (s %108 %) cog[1(sin @, — sin 6,)] + (ng)a(la)plpz)zexezx““ Oy+cos 67) 9)

and

B=1+e> 042504 25 cotan §;e"e* °* % sin(z sin ) + 2p, cotan Bre*e” ° %2 sin(t sin 6,)

+20'3) cotan 6, cotan G,e*€* %1+<%3 ) cogf(sin 6, + sin 6,)] - 20} cotan 6, cotan G,e* < 1+ %) cog[1(sin @) — sin 6)]

+ (0'(1;)0'(1_2))262X(COS Oy+cos 6) 20'(1;)0'(1_2)P%P2 cotan 026xex(2 cos 0+cos 0,) sin(f sin 6,)

(=)

+ 20.(1;)0. 5 plp% cotan alexex(cos 01+2 cos 6,)

sin(z sin 6,).

Here
1 —cos 6 1 —cos(6, = 6,)

T l+cos(6, = 6,)

(*) _
T =

pi=- (11)

1+cos 6’
This solution depends on two constants (6, 6,), which con-
trol the frequencies of the breather oscillations.

We have tested the stability of this solution by using the
expression (8) to calculate ¢(z=0) and dj‘f(t:O) and then per-
forming a numerical simulation of (2). As before, the dis-
cretization has produced a small perturbation but the field
configuration was stable; i.e., after a long simulation (we run
it until £=5000) the field was indistinguishable from the ex-
pression (8) and there was no noticeable radiation. Hence we
can conclude that this field configuration is also stable.

IV. PERTURBED FIELD CONFIGURATIONS

Given that we have many field configurations that re-
semble perturbed kinks (i.e., that are given by kinks and
breathers), we have tried to see what happens when one per-
turbs a kink and lets it evolve in time. We looked at various
perturbations, paying particular attention to configurations
which involved adding to a kink an extra perturbation of the
form

(10)

J
Sp(t=0) = 5—90(t =0)=
C ot

osh(ux)’

We looked at various values of A, B, u, and v. In all cases
the perturbation made the kink move and generated many
moving breatherlike configurations. We let the system
evolve—absorbing the energy at the boundaries of our grid.
This had the effect of slowing down the kink. In Fig. 3 we
present plots of the total energy, and of the potential energy,
of one such simulation (corresponding to the values A=0.5,
B=0.5, ©=1.0, and v=0.2). The curve in Fig. 3(a) shows a
steady decrease in total energy down to close to the value of
the energy of one stationary kink.

We note some steps of the decrease of the total energy
(they correspond to the moments when the kink was reflected
from the boundaries). The potential has also gradually settled
as seen from the plot. Its oscillation demonstrates the exis-
tence of transient time-dependent structures (i.e., breathers).
This can be seen from looking at the time dependence of
individual field configurations. In Fig. 4. we present plots of
the fields at t=6750 and 6753. They show many breatherlike
structures—the clearest ones being close to x=35 and -38.

Thus it is clear to us that a general field configuration will
gradually split into moving kinks and breathers and some
radiation, which will quickly move out to the boundaries.

cosh(wx) (12)
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However, the resultant field configuration is metastable; it
still radiates, albeit very slowly, and gradually evolves to-
ward a field configuration involving mainly a kink. Whether
at the end of its evolution we end up with a kink or a kink
with some breathers is hard to determine.

V. THE ENERGY

In this section we give a simple formula for the energy of
the exact solutions considered in this paper. The energy for
all the solutions coming from the Hirota method is easy to
calculate since, as we show below, it comes from surface
terms. In addition, the energy is additive for the nonlinear
Hirota superposition of solutions. The Hamiltonian density
for the sine-Gordon theory (1) is given by

1 1 2m? 1 2
H=E(ﬁf¢)2+a( a.0) + ra {SIH( B<P>]~ (13)

Replacing the field ¢ in terms of the Hirota 7 functions as

given in Appendix A, Eq. (Al), we get

H=— 1 |:(07 +T1 a70>2+(a_7'1_&_7'0>2
,32 70 71 70

2 2
+m—(@—ﬂ) ] (14)
2\ 1

However, this expression can be rewritten as

1
H= E(m— d.)*(In 7o+ 1n 7)) + H,, (15)
where
1 (#rn &ry &1 o1 0,7 0,7,
Hcorz——2<+—0+_—0++_l+__l_2+_l+_0
B ) ) O O T To
1T O_T
_QL_O). (16)
T T

The solutions obtained by the Hirota ansatz (A4) satisfy, in
addition to the Hirota equations (A3), also the additional
equations

Tlazt 7o+ 700"%:

This fact is proved, in a much more general setting, in
Ref. [13]. In fact, it is shown there that all solutions that can
be obtained from the vacuum solution ¢=0 by the dressing
transformations satisfy (17). The Hirota solutions are, of
course, of this type. Therefore, it turns out that for these
solutions one has H,,,=0, and so

7'1—2(9i7'oz9:7'1=0. (17)

=;a§(ln To+In 1), (18)

where we have used the fact that (9,—d_)=20d, [see (A2)].
Therefore, the energy becomes

” 4
E=f dxH—,B d, (In 7+ In 7)[}27, (19)

and so is determined entirely by the asymptotic values of the
7; functions.
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In fact, this result (in a different and less explicit form)
has been known for a while for kinks and antikinks, to
people working in integrable and conformal field theories
[14,15]. Here we have presented it in a form that is more
explicit and more easily accessible to people working in
other areas of physics. For more details of the general proof,
see [13].

Looking at the solutions in the N-soliton sector, given in
(A6), one observes that the asymptotic behavior of the 7
function is determined by the exponentials of the I';’s given

in (A5), i.e.,
Fi=ﬂ{(zi+l)x+<zi—l)t] (20)
2 Z; Z;

In (19) we have to evaluate the quantitie .. There-
fore, if a given combination of exponentials of the I';’s domi-

nates the numerator of 22 <, for x— * oo, then the same com-
bination dominates the denommator Consequently, when the
limit x — = is taken, we are left with the ratio of these two
dominant terms, which are equal except for the constant term
(in the numerator) coming from the x derivative of the expo-
nentials, i.e., terms of the form %(zﬁi). Therefore, the con-
tribution to (19) is just the terms from the x derivatives. In
addition, 7, and 7, given in (A6), have the same form except
for the minus signs, and so their contributions to (19) are
equal, despite these minus signs, which cancel when the limit
x— * o is taken.

Notice that the solution (A6) contains all possible combi-
nations of the exponentials of the I';’s, such that each T’
appears at most once. Therefore, it is clear that the dominant
exponential in the limit x— +o0 is exp(Z;[;), where in the
sum we include all I';’s such that Re(zi+zll)>0. Similarly,
the dominant exponential in the limit x— —o is exp(E I,
where the sum involves all I'y’s such that Re(z;+— )< 0.
Thus, the energy depends only on the modulus of Re(z,+ )
The parameters z; can be complex for some solutions and so
writing them as z;= e~ **%, one gets

1 . .
z;+ — =2(cos 6; cosh a; — i sin 6, sinh ;). (21)
i

Thus we conclude that the energy (19) for the solutions (A6),
is given by

N
8m
E= ?2 (|cos 6;|cosh a;—i sin 6, sinh a;),  (22)
i=1

where N corresponds to the N-soliton sector in which the
solution lies. The energy will then be real for some special
choices of the parameters z;. But whenever this happens the
energy is automatically positive. Of course, the energy is real
whenever the solution ¢ is real.

The energies for the solutions we consider in this paper
are then given by (1) for the one-soliton constructed in Ap-
pendix A 2,
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FIG. 2. Field configurations seen in a simulation involving a
wobble scattering on a potential hole (of depth 0.1 and located in
—15<x<15). t= (a) 60 and (b) 450.

8m 1

E ne-soliton — 0 5 (23)
one-solito ﬂz \/1__1)2
(2) for the breather constructed in Appendix A 3,
16m\1 — w?
Epreather = ,82 \/1_—v2; (24)

(3) for the wobble constructed in Sec. II and Appendix A 4,
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FIG. 3. Energies as a function of time as seen when the starting
file was given by (12): (a) total and (b) potential energy.
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and (4) for the solution of the kink with two breathers con-
structed in Sec. IIT and Appendix A 5 (with their velocities
set to zero),

- 8m 16m 5 16m I 2
kink+two breathers = ~ + b VI—w + 2 - Wy,
B B B

(26)

where w;=sin 6, i=1,2.
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FIG. 4. Field configurations at r= (a) 6750 and (b) 6753.

VI. FINAL REMARKS

In this paper we have drawn the attention of the readers to
the rich structure of solutions (of finite energy) of the sine-
Gordon model. Even in the one-kink sector there are solu-
tions involving, in addition to the kink, also many breathers.
As the energy of each breather depends on its frequency (and
vanishes in the limit of this frequency going to 1) the extra
energy, due to these extra breathers, does not have to be very
large. The solutions appear to be stable, and this stability is
guaranteed by the integrability of the model. We have tested
this numerically and have found that small perturbations, due
to the discretizations, do not alter this stability. To change it
we need something more drastic—like the absorption or the
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space variation of the potential (i.e., the coefficient of the
sine term in the Lagrangian). But even then the effects are
not very large—one sees splitting of breathers, etc. but no
“global annihilation.”

At the same time we have looked at the total energy and
the energy density of a general solution. We point out that the
total energy is determined by the asymptotic values of the
fields [i.e., is given by (19)]. This result was known earlier
(for kinks and antikinks) to people working in integrable and
conformal field theories but may not be known generally. We
have given a general proof of this in a separate, rather tech-
nical, paper [13], but we have also checked it explicitly for
all field configurations involving up to five kinks (or anti-
kinks).

Our results do not answer, definitively, the question as to
whether or not a kink possesses an internal mode of oscilla-
tion. The perturbation of the kink we performed in Sec. IV
did not produce any oscillatory internal mode. On the con-
trary, all the energy given to the kink by the perturbation was
used to produce breatherlike excitations, which died away
very slowly. In fact, the extremely slow decay of these exci-
tations indicates the difficulty of settling the issue of the
existence of the internal mode. If simulations are not done
very carefully and run for very long times, then this fact can
lead to incorrect interpretations.

As we have pointed out, one can get oscillatory kink con-
figurations by constructing exact solutions corresponding to
the stationary superposition of a kink and one or many
breathers. Such a case of a kink and a breather was named a
wobble by Kilbermann [1]. In the case of the wobble the
frequency of oscillation cannot be greater than 1, and the
energy of the oscillation goes to zero as the frequency ap-
proaches 1. Boesch and Willis [9] claimed to have seen an
oscillatory mode of this kink just above the phonon band,
i.e., just above 1. If that is so, the wobble does not corre-
spond to that mode. It is true, however, that the frequency of
the wobble can go above 1 by a Lorentz boost. One has then
to settle the issue of whether the simulations of Boesch and
Willis were precise enough to separate this effect. If one
considers the exact stationary superposition of a kink and
two breathers one can get frequencies of oscillations greater
than 1, as shown in (8). However, this is in a context differ-
ent from that discussed in the literature, where the considered
frequencies are studied in the linear approximation. Hence
we feel that its is extremely likely that the mode seen by
Boesch and Willis is in reality some sort of linear combina-
tion of various modes involving breathers and a kink but,
strictly speaking, we have not been able to prove this. In
addition, although our simulations have shown that the kink
plus breathers are stable solutions against the discretization,
they can be pulled apart by scattering through a hole, as
mentioned at the end of Sec. II. The fact that a kink solution
of the equations of motion can involve many breathers
makes the problem of the zero mode difficult to resolve ana-
lytically (and in the literature it is discussed only in the linear
approximation) and almost impossible to resolve numeri-
cally. The rich spectrum of the solutions and the appearance
of many breathers makes this task particularly hard to per-
form. It would be interesting to see whether these extra
breathers play a significant role in any physical applications
of the model.
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APPENDIX

1. Hirota’s method

In order to solve the sine-Gordon equation (2) by the Hi-
rota method we introduce the Hirota 7 function as

20 T
o=l

Al
B (A1)

Using light-cone coordinates

(A2)
and replacing (A1) into (2), we get

le - le

N N
T,=1+ (- He> ae @+ > (
=1

L<h=1 \%1, + 2,
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0,07 9,70 Ty m_z{(ﬂy 1]
N 7(2) 4 T

40 dmim m_2|:<E>2 1}
- 7] 'T% 4 7] '

Requiring both sides to vanish, we get the Hirota equations
for the sine-Gordon model:

2
m
7'0(?+8_7'0 - (9+To(9_7'0 + Z(’TZO - ’T%) = 0,

2
7'1(7_'_(?_7'1—(3_'_7'10’)_7'14‘mT(T%—’TZO)=O. (A3)

The solutions of (A3) are obtained by the Hirota ansatz

N N N
=1+ 82 bl(a)el“,-_i_ 822 bl(;l)el",-+l“j+ &3 E bl(;zk)el",-+l"j+l"k
i=1 ij=1 ijk=1
£ a=0,1, (A4)
where
x_
I‘i=m<zix+— —) (AS)
<j

and where z; are arbitrary (complex) parameters. Replacing
(A4) into (A3) and expanding in powers of &, one obtains the
coefficients 5@ recursively. The series in (A4) truncates at
order N, leading to an exact solution given by

2
) a,lalzer(zll)+r(zlz)+ e (=1

N N2/ N2/ __\2 N : 2N
% 2 (le Z’z) (le Zla) (le Zl3) azlazzazfr(zll)+F(Z’2)+F(Z’3) e p ()N H (Zkl Zkz) H aler(zl)

L<b<l=1 \Z, T2,/ \Z, 2,/ \Z,*,

for =0,1,

where a; are arbitrary parameters.

2. The one-soliton solutions

The one-soliton solutions correspond to N=1 and the fol-
lowing choice of parameters in (A6):

a; =ie’®", z,=ge™®, e=*1, a real. (A7)
Then the arguments of the exponentials become
I''=eylx—vt), y=mcosh a= %, v =tanh a.
Vl1-v
(AB)

Therefore, (A1) and (A6) give

ly<ky=1 \Zk; T Zky /) 1=1

(A6)

@= [—aarctan expley(x — vt —xp)]. (A9)

3. The breather solution

The breather solution lies in the two-soliton sector, and it
is obtained by taking N=2, and the following choice of pa-
rameters in (A6):

o€

_ _—a+if
Z] =e )

_ ES _ _ &
=3, 4= ar=-4a,.

‘tan 0
(A10)

Then we have that I',=I"] and introducing [,=T+n+i¢ we
obtain
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f]er+iF] (All) f1=FR+iF1 (A18)
with with
m cos 6 m sin 6 m
=== Gk-v)+n I'i=——@-vx)+¢& 'z = —===cos 6(x —vpt) + 73,
K V1 =v? g ! V1 =2 \r’l—v%;
(A12)
m .
and I')= 5o 0t —vpx) + &g,
Vl - UB
v=tanh a. (A13) and vg=tanh ay. Next we define
Thus 21— 2\
LT g
4 (cotan H)cos I'; (21 + Z3> = pe (AI9)
¢=—arctan——————— (A14) s
cosh I'y with
If one now takes cosh(ag — ag) — & cos 0 20
p -
— §=7_T’ ©=sin 6. —ZSGSE, cosh(ag — ak) + € cos 6
2 2 2 and
one gets & sin @
¢=2arctan—————.
4 . ( Vi-w?  sin(mor) ) (AL5) sinh(ag — ak)
¢ = —arctan — .
®  cosh(my1 — w’x) Then
4 [2(cotan O)cos T+ e'3(er + p?e'®)]
@ = —arctan = .
4. The wobble or the kink with a breather [(e"® + e'®) — 2(cotan 6)pe"3 cos(I'; + ¢)]
To have a configuration describing a kink with a breather (A21)
we.take the followmg Vglues for the parameters of the three- If one now takes
soliton solution (N=3) in (A6)
, T
7y = e "0, =2, 3=ge %, Nx=ng=vp=vg=0, Bzzs
e"B+iép . and denotes
a; =i , ay=-a;, ay=ie’k. (A16)
tan 6 T T
w=sinf -—=60=—_,
Then one gets 2 2
Dy=eyx—vt) + mg yx=m cosh ag, vgx=tanh oy, then
Al7) 1-¢eVl-w?
( N e p= =, (A22)
and again one has I',=I"]. Then introducing I';=T"|+ 7, eviTe
+i&p, one obtains and so
J
4 (\“‘];w2 sin(mwt) + %eamx(e—m\““l—wzx + pZem\“sl—wzx))
@ = —arctan — — (A23)
(cosh(m\y’l - w’x) + —< e sin(mwt))
|
5. The kink with two breathers 7= ei01’ Z= ZT, Z3= ei(?z’ = Z;’ =€,
(A24)

To get a field configuration describing a kink and two
breathers that are all at rest and located at the same position,
we take the parameters of the five-soliton solution (N=5) in
(A6) as

and
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ay=—a,=-cotan 0;, az=—ag=-cotan 6,, as=1.
(A25)
Then, setting m=8=1, one gets
[, =T%=xcos 6 +it sin 0, (A26)

I;=T,;=xcos 6,+itsin 6,, T's=ex.

In addition, we have

2 2
21— 2 73— 24
(—) =—tan® 6, (— =—tan® 6,,
21+ 2 24+ 24

PHYSICAL REVIEW E 77, 036613 (2008)

(zl—z5>2 (zz—z5)2 l-gcos 6
= :——:pl’
71+ 25 2+ 25 1+ & cos 6

(Z3‘Zs>2 (24—25)2 1—-¢€cos 02_
= =_—=P27
23+25 24+ 25 1+e&cos 02

Z1t+23 20+ 2y
21+ 24 +23

The 7 functions now become (=0, 1)

1 —cos(6, - 6,) ©
1 +cos(6, — 6,)

1 —cos(6, + 6,) (
1 +cos(6; + 6,) !

7,=1+ (= 1)%[-2 cotan 6;¢* < % sin(¢ sin ;) — 2 cotan Bye* 2 sin(z sin 6,) + %] + €2 < 01 4 2¥ 05 &2

+2p; cotan 6;e%e* < % sin(r sin 6,) + 2p, cotan Bre® e* %2 sin(r sin 6,)

+20%3 cotan @) cotan g,e*€s frteos )

cos[#(sin 6, + sin 6,)] — 20'(1;) cotan @, cotan 6,e*¢* %1% %) cog[1(sin @, — sin 6,)]

+ (= 1)%{=2 cotan B,a'5 0'7e*? <0 01+ ) gin(z sin ;) + pe ° %1e® — 2 cotan O;0'3 a3 e (0 41+2 05 ) sin(s sin )

+ petr 0 Ot 20'(1_2)p1 p, cotan 6 cotan @re® X% 91+¢%5 ) cog[¢(sin 6, + sin 6,)]

(+) (—))262):(003 60)+cos 6,)

- 20'({5)p1p2 cotan 6, cotan G,e®*e" (s 1+¢% %) cog[(sin 6, — sin 6,)]} + (o'} o5

+ 20.(1;)0.(1—2)'0%‘)2 cotan ezesxex(Zcos 0,+cos 6,)

+ (= 1)ai(o.(l;)o.(l—z)plpz)Zeaerx(cos 60;+cos 92).

This gives us the expression mentioned in Sec. III.

+) (=)

sin(z sin 6,) + 20'(12 o5 p1p3 cotan 6,e®

xex(cos 0,1+2 cos 6,) sin(t sin 01)

(A28)
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