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We derive a correct first-order perturbation theory in electromagnetism for cases where an interface between
two anisotropic dielectric materials is slightly shifted. Most previous perturbative methods give incorrect
results for this case, even to lowest order, because of the complicated discontinuous boundary conditions on the
electric field at such an interface. Our final expression is simply a surface integral, over the material interface,
of the continuous field components from the unperturbed structure. The derivation is based on a “localized”
coordinate-transformation technique, which avoids both the problem of field discontinuities and the challenge
of constructing an explicit coordinate transformation by taking the limit in which the coordinate perturbation is
infinitesimally localized around the boundary. Not only is our result potentially useful in evaluating boundary
perturbations, e.g., from fabrication imperfections, in highly anisotropic media such as many metamaterials,
but it also has a direct application in numerical electromagnetism. In particular, we show how it leads to a
subpixel smoothing scheme to ameliorate staircasing effects in discretized simulations of anisotropic media, in
such a way as to greatly reduce the numerical errors compared to other proposed smoothing schemes.
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I. INTRODUCTION

In this paper, we present a technique to apply perturbative
techniques to Maxwell’s equations with anisotropic materi-
als, in particular for the case where the position of an inter-
face between two such materials is perturbed, generalizing
an earlier result for isotropic materials �1�. In this case, the
discontinuities of the fields at the interface cause many stan-
dard perturbative methods to fail, which is unfortunate be-
cause such methods are very useful for many problems in
electromagnetism where one wishes to study the effect of
small deviations from a given structure—not only do pertur-
bative methods allow one to apply the computational effi-
ciency of idealized problems to more realistic situations, but
they may also offer greater analytical insight than brute-force
numerical approaches. The corrected solution described in
this paper should aid the study of interface perturbations,
from surface roughness to fiber birefringence, in the context
of anisotropic materials. Such materials have become in-
creasingly important thanks to the discovery of “metamate-
rials,” subwavelength composite structures that simulate ho-
mogeneous media with unusual properties such as negative
refractive indices �2�, and which may be strongly anisotropic
in certain applications—for example, those involving spheri-
cal or cylindrical geometries �3� such as recent proposals for
“invisibility” cloaks �4�. Furthermore, we have recently
shown that interface-perturbation analyses benefit even
purely brute-force computations, because they enable the de-
sign of subpixel smoothing techniques that greatly increase
the accuracy �and may even increase the order of conver-
gence� of discretized methods �5�, which are normally de-
graded by discontinuous interfaces �6,7�. Here, we show that
our corrected perturbation analysis provides similar benefits

for modeling anisotropic materials, where it yields a second-
order accurate smoothing technique �correcting a previous
heuristic proposal �6��.

There have been several previous approaches to rigorous
treatment of interface perturbations in electromagnetism,
where classic approaches for small �� perturbations fail be-
cause of the field discontinuities �1,8–12�. One approach that
was applied successfully to boundaries between isotropic
materials is essentially to guess the correct form of the per-
turbation integral and then to prove a posteriori that it is
correct �1�. For isotropic materials, where there is some guid-
ance from effective-medium heuristics �13�, this was practi-
cal, but the correct answer �below� appears to be much more
difficult to guess for anisotropic materials. Another approach,
which generalizes to the more difficult case of small surface
“bumps” that are not locally flat, was to express the problem
in terms of finding the polarizability of the perturbation and
then connecting it back to the perturbation integral via the
method of images �12�. For a locally flat perturbation be-
tween isotropic materials, this process can be carried out
analytically to reproduce the previous result from Ref. �1�,
but it becomes rather complicated for anisotropic media.
Third, one can transform the problem into a statement about
the coordinate system to avoid problems of shifting field
discontinuities, by finding a coordinate transformation that
expresses the interface shift �10,11�. This approach, while
powerful, has two shortcomings: first, finding an explicit co-
ordinate transformation may be difficult for a complicated
interface perturbation; and second, the resulting perturbation
integrals are expressed in terms of the fields everywhere in
space, not just at the boundaries. Intuitively, one expects that
the effect of the perturbation should depend only on the field
at the boundaries, as was found explicitly for the isotropic
case �1,12�. In this paper, we derive precisely such an expres-
sion for the case of interfaces between anisotropic materials,
by developing a general analytical technique for interface*stevenj@math.mit.edu
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perturbations: we express the perturbation as a coordinate
transformation, but using a coordinate transform localized
around the perturbed interface, and take a limit in which this
localization becomes narrower and narrower so that the
choice of transform disappears from the final result.

In the following sections, we first formulate the problem
of the effect of an interface perturbation more precisely, re-
late our formulation to other possibilities, and summarize our
final result in the form of Eq. �3�. We then derive quite gen-
erally how to formulate the problem of interface perturba-
tions in terms of a localized coordinate transformation, and
show how this allows us to express the perturbation-theory
integral as a sum of contributions around individual points
on the interface. Next, we apply this framework to the spe-
cific problem of a boundary between two anisotropic dielec-
tric materials, and derive our final result. As a check, our
perturbation theory is then validated against brute-force com-
putations for a simple numerical example. Finally, we dis-
cuss the application of our perturbation result to subpixel
smoothing of discretized numerical methods, and show that
we obtain a smoothing technique that leads to much more
accurate results at a given spatial resolution. In the Appen-
dix, we provide a compact derivation and generalization of a
useful result �14� relating coordinate transformations to
changes in � and �.

II. PROBLEM FORMULATION

There are many ways to formulate perturbation tech-
niques in electromagnetism. One common formulation,
analogous to “time-independent perturbation theory” in
quantum mechanics �15�, is to express Maxwell’s equations
as a generalized Hermitian eigenproblem ����E=�2�E
in the frequency � and electric field E �or equivalent formu-
lations in terms of the magnetic field H� �16�, and then to
consider the first-order change �� in the frequency from a
small change �� in the dielectric function ��x� �assumed real
and positive�, which turns out to be �16�

��

�
= −

� E� · ��E d3x

2� E� · �E d3x

+ O���2� , �1�

where E and � are the electric field and eigenfrequency of
the unperturbed structure �, respectively, and � denotes com-
plex conjugation. The key part of this expression is the nu-
merator of the right-hand side, which is what expresses the
effect of the perturbation, and this same numerator appears in
a nearly identical form for many different perturbation tech-
niques. For example, one obtains a similar expression in:
finding the perturbation �� in the propagation constant �
of a waveguide mode �17�; the coupling coefficient
���E� ·��E�� between two modes E and E� in coupled-
wave theory �18–20�; or the scattering current J���E �and
the scattered power ��J� ·E� in the “volume-current”
method �equivalent to the first Born approximation�
�12,21–23�. Equation �1� also corresponds to an exact result
for the derivative of � with respect to any parameter p of �,

since if we write ��= ��
�p�p+O��p2� we can divide both

sides by �p and take the limit �p→0; this result is equiva-
lent to the Hellmann-Feynman theorem of quantum mechan-
ics �1,15�. In cases where the unperturbed � is not real, cor-
responding to absorption or gain, or when one is considering
“leaky modes,” the eigenproblem typically becomes complex
symmetric rather than Hermitian, and one obtains a similar
formula but without the complex conjugation �24�. There-
fore, any modification to the form of this numerator for the
frequency-perturbation theory immediately leads to corre-
sponding modified formulas in many other perturbative tech-
niques, and it is sufficient for our purposes to consider
frequency-perturbation theory only.

As we showed in Ref. �1�, Eq. �1� is not valid when �� is
due to a small change in the position of a boundary between
two dielectric materials �except in the limit of low dielectric
contrast�, but a simple correction is possible. In particular, let
us consider situations like the one shown in Fig. 1, where the
dielectric boundary between two materials �a and �b is
shifted by some small displacement h �which may be a func-
tion of position�. Directly applying Eq. �1�, with ��= � ��a

−�b� in the regions where the material has changed, gives an
incorrect result, and in particular �� /h �which should ide-
ally go to the exact derivative d� /dh� is incorrect even for
h→0. The problem turns out to be not so much that �� is
not small, but rather that E is discontinuous at the boundary,
and the standard method in the limit h→0 leads to an ill-
defined surface integral of E over the interfaces. For isotro-
pic materials, corresponding to scalar �a,b, the correct nu-
merator turns out to be, instead, the following surface
integral over the boundary �1�:

� E� · ��E d3x

→� � ���a − �b�	E
	2 − � 1

�a −
1

�b�	D�	2
h · dA ,

�2�

where E
 and D� are the �continuous� components of E and
D=�E parallel and perpendicular to the boundary, respec-
tively, dA points toward �b, and h is the displacement of the
interface from �a toward �b.

In this paper, we will generalize Eq. �2� to handle the case
where the two materials are anisotropic, corresponding to
arbitrary 3�3 tensors �a and �b �assumed Hermitian and

εε

h

b

εεa

FIG. 1. �Color online� Schematic of an interface perturbation:
the interface between two materials �a and �b �possibly anisotropic�
is shifted by some small position-dependent displacement h.
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positive definite to obtain a well-behaved Hermitian eigen-
problem�. In the generalized case, it is convenient to define a
local coordinate frame �x1 ,x2 ,x3� at each point on the sur-
face, where the x1 direction is orthogonal to the surface and
the �x2 ,x3� directions are parallel. We also define a continu-
ous field “vector” F= �D1 ,E2 ,E3� so that F1=D� and F2,3
=E
. As derived below, the resulting numerator of Eq. �1�,
generalizing Eq. �2�, is

� � F� · ����a� − ���b��Fh · dA , �3�

where ���� is the 3�3 matrix

���� =�
−

1

�11

�12

�11

�13

�11

�21

�11
�22 −

�21�12

�11
�23 −

�21�13

�11

�31

�11
�32 −

�31�12

�11
�33 −

�31�13

�11

� , �4�

which reduces to Eq. �2� when � is a scalar multiple � of the
identity matrix. �Our assumption that � is positive definite
guarantees that �11	0.�

We should note an important restriction: Eqs. �2� and �3�
require that the radius of curvature of the interface be much
larger than h= 	h	, except possibly on a set of measure zero
�such as at isolated corners or edges�. Otherwise, more com-
plicated methods must be employed �12�. For example, one
cannot apply the above equations to the case of a hemi-
spherical “bump” of radius h on the unperturbed surface, in
which case the lowest-order perturbation is ���O�h3� and
requires a small numerical computation of the polarizability
of the hemisphere �12�.

III. LOCAL COORDINATE PERTURBATIONS

The difficulty with applying the standard perturbation-
theory result �1� to a boundary perturbation is that, instead of
a small �� with fixed boundary conditions on the fields �to
lowest order�, we have a large �� over a small region in
which the field boundary discontinuities have shifted. How-
ever, we can transform one problem into the other: we con-
struct a coordinate transformation that maps the new bound-
ary location back onto the old boundary, so that in the new
coordinates the boundary conditions are unaltered, while
there is a small change in the differential operators due to the
coordinate shift. In expressing the problem in this fashion,
we will present two key techniques. First, we employ a result
from �14�, generalized in the Appendix to anisotropic mate-
rials, which expresses an arbitrary coordinate transform as a
change �� and �� in the permittivity and permeability ten-
sors, which allows us to directly apply Eq. �1�. Second, un-
like Refs. �10,11�, we do not wish to explicitly construct any
coordinate transformation, since this may become very com-
plicated for an arbitrary perturbation in an arbitrary-shaped
boundary. Instead, we express the boundary shift in terms of
a local coordinate transform, which only “nudges” the coor-
dinates near the perturbed boundary, and in the limit where

the region of this coordinate perturbation becomes arbitrarily
small we will recover the coordinate-independent surface in-
tegrals �2� and �3�.

A. Coordinate perturbations

Suppose that in a certain coordinate system x we have
electric field E�x , t�, magnetic field H�x , t�, dielectric tensor
��x�, and relative magnetic permeability tensor ��x�, satis-
fying the Euclidean Maxwell equations. Now, we transform
to some new coordinates x��x�, with a 3�3 Jacobian matrix

J defined by Jij =
�xi�
�xj

. In the new coordinates, the fields can
still be written as the solution of the Euclidean Maxwell
equations if the following transformations are made in addi-
tion to the change of coordinates:

E� = �JT�−1E , �5�

H� = �JT�−1H , �6�

�� =
J�JT

det J
, �7�

� =
J�JT

det J
, �8�

where JT denotes the transpose. This result is derived in the
Appendix, generalized from the result for scalar � and �
from Ref. �14�.

Now, suppose the coordinate change is “small,” meaning
that J=1+�J, where the eigenvalues of �J�x� are every-
where O�
� for some small parameter 
. Then ���x��
=���x��−��x�x���=O�
� and similarly ��=O�
�. There-
fore, the solutions of Maxwell’s equations will be nearly
those of � and � merely translated to the new coordinate
locations, and the difference due to �� and �� can be ac-
counted for, to O�
2�, by first-order perturbation theory. That
is, generalizing Eq. �1� to the case of anisotropic media with
both � and �, one finds by elementary perturbation theory
for the generalized eigenproblem

��

�0
= −

� �E0
� · ��E0 + H0

� · ��H0�d3x�

� �E0
� · �E0 + H0

� · �H0�d3x�

+ O�
2�

= −
� �E0

� · ��E0 + H0
� · ��H0�d3x�

2� E0
� · �E0d3x�

+ O�
2� , �9�

where the 0 subscripts denote the solution for the unper-
turbed system, given by ��x�x��� and ��x�x���, i.e., � and �
simply translated into the x� coordinates without transform-
ing by the Jacobian factors.

B. Interface-localized coordinate transforms

Suppose that we have an unperturbed interface between
two materials �a and �b that forms a surface S0 �i.e., the
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points x0�S0�, and we perturb it to a new interface S by a
small perpendicular shift h�x� as depicted schematically in
Fig. 1. In order to investigate this boundary shift, we will
perform a coordinate transform x��x� that shifts S to S�=S0.
That is, in our new coordinates, the interface has not been
perturbed, but the materials have changed by the Jacobian
factors as described in the previous section. Moreover, we
will construct our coordinate transform so that it is localized
to the interface, i.e., so that x�=x far from S0. In particular,
we write

x� = x − h�x�L�x� , �10�

where L�x�� �0,1� is some differentiable localized function,
equal to unity on the interface �L�S�=1� and identically zero
outside some small radius R /2 neighborhood of the interface
�the support of L lies within this neighborhood�, chosen so
that 	�L	=O�1 /R�. Equation �10� is constructed so that x
�S implies x��S�=S0, causing the new interface S to be
mapped to S0 as desired. Thus, h�x� for x�S must be the
perpendicular displacement from S0 to S. For x�S, h�x�
should be some differentiable, slowly varying function �ex-
cept possibly at isolated surface kinks and discontinuities�.
The precise functions L and h will turn out to be irrelevant to
our final answer �3�, so we need not construct them explic-
itly.

We will take 	h	=h�1 to be the small parameter of our
perturbation theory, and will concern ourselves with obtain-
ing the correct first-order �� in the limit h→0. We will also
eventually take the limit R→0, but will still require h�R in
order to ensure, as will become apparent below, that the
Jacobian factor of the coordinate transformation remains
close to unity. �That is, we let h go to zero faster than R.�
Finally, in order to have h�x� be sufficiently slowly varying
that we can neglect its derivatives compared to the deriva-
tives of L�x�, below, it will be important to require that the
radius of curvature of S0 and S be much larger than h, except
possibly at isolated points; otherwise, more complicated per-
turbative methods are required �12�.

C. Point-localized coordinate transforms

The coordinate transformation �10� representing our
boundary perturbation is localized around the perturbed in-
terface, but it is convenient to go one step further: we will
represent the coordinate transform as a summation of coor-
dinate transformations localized around individual points on
the interface, by exploiting the concept of a partition of unity
from topology �25�, reviewed below.

Consider the support of the function L�x� from above.
This support is covered by the open set of spherical radius R
neighborhoods of every point on the surface, and that cover-
ing must admit a locally finite subcovering �U����; that is, a
subset of neighborhoods �U���� such that every point on the
surface intersects finitely many neighborhoods U���, and the
union of the U��� covers the support of L. There must also
exist a partition of unity �
����: a set of differentiable func-
tions 
����x�� �0,1� with support �U���, such that
��
����x�=1 everywhere in the support of L. We can then
write

L�x� = ��
�


����x��L�x� = �
�

K����x� , �11�

where each K����x�=
����x�L�x�� �0,1� is a differentiable
function localized to a small radius R neighborhood U��� of a
single point on the interface. The Jacobian J of the coordi-
nate transformation �10� can then be written in the form

J = 1 + �
�

�J���, �12�

where

�Jij
��� = −

�

�xj
�hi�x�K����x�� �13�

has support �U���.
The key advantage of this construction arises if we look at

��=��−� from Eq. �7�. Assuming �J is small and we are
computing �� to first order, then we can write ��
=������� as a sum of contributions from each �J��� indi-
vidually, and similarly for ��. Therefore, when computing
the first-order perturbation �� from Eq. �9�, we can write
��=������� as a sum of contributions ����� analyzed in
each point neighborhood separately. This removes the need
to deal with the complex shape of the entire boundary at
once, and is the procedure that we adopt in the following
section.

IV. PERTURBATION THEORY DERIVATION

In the previous section, we established several important
preliminary results that allow us to express a boundary per-
turbation, via coordinate transformation, as a sum of local-
ized material perturbations ����� and ����� around indi-
vidual points of the boundary. We will now explicitly
evaluate those contributions, taking the limit as the perturba-
tion h→0 and the coordinate distortion radius R→0 to ob-
tain our coordinate-independent final result, Eq. �3�.

We therefore restrict our attention to a single neighbor-
hood U��� and the contribution from the corresponding term
K��� in the coordinate transformation. In this small neighbor-
hood of radius R, we can take h�x��h��� to be a constant to
lowest order in R. In this case, the interface is locally flat,
and we can choose a local coordinate frame �x1 ,x2 ,x3� so
that x1 is the direction perpendicular to the interface at x1
=0, with x1�0 corresponding to �a and x1	0 corresponding
to �b, as shown in Fig. 2. In this coordinate frame h���

= �h��� ,0 ,0�, the Jacobian contribution �J��� simplifies to

�Jij
��� = − 
i1h���Kj

��� + O�h���R� , �14�

where 
i1 is the Kronecker delta and Kj
��� denotes �K��� /�xj.

Since R� 	h	 by assumption and K���� �0,1� is a smooth
localized function with support of radius R, K��� can be con-
structed so that h���Kj

���=O�h /R�, i.e., so that the derivatives
are small. This will make J close to unity and allow us to
use the perturbation Eq. �9�.

We must now construct ����� to first order. Since J=1
+���J���, we obtain
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1

det J
= 1 + �

�

h���K1
��� + O�h2� + O�hR� . �15�

Combined with Eq. �13�, we can now evaluate Eq. �7� for ��,
to lowest order, to obtain ��=�������+O�h2�+O�hR�, with

��ij
��� = ��ijK1

��� − �
k

Kk
����
i1�kj + 
 j1�ik��h���. �16�

This will contribute to �9� via the integral

I��� = �
U���

E� · �����E d3x , �17�

where we have dropped the 0 subscript from the unperturbed
field E for simplicity. In order to simplify this integral, we
will write E= �E1 ,E2 ,E3� in terms of F= �D1 ,E2 ,E3�, since F
is continuous whereas E1 is not. Solving for E1 in D=�E
yields E1= 1

�11
�D1−�12E2−�13E3�, and thus E=FF where

F��� =�
1

�11
−

�12

�11
−

�13

�11

1

1
� . �18�

Because F is continuous, we can write F�x�=F���+O�R�,
where the O�R� term is a higher-order contribution to I���

that can be dropped and the F��� is a constant that can be
pulled out of the integral. Therefore, we are left with

I��� = F���� · ��
U���

F†�����F d3x�F��� + O�hR� , �19�

where F† is the conjugate transpose. This integral now sim-
plifies a great deal, because the only nonconstant terms are
from the Kj

��� and the step-function ��x1� dependence of
��x�. In particular, the integrals over the K2

��� and K3
��� terms

vanish, because along the x2 and x3 directions, respectively,
they are integrals of the derivatives of a function K��� that
vanishes at the end points. We are left with the K1

��� terms,
which yield the integrand

F†�− �11

�22 �23

�32 �33
�FK1

���h���

= ����K1
���h��� = ����a� + ����b� − ���a����x1��K1

���h���,

�20�

where the product of the three matrices gives precisely the
matrix ���� defined in Eq. �4�, using the assumption that � is
Hermitian ��†=��. When Eq. �20� is integrated by parts in
the x1 direction, we obtain the integral of K��� multiplied by
a delta function 
�x1� from the derivative of ��x1�, produc-
ing

� � ����a� − ���b��K����0,x2,x3�h���dx2dx3. �21�

When this is summed over � to obtain the total perturbation
integral, however, ��K����0,x2 ,x3�=L�0,x2 ,x3�=1 by con-
struction �since L=1 on the interface�. Thus, we obtain the
surface integral of Eq. �3�, as desired, where h���dx2dx3
=h ·dA.

The analysis of the ����� term proceeds identically, al-
though here the continuous field components are �B1 ,H2,H3�,
but in this case it yields zero if �a=�b �as in the common
case of nonmagnetic materials where � is identically 1�.

V. NUMERICAL VALIDATION

To check the correctness of the perturbative analysis
above, we performed the following numerical computation.
We solve the full-vector Maxwell eigenproblem numerically,
for inhomogeneous anisotropic dielectric structures, by itera-
tive Rayleigh-quotient minimization in a plane-wave basis,
using a freely available software package �6�. Given an arbi-
trary structure, we can then evaluate the derivative of the
eigenfrequency for a shifting interface, both by the perturba-
tion Eq. �3� and by numerical differentiation of the eigenfre-
quencies �here, differentiating a cubic-spline interpolation�.

In particular, we considered a two-dimensional photonic
crystal �16� consisting of a square lattice �lattice constant a�
of 0.4a�0.2a dielectric blocks of a material �a surrounded
by �b, with Gaussian bumps on one side �inset of Fig. 3�.
Here, �a and �b are chosen to be random, symmetric,
positive-definite matrices with eigenvalues ranging from 2 to
12 for �a and from 1 to 5 for �b. On the right side of each
block �along one of the 0.4a edges� is a Gaussian bump of
height h�y�=he−y2/2w2

, with a width w=0.1a and amplitude h
�where h�0 denotes an indentation�. We then computed the
lowest eigenvalue ��A� and eigenfields E for a set of h val-
ues h /a� �−0.17, +0.17�, at a Bloch wave vector k
= �0,0 ,0.5�2� /a �leading to modes with a vacuum wave-
length ��3a�. Given these data, we then compared the de-
rivative d� /dh as computed by the perturbation Eq. �3� com-
pared to the derivative of a cubic-spline fit of the frequency
data. This was repeated for six different random �a and �b.
The results, shown in Fig. 3, demonstrate that the perturba-
tion formula indeed predicts the exact slope h as expected
�with tiny discrepancies, due to the finite resolution, too
small to see on this graph�.

εbεa

h

SS0

x1

x2

x1=0

FIG. 2. Schematic of an interface perturbation as in Fig. 1, mag-
nifying a small portion of the interface where the surface is locally
flat. A local coordinate frame �x1 ,x2 ,x3� is chosen so that x1 is
perpendicular to the surface, and so that x1=0 denotes the location
of the perturbed surface S �shifted perpendicularly by h from the
original surface S0�.
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VI. APPLICATION TO SUBPIXEL SMOOTHING

In any numerical method involving the solution of the
full-vector Maxwell’s equations on a discrete grid or its
equivalent, such as the plane-wave method above �6� or the
finite-difference time-domain �FDTD� method �26�, discon-
tinuities in the dielectric function � �and the corresponding
field discontinuities� generally degrade the accuracy of the
method, typically reducing it to only linear convergence with
resolution �6,7�. Unfortunately, a piecewise-continuous � is
the most common experimental situation, so a technique to
improve the accuracy �without switching to an entirely dif-
ferent computational method� is desirable. One simple ap-
proach that has been proposed by several authors is to
smooth the dielectric function, or equivalently to set the � of
each pixel to be some average of � within the pixel, rather
than merely sampling � in a staircase fashion �5,6,13,27–31�.
Unfortunately, this smoothing itself changes the structure,
and therefore introduces errors. We analyzed this situation in
a recent paper for the FDTD method �5�, and showed that the
problem is closely related to perturbation theory: one desires
a smoothing of � that has zero first-order effect, to minimize
the error introduced by smoothing and so that the underlying
second-order accuracy can potentially be preserved. At an
interface between two isotropic dielectric materials, the first-
order perturbation is given by Eq. �2�, and this leads to an
anisotropic smoothing: one averages �−1 for field compo-
nents perpendicular to the interface, and averages � for field
components parallel to the interface, a result that was previ-
ously proposed heuristically by several authors �6,13,29�.

In this section, we generalize that result to interfaces be-
tween anisotropic materials, and illustrate numerically that it
leads to dramatic improvements in both the absolute magni-
tude and the convergence rate of the discretization error. In

the anisotropic-interface case, a heuristic subpixel smoothing
scheme was previously proposed �6�, but we now show that
this method was suboptimal: although it is better than other
smoothing schemes, it does not set the first-order perturba-
tion to zero and therefore does not minimize the error or
permit the possibility of second-order accuracy. Specifically,
as discussed more explicitly below, a second-order smooth-
ing is obtained by averaging ���� and then inverting ���� to
obtain the smoothed “effective” dielectric tensor. Because
this scheme is analytically guaranteed to eliminate the first-
order error otherwise introduced by smoothing, we expect it
to generally lead to the smallest numerical error compared to
competing smoothing schemes, and there is the hope that the
overall convergence rate may be quadratic with resolution.

First, let us analyze how perturbation theory leads to a
smoothing scheme. Suppose that we smooth the underlying
dielectric tensor ��x� into some locally averaged tensor ��x�,
by some method to be determined below. This involves a
change ��=�−�, which is likely to be large near points
where � is discontinuous �and, conversely, is zero well inside
regions where � is constant�. In particular, suppose that we
employ a smoothing radius �defined more precisely below�
proportional to the spatial resolution �x of our numerical
method, so that �� is zero �or at most O��x2�� except within
a distance ��x of discontinuous interfaces. To evaluate the
effect of this large perturbation near an interface, we must
employ an equivalent reformulation of Eq. �3�:

�� �� F� · ��F d3x ,

where ��=����−����. It is sufficient to look at the pertur-
bation in �, since �as we remarked in Sec. II� the same
integral appears in the perturbation theory for many other

FIG. 3. �Color online� Numeri-
cal validation of perturbation-
theory formula, applied to com-
pute the derivative d� /dh for a
Gaussian “bump” of height h on a
square lattice �period a� of
anisotropic-� rectangles �inset�
with an eigenfrequency � �corre-
sponding to ��3a�. Positive
�negative� h indicate bumps �in-
dentations� �see lower right and
left insets for h= �0.15a�, respec-
tively. Solid lines are numerical
differentiation of the eigenfre-
quency, and dots are from pertur-
bation theory. The different lines
correspond to different random di-
electric tensors �a and �b.

KOTTKE, FARJADPOUR, AND JOHNSON PHYSICAL REVIEW E 77, 036611 �2008�

036611-6



quantities �such as scattered power, etc.�. If we let x1 denote
the �local� coordinate orthogonal to the boundary, then the x1
integral is simply proportional to ���� dx1+O��x2�: since
F is continuous and ��=0 except near the interface, we can
pull F out of the x1 integral to lowest order. That means, in
order to make the first-order perturbation zero for all fields F,
it is sufficient to have ��� dx1=0. This is achieved by aver-
aging � as follows.

The most straightforward interpretation of smoothing
would be to convolve � with some localized kernel s�x�,
where �s�x�d3x=1 and s�x�=0 for 	x	 greater than some
smoothing radius �the support radius� proportional to the res-
olution ��x. That is, ��x�=��s=���y�s�x−y�d3y. For ex-
ample, the simplest subpixel smoothing, simply computing
the average of � over each pixel, corresponds to s=1 inside
a pixel at the origin and s=0 elsewhere. However, this will
not lead to the desired ���=0 to obtain second-order accu-
racy. Instead, we employ

��x� = �−1����� � s� = �−1�� ����y��s�x − y�d3y� ,

�22�

where �−1 is the inverse of the ���� mapping, given by

�−1��� =�
−

1

�11
−

�12

�11
−

�13

�11

−
�21

�11
�22 −

�21�12

�11
�23 −

�21�13

�11

−
�31

�11
�32 −

�31�12

�11
�33 −

�31�13

�11

� . �23�

The reason why Eq. �22� works, regardless of the smoothing
kernel s�x�, is that

� �� d3x =� d3x�� ����y��s�x − y�d3y − ��x��
=� d3y ����y���� s�x − y�d3y − 1� = 0.

�24�

This guarantees that the integral of �� is zero over all space,
but above we required what appears to be a stronger condi-
tion, that the local, interface-perpendicular integral ��� dx1
be zero �at least to first order�. However, in a small region
where the interface is locally flat �to first order in the
smoothing radius�, �� must be a function of x1 only by trans-
lational symmetry, and therefore �24� implies that ��� dx1
=0 by itself. Although the above convolution formulas may
look complicated, for the simplest smoothing kernel s�x� the
procedure is quite simple: in each pixel, average ���� in the
pixel and then apply �−1 to the result. �This is no more dif-
ficult to apply than the procedure implemented in Ref. �6�,
for example.�

Strictly speaking, the use of this smoothing does not guar-
antee second-order accuracy, even if the underlying numeri-
cal method is nominally second-order accurate or better. For
one thing, although we have canceled the first-order error

due to smoothing, it may be that the next-order correction is
not second order. Precisely, this situation occurs if one has a
structure with sharp dielectric corners, edges, or cusps, as
discussed in Ref. �1�: in this case, smoothing leads to a con-
vergence rate between first order �which would be obtained
with no smoothing� and second order, with the exponent de-
termined by the nature of the field singularity that occurs at
the corner.

A. Numerical smoothing validation

As a simple illustration of the efficacy of the subpixel
smoothing we propose in Eq. �22�, let us consider a two-
dimensional example problem: a square lattice �period a� of
ellipses made of �a surrounded by �b, where we will find the
lowest-� Bloch eigenmode. As above, we choose the dielec-
tric tensors to be random positive-definite symmetric matri-
ces with random eigenvalues in �2,12� for �a and in �1,5� for
�b, and the ellipses are oriented at an arbitrary angle, at an
arbitrary Bloch wave vector ka /2�= �0.1,0.2,0.3�, to avoid
fortuitous symmetry effects. �The vacuum wavelength � cor-
responding to the eigenfrequency � is �=5.03a.� For each
resolution �x, we assign an � to each pixel by computing �−1

of the average of ���� within that pixel. Then, we compute
the relative error �� /� �compared to a calculation at a much
higher resolution� as a function of resolution. For compari-
son, we also consider four other smoothing techniques: no
smoothing, averaging � in each pixel �28�, averaging �−1 in
each pixel, and a heuristic anisotropic averaging proposed by
Ref. �6� in analogy to the scalar case. The results are shown
in Fig. 4, based on the same plane-wave method as above
�6�, and show that the smoothing technique clearly leads to
the lowest errors �� /�. Also, whereas the other methods
yield clearly first-order convergence, the method seems to
exhibit roughly second-order convergence. The no-
smoothing case has extremely erratic errors, as is typical for
staircasing phenomena.

In Fig. 5, we also show results from a similar calculation
in three dimensions �3D�. Here, we look at the lowest eigen-
mode of a cubic lattice �period a� of 3D ellipsoids �oriented
at a random angle� made of �a surrounded by �b, both ran-
dom positive-definite symmetric matrices as above. The fre-
quency �, at an arbitrarily chosen wave vector ka /2�
= �0.4,0.3,0.1�, corresponds to a vacuum wavelength �
=3.14a. Again, this method almost always has the lowest
error by a wide margin, especially if the unpredictable dips
of the no-smoothing case are excluded, and is the only one to
exhibit �apparently� better than linear convergence.

Our previous heuristic proposal from Ref. �6�, while bet-
ter than the other smoothing schemes �and less erratic than
no smoothing�, is clearly inferior to this method. Previously,
we had observed what seemed to have been quadratic con-
vergence from the heuristic scheme �6�, but this result seems
to have been fortuitous—as we demonstrated recently, even
non-second-order schemes can sometimes appear to have
second-order convergence over some range of resolutions for
a particular geometry �5�. The key distinction of this scheme
that lends us greater confidence in it than one or two ex-
amples can convey is that it is no longer heuristic. This
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smoothing scheme is based on a clear analytical criterion—
setting the first-order perturbative effect of the smoothing to
zero—which explains why it should be an accurate choice in
a wide variety of circumstances.

VII. CONCLUDING REMARKS

We have shown how to correctly treat lowest-order per-
turbations to a boundary between two anisotropic materials,
a problem for which previous approaches were stymied by
the complicated discontinuous boundary conditions on the
electric field. This result immediately led to an improved

subpixel smoothing scheme for discretized numerical
methods—we demonstrated it for a plane-wave method, but
we expect that it will similarly be applicable to other meth-
ods, e.g., FDTD methods �5�. The same result can also be
applied to constructing an effective-medium theory for sub-
wavelength multilayer films of anisotropic materials. More-
over, in the process of deriving our perturbative result, we
developed a local coordinate-transform approach that may be
useful in treating many other types of interface perturbations,
because it circumvents the difficulty of shifting discontinui-
ties without requiring one to construct an explicit coordinate
transformation.
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FIG. 4. �Color online� Relative
error �� /� for an eigenmode cal-
culation with a square lattice �pe-
riod a� of 2D anisotropic ellipses
�green inset�, versus spatial reso-
lution, for a variety of subpixel
smoothing techniques. Straight
lines for perfect linear �black
dashed� and perfect quadratic
�black solid� convergence are
shown for reference.
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FIG. 5. �Color online� Relative
error �� /� for an eigenmode cal-
culation with cubic lattice �period
a� of 3D anisotropic ellipsoids
�green inset�, versus spatial reso-
lution, for a variety of subpixel
smoothing techniques. Straight
lines for perfect linear �black
dashed� and perfect quadratic
�black solid� convergence are
shown for reference.
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APPENDIX: COORDINATE TRANSFORMATION OF
MAXWELL’S EQUATIONS

As discussed in Sec. III A above, any differentiable coor-
dinate transformation of Maxwell’s equations can be recast
as merely a transformation of � and �, with the same solu-
tions E and H only multiplied by a matrix in addition to the
coordinate change �14�. This result has been exploited by
Pendry et al. to obtain a number of beautiful analytical re-
sults from cylindrical superlenses �3� to invisibility cloaks
�4�. It �and related ideas� can be used to derive coupled-mode
expressions for bending loss in optical waveguides �17,19�.
A similar result has also been employed to design perfectly-
matched layers �PMLs�, via a complex coordinate stretching,
to truncate numerical grids �32�. It is likely that there are
many other applications, as well as equivalent derivations,
that we are not aware of. Here, we review the proof in a
compact form, generalized to arbitrary anisotropic media.
�Most previous derivations seem to have been for isotropic
media in at least one coordinate frame �14�, or for coordinate
transformations with purely diagonal Jacobians J where Jii
depends only on xi �32�, or for constant affine coordinate
transforms �33�.�

We begin with the usual Maxwell’s equations for Euclid-
ean space �in natural units�:

� � H = �
�E

�t
+ J , �A1�

� � E = − �
�H

�t
, �A2�

� · ��E� = � , �A3�

� · ��H� = 0, �A4�

where J and � are the usual free current and charge densities,
respectively. We will proceed in index notation, employing
the Einstein convention whereby repeated indices are
summed over. Ampère’s law, Eq. �A1�, is now expressed as

�aHb�abc = �cd
�Ed

�t
+ Jc, �A5�

where �abc is the usual Levi-Cività permutation tensor and
�a=� /�xa. Under a coordinate change x�x�, if we let Jab

=
�xa�

�xb�
be the �nonsingular� Jacobian matrix associated with the

coordinate transform �which may be a function of x�, we
have

�a = Jba�b�. �A6�

Furthermore, as in Eqs. �5� and �6�, let

Ea = JbaEb�, �A7�

Ha = JbaHb�. �A8�

Hence, Eq. �A5� becomes

Jia�i�J jbHj��abc = �cdJld

�El�

�t
+ Jc. �A9�

Here, the Jia�i�=�a derivative falls on both the J jb and Hj�
terms, but we can eliminate the former thanks to the �abc:
�aJ jb�abc=0 because �aJ jb=�bJ ja. Then, again multiplying
both sides by the Jacobian Jkc, we obtain

JkcJ jbJia�i�Hj��abc = Jkc�cdJld

�El�

�t
+ JkcJc. �A10�

Noting that JiaJ jbJkc�abc=�ijk det J by definition of the de-
terminant, we finally have

�i�Hj��ijk =
1

det J
Jkc�cdJld

�El�

�t
+

JkcJc

det J
�A11�

or, back in vector notation,

�� � H� =
J�JT

det J
�E�

�t
+ J�, �A12�

where J�=JJ /det J. Thus, we see that we can interpret
Ampère’s law in arbitrary coordinates as the usual equation
in Euclidean coordinates, as long as we replace the materials,
etc., by Eqs. �5�–�7�. By an identical argument, we obtain

�� � E� = −
J�JT

det J
�H�

�t
, �A13�

which yields the corresponding transformation �8� for �.
The transformation of the remaining divergence equations

into equivalent forms in the new coordinates is also straight-
forward. Gauss’s law, Eq. �A3�, becomes

� = �a�abEb = Jia�i��abJ jbEj� = Jia�i��det J�Jak
−1�kj� Ej�

= �det J��i��ij�Ej� + ��aJak
−1 det J��kj� Ej� = �det J��i��ij�Ej�,

�A14�

which gives �� · ���E��=�� for ��=� /det J, and similarly
for Eq. �A4�. Here, we have used the fact that

�aJak
−1 det J = �a�anm�kijJinJ jm/2 = 0, �A15�

from the cofactor formula for the matrix inverse, and recall-
ing that �aJ jb�abc=0 from above. In particular, note that �
=0⇔��=0 and J=0⇔J�=0, so a nonsingular coordinate
transformation preserves the absence �or presence� of
sources.
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